SMALL 8 AND AN INVISIBLE AXION AS AUTOMATIC CONSEQUENCES OF GRAND UNIFICATION

Permalink
https://escholarship.org/uc/item/7jk8s7hh

Author
Hall, L.J.

Publication Date
2010-06-16

Peer reviewed
Presented at the 1981 Banff Summer Institute on Particles and Fields, Calgary, Alberta, Canada, August 16-28, 1981; and to be published in the Proceedings

SMALL θ AND AN INVISIBLE AXION AS AUTOMATIC CONSEQUENCES OF GRAND UNIFICATION

Lawrence J. Hall

September 1981

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48
SMALL \(\theta \) AND AN INVISIBLE AXION AS AUTOMATIC

CONSEQUENCES OF GRAND UNIFICATION

Lawrence J. Hall
Lawrence Berkeley Laboratory
and
Department of Physics
University of California
Berkeley, California 94720

ABSTRACT

I explore the possibility of solving the strong CP problem in a grand unified theory in which a global Peccei-Quinn symmetry is an automatic consequence of the gauge structure. The low energy effective theory differs from that of the standard model only by the presence of an extremely light, weakly interacting axion.

This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract W-7405-ENG-48.

The QCD Lagrangian has two possible sources of CP violation.

The \(\bar{f} f \) term, and the quark mass matrix:

\[
\mathcal{L}_{\text{QCD}} = \cdots - \frac{g_2^2}{32\pi^2} \bar{f} f + \cdots - q^2 m_q^2.
\]

Although the former is a total divergence, it may not be removed from the action because of instanton effects [1]. Under an axial phase rotation of the quark fields, \(U(1)_A \), both the argument of the determinant of the quark mass matrix \(M \) and \(\theta \) change, such that only the combination \(M \theta - \phi H \) is invariant and hence observable. The experimental limit on the electric dipole moment of the neutron [2] implies that \(\theta \lesssim 10^{-9} \). Why is the parameter \(\theta \) of the theory so small? This is the strong CP problem.

Various solutions have been suggested, but none is completely satisfactory. CP invariance may not be imposed on the Lagrangian of the standard model, because CP violation has been observed in kaon decays. Imposing CP invariance only on the dimension four couplings is a possibility, but usually leads to unappealing models. Finally, \(\theta \) may be made unobservable by arranging for the Lagrangian to possess a global "symmetry" which is conserved up to a color anomaly. This is the Peccei-Quinn (PQ) mechanism [3], and the additional phase rotation is referred to as \(U(1)_PQ \).

In this talk I will describe four models which incorporate the PQ mechanism. The simplest model has two SU(2) doublets of scalar particles, but predicts a light (\(\sim 100 \text{ keV} \)) pseudo-Goldstone boson (PGB), the axion [4], which has yet to be experimentally confirmed. The second model removes such an axion, at the expense of introducing
a new fine tuning problem. This is resolved by embedding the model in a grand unified theory (GUT). Finally, a GUT which seeks to explain the origin of \(U(1)_{PQ} \) is given. Although much of what follows involves the first three models, I have contributed only to the fourth.

The first model contains two Higgs doublets \((\phi_1, \phi_2)\) and, for simplicity, a single generation of quarks. By demanding invariance (up to the anomaly) under a \(U(1)_{PQ} \) phase symmetry with relative quantum numbers

\[
\phi_1 \quad \phi_2 \quad u \quad d \quad d \quad \text{ All other fields}
\]

\(U(1)_{PQ} \): \(1 \quad -1 \quad -1 \quad -1 \quad 0 \)

the terms of interest in the Lagrangian are

\[
L = \cdots -\left(\frac{m_u}{\lambda_1}\right)^2 \bar{u} L u \phi_1^0 - \left(\frac{m_d}{\lambda_2}\right)^2 \bar{d} R d \phi_2^0 + \text{h.c.} + V(\phi_1, \phi_2)
\]

