Title
Epithelial mesenchymal transition and hedgehog signaling activation are associated with chemoresistance and invasion of hepatoma subpopulations.

Permalink
https://escholarship.org/uc/item/7jb6542v

Journal
Journal of hepatology, 55(4)

ISSN
0168-8278

Authors
Wu, Jian
Zern, M A
Nolta, Jan A.

Publication Date
2011-02-18

DOI
10.1016/j.jhep.2010.12.043

Peer reviewed
Epithelial mesenchymal transition and hedgehog signaling activation are associated with chemoresistance and invasion of hepatoma subpopulations

Xiaoli Chen1, Shilpa Lingala1, Shiva Khoobyari1, Jan Nolta2, Mark A. Zern1, Jian Wu1,2,3,*

1Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California, Davis Medical Center, Sacramento, CA 95817, United States; 2Stem Cell Program, University of California, Davis Medical Center, Sacramento, CA 95817, United States; 3Cancer Center, University of California, Davis Medical Center, Sacramento, CA 95817, United States

Background & Aims: Our previous studies showed that CD133, EpCAM, and aldehyde dehydrogenase (ALDH) are useful markers to identify cancer stem cells (CSCs) in hepatocellular carcinoma (HCC) tissues. The present study aims to evaluate chemosensitivity and invasion capability of HCC based on CSC marker profiles, and to explore the underlying molecular mechanisms.

Methods: Hepatoma cell lines were separated into subpopulations according to CD133, EpCAM, and ALDH expression profiles. Epithelial mesenchymal transition (EMT) and hedgehog (Hh) signaling were examined to identify their links with chemoresistance and aggressive invasion.

Results: Well-differentiated cell lines were positive for CD133+/ALDHhigh and CD133+/EpCAMlow at 1.5–15% and 2.3–8.3%; whereas, poorly-differentiated cells were almost all negative for these markers. FACS-enriched CD133+/ALDHhigh and CD133+/EpCAMhigh Hep3B and Huh-7 cells formed more spheroids in vitro. CD133+/ALDHlow HLE cells were more resistant to cisplatin, doxorubicin or sorafenib than their positive counterparts. CD133+/EpCAMhigh Huh-7 cells or CD133+/ALDHlow HLE cells exhibited a higher invasion rate than their positive counterparts. HLE and HLF cells acquired EMT in double negative subpopulations. Hh activity in Huh-7 CD133+/EpCAM- cells was higher than in their positive counterparts, and the inhibition of Hh activity by cyclopamine resulted in decreased cell proliferation.

Conclusions: Well-differentiated CD133+/ALDHhigh or CD133+/EpCAM- cells appear to be a CSC/initiating subpopulation; whereas, in poorly-differentiated hepatoma cells, EMT and enhanced hedgehog signaling activity may be responsible for their chemoresistance and invasion. These findings underscore the significance of EMT and enhanced Hh signaling in liver cancer stem or initiating cells.

Keywords: Hepatocellular carcinoma; Cancer stem cells; Chemosensitivity; Epithelial mesenchymal transition; Hedgehog signaling.

Introduction

Hepatocellular carcinoma (HCC) is the third most deadly and the fifth most common malignancy worldwide, with an estimation of 600,000 new cases per year [1]. Surgical removal and liver transplantation remain the most effective therapy for HCC. Although various adjuvant approaches to treat non-resectable HCC are available, the efficacy and three-year survival rate (30–40%) are not promising [2].

Cancer stem cells (CSCs) are a newly identified subpopulation that possesses stem cell properties, and may differentiate into heterogeneous progenies of malignant cells [3]. CSCs are thought to be the cells that are least sensitive to chemotherapy or radiotherapy, and develop resistance to pharmacologic, biologic therapy, or radiotherapy [4]. These cells are probably the source for tumor metastasis and relapse. A single CD133+ cell from a colon cancer was able to form a tumor in the renal capsule of immunodeficient mice [5]. High aldehyde dehydrogenase (ALDH) activity is a common feature of stem cells, and bone marrow-derived progenitor cells with high ALDH activity displayed great engraving potential in the mouse liver [6]. EpCAM-positive cells have been implicated as initiating/stem cells in pancreatic cancer [7]. In a recent study, we have identified a cluster of CD133+/ALDHhigh cells in human HCC tissue, especially in invaded vessels, and it was demonstrated that combined staining of CD133, ALDH, EpCAM, as well as CD44 and CD90 could identify CSCs in HCC [8].

