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�We propose a model for forecasting cooling and electricity load demand.
� The model takes the advantage of both time series and regression methods.
� The model is able to accurately forecast the load demands of the CCHP system.
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The objective of this paper is to extend a statistical approach to effectively provide look-ahead forecasts
for cooling and electricity demand load. Our proposed model is a generalized form of a Cochrane–Orcutt
estimation technique that combines a multiple linear regression model and a seasonal autoregressive
moving average model. The proposed model is adaptive so that it updates forecast values every time that
new information on cooling and electricity load is received. Therefore, the model can simultaneously take
advantage of two statistical methods, time series, and linear regression in an adaptive way. The effective-
ness of the proposed forecast model is shown through a use case. The example utilizes the proposed
approach for economic dispatching of a combined cooling, heating and power (CCHP) plant at the Univer-
sity of California, Irvine. The results reveal the effectiveness of the proposed forecast model.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

U.S. households and commercial buildings consume approxi-
mately 40% of total energy use and account for 72% of total U.S.
electricity consumption [1]. Commercial building energy demand,
in particular, doubled between 1980 and 2000 and is predicted
to increase 50% over the next 15 years [2]. As a result, energy
demand management has emerged as a key policy for both public
and private organizations. CCHP systems can significantly contrib-
ute to reducing buildings energy use, curtail pollutant and carbon
emission, and help to decrease risks of blackouts and brownouts in
the utility grid [3,4]. CCHP technology integrates processes of
production and simultaneous use of cooling, heating, and power
at a single site. However, since most commercial and industrial
electrical loads are highly dynamic and typically not synchronized
with local heating and cooling demands, advanced control strate-
gies will be imperative to economic dispatch of CCHP resources.
A wide range of optimal control strategies has been proposed to
improve the CCHP operation based on different objectives includ-
ing power flow, capacity, operation, energy-use and environmental
considerations [5–12]. A common element in almost all optimal
control strategies is to have an accurate estimation of cooling,
heating, and electricity load demands. Some researchers assume
that load demands are known and available over a specific period
[8,9]. However, cooling and electricity demands are typically sto-
chastic and unknown mainly because of the complex interaction
s between plant facilities and equipment, e.g. chillers and turbines
yields. Liu et al. [8] point out that in practical applications, the
exact future load profile does not exist; and forecasting methods
should be taken into consideration by researchers. Therefore, a
forecasting mechanism should be applied by researchers to find
the future values of load demands.

A number of researchers employ building simulation platform
to generate building load demand based on its physical character-
istics and other dynamic input variables such as occupancy,
weather, and time information. The cooling and electricity load
demands are outputs of running the simulation and are then fed
into the optimization model [10–12]. However, the quality of
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Nomenclature

CCHP combined cooling, heating and power
LSE least square estimate
ARX autoregressive with exogenous variable
ARMAX autoregressive moving average with exogenous variable
ARMA autoregressive moving average
AI artificial intelligence
ANN artificial neural network
R2 coefficient of determination
R2

adj adjusted coefficient of determination
GT gas turbine
ST steam turbine
TES thermal energy storage
HRSG heat recovery steam generator
COP coefficient of performance
Wk

CHC cooling power generated by the kth chiller (kW)
Wk

CHW power consumed by the kth chiller to cooling power
(kW)

COPk coefficient of performance for the kth chiller
WCHW total power consumed by chillers to generate total cool-

ing power of the campus (kW)
Qcooling cooling demand from the campus (kW)
TCHRw returned water temperature to chillers (K)
TCHSw supply water temperature from chillers (K)
_mchw chilled water mass flow rate (kg/s)

cw specific heat capacity of water (kJ/kg K)
Welectricity electricity demand from the campus (kW)
Wgrid power purchased from grid (kW)
WGT power produced by gas turbine (kW)
WST power produced by steam turbine (kW)

Symbols
W electricity power
Q cooling power
_m mass flow

T temperature
e random error term
y dependent/output variable
x independent/input variable
b coefficients of input
U autoregressive operator
H moving average operator
B backward operator

Subscripts
T time (h)
J index for input variables
CHC cooling generated by chiller
CHW power consumed by chiller
W water
Chw chilled water
CHRw water returned to chiller
CHSw water supplied by chiller
GT gas turbine
ST steam turbine
grid power grid

Superscripts
k chiller number
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results highly depends on quality of the simulation models and
their inputs. In addition, for any CCHP optimization, a detailed
building simulation model needs to be accordingly built and run
repeatedly. Another way to deal with this problem is to consider
uncertainty in CCHP optimization model. Hu and Cho [12] for
instance, propose an optimization model with some probabilistic
constraints to guarantee that the model is reliable to satisfy the
stochastic load demand. They assume load demands are indepen-
dent and follow normal distributions in which 95% of the area is
within the range of ±20% of the average load demands. Another
approach to this problem is to develop a forecasting model and
embed it into the optimization model. This is the main motivation
of this work. In this paper, Cochrane–Orcutt estimation technique
is used as an effective linear model to provide look-ahead forecasts
for cooling and electricity demand load. It simultaneously fits a
regression model and a time series to the data while maintaining
least square estimate (LSE) conditions. In addition, the forecast val-
ues are modified when a new data is received from the real system.
The proposed model is currently working as a part of an integrated
optimal dispatch for CCHP plant at the University of California,
Irvine and providing accurate forecasts for the entire campus
cooling and electricity load demand.