(1)

where \(\phi \) has been rotated into the Yukawas by a \(U(1)_A \) transformation, \(m_u \) and \(m_d \) are chosen real by choice of Higgs field phases, and the potential \(V(\phi_1, \phi_2) \) is invariant under independent phase rotations of \(\phi_1 \) and \(\phi_2 \). Since \(U(1)_{PQ} \) is anomalous, \(\theta \) is indeed unobservable in this model. Hence, on formation of CP conserving vacuum expectation values (vevs)

\[
<\phi_1> = \lambda_1 e^{i\omega_1} \quad i = 1, 2
\]

\[
<\bar{u}u> = \bar{v} e^{i\theta_1}
\]

\[
<-\bar{d}d> = -\bar{v} e^{i\theta_2}
\]

with \(\lambda_1 \) and \(v \) real, it is not surprising that the vacuum energy

\[
\mathcal{V} = <0|H|0> = 2m_u v \cos(\theta + \theta_1 + \omega_1) + 2m_d v \cos(\theta - \theta_1 + \omega_2)
\]

(2)

is minimized for \(\theta + \omega_1 - \omega_2 = \theta = 0 \).

The \(<\phi_1> \) clearly break \(U(1)_{PQ} \), and it appears that spontaneous symmetry breaking has led to a massless Goldstone boson. This is fallacious because Goldstone bosons couple to anomaly free currents. There are three independent neutral anomaly free currents broken by the above vevs: \(J_3(SU(2)_L) \), the neutral broken weak gauge current, \(J_3(SU(2)_{L+R}) \), the neutral broken chiral SU(2) current, and \(J_{PQ} \) which is an anomaly free combination

\[
J_{PQ}^i = J(U(1)_{PQ}) + a J_3(SU(2)_{L+R}) + b J(U(1)_A)
\]

(3)

(The argument of each current denotes the symmetry with which it is associated.) The Yukawas explicitly break chiral symmetry, and the \(\mu^0 \) which is coupled mainly to \(J_3(SU(2)_{L+R}) \) picks up a mass \(m_\mu \). By virtue of Eq. (3) the PGB coupled to \(J_{PQ} \) then picks up a mass \(a m_\mu \).

The properties of the axion, including the value of \(a \), may be determined rather easily from the PGB mass matrix. In a basis where
the modes are given by variations in the vev phase angles $\delta \omega_1$, $\delta \omega_2$ and
$\delta \theta_q$ the mass matrix is obtained simply by evaluating double derivatives
of V (Eq. (2)) at its minimum:

$$M^2_{ab} = \frac{1}{f^2_{\pi}} \left[\begin{array}{cc}
\frac{m_u}{\lambda_1} & 0 \\
0 & \frac{m_d}{\lambda_2}\end{array} \right]$$

where f_{π} is the pion decay constant. The eigenvectors are:

$$Z_L = \left(\frac{\lambda_1}{\lambda}, \frac{\lambda_2}{\lambda}, \frac{f_{\pi}}{\lambda} \right) \sim \left(1, 0, 0 \right)$$

which has zero mass and is eaten to become the longitudinal Z ($\lambda = \sqrt{\frac{\lambda_1^2}{\lambda} + \frac{\lambda_2^2}{\lambda}}$),

$$\pi^0 = \left(\frac{m_u}{\lambda_1}, \frac{m_d}{\lambda_2}, \frac{2(m_u + m_d)}{f_{\pi}} \right) \sim \left(0, 0, 1 \right)$$

with $m^2_{\pi} = \frac{4(m_u + m_d)v^2}{f^2_{\pi}}$, and

$$A^0 = \left(\frac{\lambda_1}{\lambda}, \frac{\lambda_2}{\lambda}, \frac{f_{\pi}}{\lambda} \right) \sim \left(1, 0, 0 \right)$$

with $m_A \sim \left(\frac{f_{\pi}}{\lambda} \right)^2 m_{\pi}$ (I have set $\frac{\lambda_1}{\lambda_2} = 1$)

I now take the viewpoint that this conventional Weinberg-Wilczek
axion has not been observed. Its absence in nature is far from certain
[6]. The key observation [7,8], which allows the PQ mechanism to be
retained while removing this axion, is that λ appears in the axion
properties not because it is the scale at which weak interactions are
broken, but because it is the scale which breaks $U(1)_{PQ}$. If $U(1)_{PQ}$
were broken at scale $V \gg \lambda$, λ would be replaced by V in the axion
properties. The axion would be invisible.

This is precisely the situation in the following model [8] where
a complex SU(3) x SU(2) x U(1) singlet field S is added to the previous
theory. Demanding invariance under
energy effective theory [11] which mimics the standard model except that \bar{e} is zero in tree approximation.