In order to further investigate the relationship between phenotypic characteristics of CSCs and tumorigenicity, chemosensitivity, or invasion capability, we separated subpopulations of hepatoma cells according to their CSC marker expression profile. It was found that CD133+/ALDHhigh and CD133+/EpCAM+ cells were more tumorigenic, whereas, CD133+/ALDHlow cells were more chemoresistant and metastatic as compared to their positive counterparts. We further investigated the markers of

© 2011 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
epithelial mesenchymal transition (EMT) and hedgehog (Hh) signaling activity, and found that the occurrence of EMT and enhanced Hh signaling activity appear to be responsible for the chemoresistance, aggressive invasion, and proliferation seen in CD133+/ALDHlow hepatoma cell lines. Our study underscores the significance of EMT and the Hh signaling pathway in liver cancer stem or initiating cells.

Materials and methods

Cell culture

HepG2, Hep3B, Huh-7, and SKHep1 hepatoma cell lines were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA). HLE and HLF cells were kindly provided by Health Science Research Resources Bank, Tokyo, Japan. HepG2 and Hep3B cells were cultured as reported previously [9].

Fluorescence-activated cell sorting (FACS)

CD133+/ALDHhigh and CD133−/ALDHlow subpopulations in HepG2, Hep3B, Huh-7, SKHep-1, HLE, and HLF cell lines were enriched by FACS using allopurinolcyclin (APC)-conjugated monoclonal antibodies against human CD133 (Miltenyi Biotec Inc., Auburn, CA, USA) and an Aldefluor kit (STEMCELL Technologies, Vancouver, BC, Canada), which labels ALDH-positive cells in green fluorescence, as we have described [6]. CD133+/EpCAM+ and CD133+/EpCAM− subpopulations in HepG2, Huh-7, HLE, and HLF cell lines were enriched using APC-conjugated monoclonal antibodies against human CD133 and FITC-conjugated monoclonal antibodies against human EpCam (Dako North America, Inc., Carpinteria, CA, USA). The staining protocol followed a report [6] with modifications. Briefly, detached cells were blocked with 2% rabbit serum, and incubated with monoclonal antibodies (CD133)/EpCAM. Then, cells were suspended in phosphate-buffered saline (PBS) containing 1% bovine serum albumin (BSA) until sorting. For CD133+/ALDH staining, after being labeled with APC-conjugated antibodies against CD133, cells were further incubated with Aldefluor substrate. All labeled cells were sorted in a high speed Cytopeia Influx Cell Sorter (BD Biosciences, San Jose, CA, USA). After sorting, hepatoma subpopulations were cultured in regular medium for the assays described below (see the Supplemental information for Methods not included in this part).

Formation of spheroid cores and immunofluorescent staining

FACS-enriched subpopulations of 2 × 10⁶ cells were seeded in 24-well attachment culture plates, and cultured for 3 weeks. Then spheroid cores were counted, fixed in 4% PBS-buffered paraformaldehyde, and incubated with the pri-
mary antibodies against CD133, vimentin (Sigma), and proliferating cell nuclear antigen (PCNA) in combinations for double staining as described by us [8]. Stained spheroids were visualized under a Zeiss LSM510 laser scanning confocal microscope (Oberkochen, Germany).

Western blotting analysis

Total protein and the subcellular fractions of the membrane, cytosolic, and nuclear soluble proteins were extracted from FACS-isolated cell subpopulations using corresponding extraction kits (Pierce Biotech, Rockford, IL, USA). Protein content was measured with a BCA protein assay (Pierce Biotech, Rockford IL, USA). The Western blotting assay was performed as reported previously [10] and the membranes were blotted separately with primary antibodies: monoclonal anti-E-cadherin, anti-vimentin and anti-ZEB1 (Santa Cruz Biotechnologies, Santa Cruz, CA, USA), polyclonal rabbit anti-GFAP (Abcam), monoclonal anti-snail (Sigma), monoclonal anti-Platelet/PTCH1 (Abcam), monoclonal anti-β-actin (Sigma), anti-integrin β1 (Santa Cruz), and anti-TATA box binding protein (Abcam) were used as loading controls for cytosolic, membrane, and nuclear fractions.

