Lawrence Berkeley National Laboratory
Recent Work

Title
First successful chemical study of Bohrium (Bh, element 107)

Permalink
https://escholarship.org/uc/item/7j85j84h

Authors
Wilk, Philip
Gregorich, Ken
Nitsche, Heino
et al.

Publication Date
2000-11-01
The arrangement of the chemical elements in the periodic table indicates similarities of chemical properties, which reflect the elements’ electronic structure. For the heaviest elements, however, deviations in the periodicity of chemical properties are expected due to relativistic effects. The discovery of 267Bh with a half-life of ~17 s makes it an ideal candidate for gas phase chromatographic separation studies with the OLGA system, since the typical separation time with this device is about 5 s. The nuclides 267Bh and 266Bh were discovered at LBNL a few months previously via the 249Bk(22Ne,4n) and 249Bk(22Ne,5n) reactions [1]. For this experiment our rotating wheel system used a parent-daughter stepping mode to provide detection of α-α correlations with a greatly reduced background. Six atoms of bohrium were detected during this experiment by correlating their decay unambiguously with the decay of their daughters.

Between August 20 and October 26, 1999, an experiment to study Bh chemistry was performed at PSI, Switzerland. A 670 μg/cm2 249Bk target was irradiated with 22Ne$^{6+}$ at 118 MeV for a total beam dose of 3.0×10^{18} particles. The behavior of Bh was investigated at 180, 150, and also at 75°C. The target material was provided by Office of Science, Office of Basic Energy Research, Division of Chemical Sciences, of the U.S. Department of Energy, through the transplutonium element production program at the Oak Ridge National Laboratory.

The unambiguous identification of Bh after chemical separation allows us to conclude that like its lighter homologues, Bh forms a volatile oxychloride compound, presumably BhO$_3$Cl, and behaves like a typical group seven element, taking its place on the periodic table [2]. Further experimentation is being performed at PSI right now, through the end of December to investigate its chemistry in more detail relative to its lighter homologues.