A simple model which demonstrates how this comes about [10] is an SU(5) theory with tens (T) and five bars (\bar{F}) of left handed fermions, two fundamentals of Higgs (H_1) and an adjoint of complex scalars (Σ). By demanding invariance under

$\begin{pmatrix} T & \bar{F} & H_1 & H_2 & \Sigma \end{pmatrix}$

$\begin{pmatrix} U(1)_PQ & 1 & 1 & -2 & 2 \end{pmatrix}$

θ is made unobservable and the Lagrangian takes the form

$L_3 = ... + g_1 T H_1 + g_2 \bar{T} H_2 + h.c. + hH_1^2 + hH_2^2 + h.c. + V(H_1 H_2 \Sigma) (5)$

where $V(H_1 H_2 \Sigma)$ is invariant under arbitrary phase rotations of H_1, H_2 and Σ. The hypercharge component of Σ now plays the role of S and gets a superheavy vev breaking $U(1)_PQ$. As with all GUTs, this model does have a fine tuning problem. However, in this respect it is no worse than the minimal GUT; there is a single finely tuned cancellation which keeps the true Higgs doublet light. It may seem surprising that the low energy effective theory has only a single Higgs doublet; how is \bar{e} to be rotated away? Because the phases of the two Yukawa couplings of the effective theory are now related, $\bar{e} = 0$ is still the minimum of the vacuum energy, even though the same Higgs doublet couples to both up and down quarks.
The Lagrangians \(\mathcal{L}_{1,2,3} \) were all constructed by demanding invariance under a phase rotation \(U(1)_{PQ} \). Two objections to this may be raised. Firstly, global symmetries seem to be additional unnecessary features of any gauge theory. Secondly, \(U(1)_{PQ} \) is anomalous and imposing it does not even increase the symmetry of the theory. These objections demand a reason for imposing the \(U(1)_{PQ} \) constraint. In Reference 12, Howard Georgi, Mark Wise and I proposed that situations exist in which even though the Lagrangian has a \(U(1)_{PQ} \) invariance, there is no \(U(1)_{PQ} \) constraint (i.e. the \(U(1)_{PQ} \) phase rotation does not exclude any term from appearing in the Lagrangian). This is an example of an automatic symmetry which comes about as follows. A gauge theory is described by a gauge group and particle representations. When all possible renormalizable gauge invariant terms of the Lagrangian are written down, any global symmetries which remain we call automatic.

In the standard model both baryon number (B) and lepton number (L) are automatic. Another example is B-L in minimal SU(5).

This example is worth investigating further because it is an automatic symmetry of a type which would not do for \(U(1)_{PQ} \). Minimal SU(5) has the following automatic global symmetry:

\[
\begin{pmatrix}
T & F & H & \Sigma \\
X & 1 & 3 & -2 & 0
\end{pmatrix}
\]

This escapes being spontaneously broken by any vev by combining with the gauge hypercharge generator and becoming B-L. Further, \(X \) is anomaly free, which can be understood by embedding SU(5) in O(10) where B-L is a gauge generator. For an automatic symmetry to do the job of \(U(1)_{PQ} \), it must be spontaneously broken at superheavy scales, and must have an anomaly. It would never be possible to gauge such a current in a higher unified gauge theory; \(U(1)_{PQ} \) is to be understood simply as an automatic symmetry.

These ideas can be illustrated by a straightforward extension of the GUT gauge group to SU(N) [12, 13]:

<table>
<thead>
<tr>
<th>L.H. field of model 3</th>
<th>L.H. field of model 4</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha = 1 \ldots 5)</td>
<td>(\alpha = 1 \ldots N)</td>
<td></td>
</tr>
<tr>
<td>(T^{ab} \rightarrow \psi^a \psi^b)</td>
<td>Retains (10 + \bar{5})</td>
<td>family structure.</td>
</tr>
<tr>
<td>(\Phi_a \rightarrow (N-4) \chi_a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\chi^a_b \rightarrow \chi^a_b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H^a_1 \rightarrow \xi_{\alpha \beta \gamma})</td>
<td>(\xi_{\psi \psi}) gives U masses</td>
<td></td>
</tr>
<tr>
<td>(H^a_2 \rightarrow (N-4)H^a_4)</td>
<td>(\psi \chi) gives D masses</td>
<td></td>
</tr>
</tbody>
</table>