Hh signaling activity by a GLI-lux reporter system

In order to determine Hh signaling activity in FACS-enriched hepatoma subpopulations, we used a GLI-lux reporter system, in which the firefly luciferase gene expression is driven by the GLI promoter [11]. FACS-purified Huh-7/CD133+/ALDHhigh and Hep3B cells were implanted in the left renal capsule of immunodeficient nude mice for xenograft formation, while their double negative subpopulations in Hep3B, HepG2, and Huh-7 were 10.3%, 2.3%, and 18.3% positive; in contrast, HLE, HLF, and SKHep1 cells were almost all negative for these two markers. EpCAM has been suggested to be a CSC marker in epithelial-derived malignancies. We further separated CD133+/ALDHhigh and CD133−/ALDHlow subpopulations by FACS enrichment. It is clear in Fig. 2D that well-differentiated hepatoma cell lines displayed a relatively higher CD133 expression than poorly-differentiated lines. As a result, the CD133+/ALDHhigh subpopulation in Hep3B, HepG2, and Huh-7 cells was 13.4, 1.1, and 15.6%, respectively; whereas poorly differentiated HLE, HLF, and SKHep1 cells were almost all negative for these two markers. EpCAM has been suggested to be a CSC marker in epithelial-derived malignancies. We further separated CD133+/EpCAM+ or CD133−/EpCAM− subpopulations in these cell lines. As shown in Fig. 2D, CD133+/EpCAM+ subpopulations in Hep3B, HepG2, and Huh-7 were 10.3%, 2.3%, and 18.3% positive; in contrast, HLE, HLF, and SKHep1 cells were almost all negative for these two markers. We were not able to obtain a CD133−/EpCAM− subpopulation from these poorly-differ-
entiated cell lines. Instead, we obtained CD133+/EpCAM+ and CD133−/EpCAM− subpopulations for HLE and HLF. Thus, the separation of hepatoma cells according to their CSC marker profile provided subpopulations unique for the further determination of tumorigenicity, chemoresistance, and invasive capability, as well as signaling pathways affecting these critical aspects of oncogenesis and progression.

Tumorigenicity of FACS-enriched subpopulations

As shown in Fig. 2D, CD133+/ALDHhigh Huh-7 and Hep3B cells formed a higher number of spheroids than their double
negative counterparts (p < 0.001). Immunohistochemical staining showed that Huh-7 spheroids were CD133 and AFP-positive, as well as PCNA-positive, a marker of cell proliferation (Fig. 2A, and B). HLF spheroids were CD133 (not shown) and AFP-negative, but PCNA positive (Fig. 2C). They were able to form large spheroids. In separate experiments, after FACS enrichment, 2000 cells of the Huh-7 and Hep3B subpopulations were injected under the renal capsule of immunodeficient NOD-SCID-IL2R−/− mice for xenograft formation. After 3–4 months, there was a trend toward more xenografts having formed in NOD-SCID mice injected with CD133+/EpCAM+ Huh-7 and Hep3B cells than in the double negative subpopulation-injected mice (p > 0.05) (Table 1). Flow cytometric analysis of cells isolated from a xenograft tumor derived from CD133+/EpCAM+ Huh-7 cells showed that 90.4% of cells were still CD133+ cells, especially in poorly-differentiated HLE cell lines, the chemoresistance of CD133+ cells, and was consistent with more TGF-β1 and procollagen type I (α1) expression in the CD133+/ALDHhigh HLE subpopulation (Fig. 4C). Snail is a transcription factor which modulates the acquisition of EMT in many epithelial cells. Higher snail protein levels were found in the CD133+/ALDHhigh HLE and Hep3B cells (Fig. 5). They lost E-cadherin expression, but vimentin staining was obviously positive. This staining profile verified the acquisition of EMT in the CD133+/ALDHhigh subpopulation and in HLE and HLF cells (Fig. 4A, both CD133+/ALDHlow HLE and Huh-7 subpopulations). They expressed E-cadherin-positive, and vimentin-negative. Whereas, Hep3B CD133+/ALDHlow cells exhibited the opposite E-cadherin and vimentin expression profiles. These results indicate that CD133+ cells are not only chemoresistant, but also are more invasive in comparison with CD133− cells, especially in poorly-differentiated HLE subpopulations.

Enhanced chemoresistance in HLE CD133+/ALDHhigh subpopulation

Viable cell numbers were determined spectrophotometrically using a WST-1 reagent after exposure to cisplatin and doxorubicin, both of which are included in transarterial chemoembolization (TACE) as one of the adjuvant therapies, or sorafenib, a newly proven multikinase inhibitor targeting vascular endothelial growth factor (VEGF)-mediated angiogenesis. As shown in Fig. 3, more CD133+/ALDHlow HLE cells survived in a 24 h-exposure to cisplatin, doxorubicin, or sorafenib in comparison to the CD133+/ALDHhigh subpopulation. As the major subpopulation of poorly-differentiated hepatoma cell lines, the chemoresistance of CD133+/ALDHlow HLE cells may be comparable in insensitivity to chemotherapy of poorly-differentiated HCC.

Enhanced invasive capability and wound healing in CD133-negative subpopulations

FACS-enriched Huh-7 and HLE subpopulations were subjected to in vitro Matrigel invasion and wound healing assays. As shown in Fig. 4A, both CD133+/ALDHlow Huh-7 and CD133+/ALDHlow HLE cell lines repaired the wounds quicker than their counterparts. Moreover, the in vitro Matrigel invasion assay demonstrated that more Huh-7 CD133+/EpCAM+ cells crossed the separation membrane in the transwells than CD133+/EpCAM+ cells (p < 0.005) (Fig. 4B). These results indicate that CD133+ cells are not only chemoresistant, but also are more invasive in comparison with CD133− cells, especially in poorly-differentiated HLE subpopulations.

Acquisition of EMT in CD133+ and poorly-differentiated subpopulations

Having established that the CD133+/ALDHlow HLE subpopulation is chemoresistant, and possesses an enhanced invasive capability, we explored the underlying molecular mechanisms. We first stained subpopulations with E-cadherin, a cell surface adhering molecule, and vimentin, a cytoskeleton protein, and found that Hep3B CD133+/ALDHhigh cells were E-cadherin-positive, and vimentin-negative. Whereas, Hep3B CD133+/ALDHlow cells exhibited the opposite E-cadherin and vimentin expression profiles, similar to CD133+/ALDHhigh HLE and HLF cells (Fig. 5). They lost E-cadherin expression, but vimentin staining was obviously positive. This staining profile verified the acquisition of EMT in the Hep3B CD133+/ALDHlow HLE subpopulation and in HLE and HLF cells, and was consistent with more TGF-β1 and procollagen type I (α1) expression in the CD133+/ALDHhigh HLE subpopulation (Fig. 4C). Snail is a transcription factor which modulates the acquisition of EMT in many epithelial cells. Higher snail protein levels were found in the CD133+/ALDHlow HLE and Huh-7 subpopulations than their double-positive counterparts as determined by Western blotting (Fig. 6A). The HLE double-negative subpopulations.
A subpopulation was almost completely negative for E-cadherin. CD133+/ALDHlow Huh-7 and Hep3B subpopulations appeared to express more Zeb1, another transcription factor modulating EMT occurrence in a nuclear fraction, than their double-positive counterparts. Zeb1 nuclear expression was clearly positive in both poorly-differentiated HLE and HLF subpopulations when the TATA box binding protein was used as a loading control of the nuclear fraction in Western blot analysis (Fig. 6B). In summary, both immunohistochemical staining and Western blot analysis of E-cadherin and two transcription factors, snail and Zeb1, demonstrated that in well-differentiated hepatoma cell lines, CD133+/ALDHlow subpopulations underwent EMT acquisition, whereas, poorly-differentiated hepatoma cell lines had already undergone EMT, especially in the CD133+/ALDHlow subpopulations.

<table>
<thead>
<tr>
<th>Hepatoma subpopulations</th>
<th>NOD-SCID mice injected</th>
<th>No. of mice formed tumors</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huh-7 CD133+/EpCAM+</td>
<td>5</td>
<td>2</td>
<td>>0.05</td>
</tr>
<tr>
<td>Huh-7 CD133+/EpCAM-</td>
<td>5</td>
<td>0</td>
<td>>0.05</td>
</tr>
<tr>
<td>Hep3B CD133+/EpCAM+</td>
<td>5</td>
<td>4</td>
<td>>0.05</td>
</tr>
<tr>
<td>Hep3B CD133+/EpCAM-</td>
<td>5</td>
<td>1</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Table 1. Xenograft formation from FACS-enriched hepatoma subpopulations in NOD-SCID mice.
Enhanced Hh signaling activity in CD133-negative hepatoma populations