Where is the SU(3) \(\times \) SU(2) \(\times \) U(1) singlet scalar, the analogue of \(S \) of model 2? SU(N) gauge singlets could be added, or \(\Sigma^a \) could be taken complex, but such complications are preferably avoided. For \(N \gg 9 \) \(\xi \) has such singlets when its indices all lie in non-SU(5) directions. The Lagrangian

\[
\mathcal{L}_4 = \ldots + f_U \psi \xi + f_D \psi \chi + H + V(\xi, H, \Sigma)
\]
has only two Yukawa couplings which limit possible automatic symmetries to linear combinations of P_1 and P_2

\[
\begin{array}{cccc}
\psi & \chi & H & \xi \\
P_1: & 1 & -1 & 0 & -2 \\
P_2: & 0 & 1 & -1 & 0 \\
\end{array}
\]

Further restrictions result from N ality breaking terms of the Higgs potential. For $N = 6, 7, 8$ and 12 these prove disastrous; for example ϵ_8^2 for $N = 8$ (ϵ is the eight indexed totally antisymmetric tensor).

For $N \geq 14$ there are no further restrictions. In these models a double disaster occurs. The anomaly free combination of P_1 and P_2 is $B-L$, which does not survive spontaneous symmetry breaking resulting in an exactly massless Goldstone boson. The orthogonal combination survives breaking at M but not λ, and gives rise to a Weinberg-Wilczek axion. Only a few values of N give the desired automatic symmetry; the smallest is $N = 9$. In this case the constraint from $\epsilon_9 \xi H$ results in $U(1)'_{PQ} = P_1 - 4P_2$. It is easy to check that this combination is anomalous, and that it is necessarily broken by the most general set of SU(3) x SU(2) x U(1) invariant vevs, which are $0(M)$. Since the axions couplings are $0(\frac{1}{M'})$ it decouples from the low energy effective theory, which is the standard model with $\delta = 0$ to tree level.

While automatic symmetries give attractive alternatives to imposing global symmetries, there is a worrisome feature of the application to $U(1)'_{PQ}$. The size of the term in the vacuum energy which aligns δ to zero is $O(v_M)$, which is very small compared with grand unified scales. At the Planck mass (M_p) any new $U(1)'_{PQ}$ violating interactions would appear in the GUT Lagrangian as non-renormalizable terms.

Although suppressed by powers of $\frac{1}{M_p}$ these would surely be the dominant term aligning δ. The mechanism for resolving the strong CP problem would be destroyed. For example, adding a dimension six term $\epsilon_9 \delta H^5$ to L_4 would align δ to $0 - (\omega_6 + \omega_7 + \omega_8 + \omega_9)$ where ω_i are the phases of $< H_i >$, $i = 6 \ldots 9$. We must assume that interactions at M_p also yield $U(1)'_{PQ}$ automatically.

In this talk I have discussed two aspects of gauge theories which are considered by many to be undesirable. The first of these is the imposition of global symmetries. Why are gauge symmetries not sufficient? The second is the fine tuning of parameters of the theory. This is not only unnecessary, but amazingly perverse. Within the framework of grand unification I showed that it may not be necessary to impose $U(1)'_{PQ}$ or to fine tune δ. Such a scheme does have drawbacks. The gauge group and representation content has been enlarged. The new axion has been constructed to be highly invisible; but maybe such a light particle is no worse a prediction of grand unification than that of superheavy particles. Finally the gauge hierarchy problem seems more acute than ever. One might hope that physics at the scale of the Planck mass will shed light on this hierarchy puzzle, as well as realizing the idea of an automatic Peccei-Quinn symmetry in an elegant way.
ACKNOWLEDGEMENTS

I would like to thank Howard Georgi and Mark Wise for teaching me much of what I know on this subject, and for sharing their ideas so freely. This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract W-7405-ENG-48.

REFERENCES

7. This observation has been noted by many people. Recently by J. E. Kim, Phys. Rev. Lett. 43, 103 (1979), and Ref. 8.
10. H. Georgi, S. Glashow, and M. B. Wise, HUTP-81/A019, "SU(5) and The invisible axion".
11. H. Georgi, HUTP-81/A035 and Proceedings of the Fourth Kyoto Summer Institute on Grand Unified Theories.
12. H. Georgi, L. Hall and M. B. Wise, HUTP-81/A031, "Grand unified models with an automatic Peccei-Quinn symmetry".
13. An SU(7) model with non-trivial family structure has been given by P. Frampton, IFP 157-UNC, (July 1981).