Hh signaling activation has been shown to lead to EMT. After defining the association of EMT acquisition with chemoresistance and enhanced invasion capability in poorly-differentiated HLE subpopulations, we investigated whether the Hh signaling activation contributes to EMT and downstream effects in hepatoma cells. We first determined that more Patched/PTCH1, the receptor for Hh ligand, was expressed in Huh-7 CD133\(^{-}/\)EpCAM\(^{-}/\)ALDH\(^{low}\) than in CD133\(^{+}/\)EpCAM\(^{+}/\)ALDH\(^{high}\) cells, and more in CD133\(^{-}/\)EpCAM\(^{-}/\)ALDH\(^{low}\) than CD133\(^{-}/\)EpCAM\(^{+}/\)ALDH\(^{high}\) HLE cells in the membrane fraction by Western blot analysis (Fig. 6C). Then, we found that GLI2, a transcription factor in the Hh signaling pathway, was increased in the nuclear fraction of HLE CD133\(^{-}/\)EpCAM\(^{-}/\)ALDH\(^{low}\) cells compared to CD133\(^{-}/\)EpCAM\(^{+}/\)ALDH\(^{high}\) cells (Fig. 6D). After that, we transfected the Huh-7 subpopulations with a GLI-lux reporter system, and determined luciferase activity one day after transfection. It was found that luciferase activity was much higher in the Huh-7 CD133\(^{-}/\)EpCAM\(^{-}/\)ALDH\(^{low}\) cells than their double-positive counterparts, while cells transfected with mutated GLI-Lux did not show any luciferase activity (Fig. 6E). Moreover, when transfected cells were treated with a Hh signaling inhibitor, cyclopamine (CPM), both cell proliferation, as determined by SWT-1 reagent, and luciferase activity were markedly inhibited by the treatment (Fig. 6E and F). These findings demonstrated that the Hh signaling activity in either CD133\(^{-}/\)EpCAM\(^{-}/\)ALDH\(^{low}\) Huh-7 or HLE cells was higher than CD133\(^{-}/\)EpCAM\(^{+}/\)ALDH\(^{high}\) or CD133\(^{-}/\)EpCAM\(^{+}/\)ALDH\(^{low}\) cells, and that enhanced Hh signaling activity may be responsible for the acquisition of EMT, as well as cell proliferation, chemoresistance, and aggressive invasion capability in these cells.

Discussion

The concept of CSCs is a new paradigm of cancer biology explaining many existing basic and clinical challenges. However, controversies exist in terms of which cell markers are specific for CSCs, whether CSCs are prominent in cancer tissues, and even whether CSCs are the origin for cancer development. These controversies make the identification of CSCs in HCC more complicated. It is generally accepted that CSCs are probably the progenitor cells that undergo unknown genetic mutations, lose potential for tissue repair, but retain stem cell characteristics, such as self renewal and plasticity to differentiate into different cell types during various stages of oncogenicity and treatment [3,13]. In this regard, it is our goal to search for CSCs in HCC tissues and to define which subpopulations in heterogeneous malignant cells represent the characteristics of CSCs in HCC.
In our previous studies, we were able to co-localize CD133⁺ and ALDH⁺ in HCC tissue, especially in the areas of connective tissues and in vessels with HCC invasion [8]. These cells were also positive for CD44 and CD90. Thus, we believe that these markers are useful in identifying CSCs in HCC tissues. However, these markers are not specific for CSCs; they are also positive for stem or progenitor cells in chronic liver injury with fibrosis/cirrhosis [8,14]. In the present study, we separated each of the six hepatoma cell lines into subpopulations according to their CSC marker expression profile, and defined their phenotypic characteristics, such as tumorigenicity, chemoresistance, and invasive capability. More CD133⁺/ALDHhigh or CD133⁺/EpCAM⁺ cells were separated from well-differentiated Hep3B, HepG2, and Huh-7 lines than from poorly-differentiated HLE, HLF, and SKHep1 lines. In fact, HLE, HLF, and SKHep1 cells had very low levels of CD133 positivity (Fig. 1A and B). We also found that CD133⁺/ALDHhigh Hep3B and Huh-7 cells formed more spheroids than their CD133⁺/ALDHlow counterparts, whereas, CD133⁺/ALDHlow HLE, HLF, and SKHep1 subpopulations formed large spheroids (Fig. 2). Implantation of 2000 freshly FACS-enriched CD133⁺/EpCAM⁺ Hep3B and Huh-7 cells under the renal capsules of immunodeficient NOD-SCID-IL2Rγ−/− mice for 3–4 months resulted in 4 out of 5 Hep3B and 2 out of 5 Huh-7 CD133⁺/EpCAM⁺-injected mice forming xenografts, whereas, one xenograft was formed in mice after implantation of CD133⁺/EpCAM− Hep3B, and no xenograft was seen in mice receiving implantation of CD133⁺/EpCAM− Huh-7 cells. These data are consistent with recent reports showing [15,16] that CD133⁺/ALDHhigh or CD133⁺/EpCAM⁺ subpopulations were more tumorigenic both in vitro and in vivo. These hepatoma cells are characterized as well-differentiated with high levels of hepatic gene expression levels, and most are AFP-positive. Thus, concerning tumorigenicity, this subpopulation has been considered as CSCs or initiating cells (TICs) with high Wnt/β-catenin signaling activity [16].

We further evaluated the chemoresistance of FACS-enriched subpopulations, and found that CD133⁺/ALDHlow HLE cells were less sensitive to cisplatin, doxorubicin, and sorafenib than their CD133⁺/ALDHhigh subpopulation during 24 h treatments. The in vitro Matrigel invasion assay showed that Huh-7 CD133⁺/EpCAM⁺ cells were more invasive than their positive counterparts, and CD133⁺/ALDHlow HLE cells were able to repair scraping wounds faster than their double positive counterparts. Thus, these findings indicate that CD133⁺/ALDHhigh or CD133⁺/EpCAM⁺ cells were more chemoresistant and invasive, which is in accordance with clinical observations that poorly-differentiated HCC is more refractory to chemotherapy and has a poor prognosis [17] and that the development of insensitivity to epithelial growth factor inhibitor agents (erlotinib, gefitinib, and cetuximab) was a result of EMT acquisition [18]. Therefore, we hypothesized that the insensitivity to chemotherapy and more invasive capability in CD133⁺/ALDHlow or CD133⁺/EpCAM⁺ cells could be attributed to EMT acquisition, and further investigated the occurrence of EMT and its regulations through the Hh signaling pathways.

We performed immunohistochemical staining, and found that well-differentiated CD133⁺/ALDHhigh or CD133⁺/EpCAM⁺ cells were E-cadherin-positive and vimentin-negative, whereas their CD133⁺/ALDHlow counterparts had an opposite E-cadherin and vimentin expression profile. In contrast, poorly-differentiated CD133⁺/ALDHlow cells were E-cadherin-negative and vimentin-positive (Fig. 5). These findings were supported by more TGF-β1 and procollagen type I (α1) expression in the HLE CD133⁺/ALDHlow subpopulation. The fact that no E-cadherin was found in CD133⁺/ALDHlow HLE and HLF subpopulations by Western blot analysis, more GLI2 in the nuclear fraction of cell lysates, more Zeb1 expression in CD133⁺/EpCAM⁺ Hep3B and Huh-7 cells than their double positive counterparts, and that Zeb1 was positive for both CD133⁺/EpCAM⁺ or CD133⁺/EpCAM⁻ HLE cells could be attributed to EMT acquisition, and further confirmed the findings (Fig. 6). These findings support the concept that there was EMT acquisition in poorly-differentiated hepatoma cell lines, especially in CD133⁺/ALDHlow or CD133⁺/EpCAM⁺ subpopulations, and that the EMT acquisition may be responsible for their chemoresistance and aggressive invasion. The loss of epithelial characteristics and the acquisition of the mesenchymal phenotype are the typical phenotypic changes in EMT, which may enhance mobility and the invasive
Research Article

Fig. 6. Western blot analysis of the EMT markers and Hh signaling activity in the Huh-7 and HLE subpopulations. (A) Western blot image of E-cadherin and snail in the Huh-7 and HLE subpopulations. β-actin was used as a loading control. (B) Zeb1 levels in various hepatoma subpopulations. TATA box binding protein was used as a nuclear protein loading control. (C) PTCH1 levels in the membrane fraction of the Huh-7 subpopulations were determined by Western blot analysis with integrin β1 as a loading control. (D) GLI2 levels in nuclear fractions of the Huh-7 and HLE subpopulations. (E) Hh signaling activity after transfection with GLI-lux plasmid and mutated plasmid (GLI-Lux-M) in the presence or absence of cyclopamine (5 μM CPM). Luciferase activity was determined one day after transfection of the plasmids. *p < 0.01 compared to the Huh-7 CD133+/EpCAM+ subpopulation. Δ, ΔΔ p <0.05 and 0.01 compared to GLI2-Lux + DMSO. DMSO was used to dissolve CPM, and included in transfection controls. (F) Inhibition of cell proliferation by cyclopamine in the Huh-7 CD133+/EpCAM+ subpopulation. Cell proliferation was determined after transfection with the GLI-Lux plasmid using the WST-1 reagent and expressed by optical density per 100 μg protein. Fugene-6 was included as a transfection reagent control.

The Hh signaling pathway regulates body patterning and organ development during embryo development. In adults, the Hh pathway is mainly quiescent with the exception of roles in tissue maintenance and repair, and its inappropriate reactivation has been linked to several human cancers, such as breast cancer [22]. The activation of the Hh signaling pathway occurs when Hh binds to its receptor (PTCH1), and when GLI2/3A is translocated into the nucleus to activate target genes, such as snail, bcl2, cyclin D, etc. leading to proliferation, EMT, and cell survival [23]. The activation of the Hh signaling pathway has been found in cholangiocytes and hepatocytes in models of primary biliary cirrhosis (PBC) and non-alcoholic steatohepatitis (NASH) in which the activation of EMT in hepatocytes and cholangiocytes contributes to the development of hepatic fibrosis [24]. To our knowledge, no previous study has explored Hh signaling involvement in poorly-differentiated hepatoma cells, and its link with EMT in CD133+/ALDHlow or CD133-/EpCAM-/Hep3B+/+Marker Hep3B-/- HLE+/+HLE-/-HLF+/+HLF-/-predisposition of cancer cells. The increased migratory activity is mediated by repression of cell to cell adhesion proteins, such as E-cadherin, and the induction of invasion-associated matrix metalloproteinase (MMP) production [19]. Currently, it is known that EMT can be induced by TGF-β1 via activation of a transcription factor, snail, by forming a complex with smad3 and smad4 [20]. Zeb1 is a zinc finger E-box transcription factor that negatively modulates the E-cadherin expression in epithelial cells through inhibition of the miRNA200 family. Zeb1 appears to be a critical factor for the initiation and dissemination of pancreatic and colorectal cancer cells [21].

In conclusion, in well-differentiated hepatoma cells, CD133+/ALDHhigh or CD133-/EpCAM- cells appear to be a CSC/initiating subpopulation; whereas, in poorly-differentiated hepatoma cell lines, EMT, and enhanced hedgehog signaling activity may be responsible for their chemoresistance and invasion. Our data suggest that novel molecular therapy targeting transcription factors of EMT and Hh signaling pathways could be promising in eradicating chemoresistant poorly-differentiated subpopulations in HCC.
Conflict of interest
The authors who have taken part in this study declared that they do not have anything to disclose regarding funding or conflict of interest with respect to this manuscript. The underlying research reported in the study was funded by the NIH Institutes of Health.

Financial support
The study was supported by the NIH grant (R01 DK075415) and the California Institute of Regenerative Medicine (CIRM, RC1-00359) to M.A.Z.; as well as UC Davis Stem Cell Program Start-up Funding for J.N., and Technology Transfer fund from UC Davis Medical Center to J.W.

Acknowledgments
The authors are grateful to Dr. Hiroshi Sasaki in RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan for providing a GLI-Lux reporter system.

Supplementary data

References

JOURNAL OF HEPATOLOGY

Conflict of interest
The authors who have taken part in this study declared that they do not have anything to disclose regarding funding or conflict of interest with respect to this manuscript. The underlying research reported in the study was funded by the NIH Institutes of Health.

Financial support
The study was supported by the NIH grant (R01 DK075415) and the California Institute of Regenerative Medicine (CIRM, RC1-00359) to M.A.Z.; as well as UC Davis Stem Cell Program Start-up Funding for J.N., and Technology Transfer fund from UC Davis Medical Center to J.W.

Acknowledgments
The authors are grateful to Dr. Hiroshi Sasaki in RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan for providing a GLI-Lux reporter system.

Supplementary data

References