2. Background study

In most real cases, cooling and electricity load demands are
highly dynamic oscillating within a wide range of values during
course of a day. This is mainly because several physically explicit
or latent factors can instantaneously influence cooling and electric-
ity demand patterns. These factors can be any one of the following
types: (i) Static factors that are usually set at the design stage and
only change due to aging wear and tear. Building characteristics,
CCHP components, chiller types and generator nominal capacities
are examples of such factors; (ii) Environmental variables extrinsic
to the building, such as climate and weather data; (iii) operational
variables, e.g. cooling/heating set point values, lighting, time sche-
dule to operate various equipment and system components within
plant or building; and (iv) uncontrollable dynamical variables, such
as number of occupants at any time, noise due to structural varia-
tions etc. It is ideal to know all these factors and their impacts on
energy dynamics in order to optimally forecast and control cooling
and electricity demands for single building or a cluster of buildings.
However, a complete forecast model is not practically attainable
due to unknown significant dynamical variables, lack of tools to
measure their effects, or that some of these variables are uncon-
trollable. Therefore, a wide range of different methods has been
proposed to model and forecast load dynamics. In overall, these
methods can be categorized into three general approaches.

In the first approach, a linear or nonlinear statistical model is
used to explain the variability of response (load or energy dynam-
ics) over time. The most popular example of such statistical models
is Box and Jenkins time series paradigm where load demands are
estimated based upon a linear combination of their past values
[13,14]. There are a large family of different models in this category
that can deal with many special cases including seasonality, non-
stationary, and non-homogeneity of variances (see e.g. [15,16]).
The major drawback of such models is that the future values are
typically forecasted based upon the past and present values of
cooling and electricity load demands without considering any
exogenous factors in the model. Another example of statistical
approach is using regression models (metamodel) where the vari-
ability within response is modeled via a number of exogenous fac-
tors [17–21]. The major problem of such models is that they often
ignore the complex interactions between exogenous factors, which
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may result in less accurate forecast values. To overcome this prob-
lem, a number of studies use a hybrid approach, which employs the
main components of both above-mentioned approaches [22]. ARX
and ARMAX are two examples of this approach. Although these
models perform effectively in many cases, they have many param-
eters to be estimated since all input and output variables with their
past and current values should appear in the forecast model.

The second approach employs artificial intelligence to find the
k-step ahead forecasts for load demand. A broad range of numeri-
cal methods can be included in this category. Kalogirou [23] and
Mellit and Kalogirou [24] provide a comprehensive review of AI
techniques in some areas of energy. Although their techniques
are not directly related to load forecasting, however, they can eas-
ily be used with minor changes. Artificial neural network (ANN) is
among most frequent AI techniques and has been widely used in
load or energy forecasting. ANN’s have particularly evolved based
upon different settings of neuron arrangement, neuron connec-
tions, training techniques, and internal layers and become a pow-
erful competitor for statistical methods [25–29]. They can be
designed to include both past observation of cooling and electricity
demands and associated exogenous factors. The main disadvantage
of AI approach is that they are often black box and do not show any
explicit relationship between response an input variables. For
example, the hidden layers of ANN’s are difficult to explain and
cannot be appeared in an explicit forecasting equation [30].

In addition, by developing computational methods, a third
approach has recently been developed which is a combination of
any abovementioned techniques. The main purpose of this hybrid
approach is to improve the accuracy of the forecast values by com-
bining different numerical–analytical methods. Some hybrid meth-
ods also partially include the physical aspects of the real system in
their computation and come up with a mixed physical–numerical
method, which is often referred to as gray models [30]. A few appli-
cations of hybrid models in the area of energy can be found in
[31,32,29].

The proposed model can be classified in the statistical groups. It
first fits a linear regression to find the correlation between the
cooling and electricity load demands and exogenous factors. Any
variability that cannot be explained by regression models can be
aggregated in residual terms. Then, a seasonal time series model
is applied to the residuals to express the remaining variability.
Since, the regression parameters should be estimated using least
square error method, the process of parameters estimation is
applied iteratively and simultaneously. Further details will be
explained in the next section.
Fig. 1. Schematic framework of CCHP pla
3. Time series regression model

The common assumption of uncorrelated random error terms
(e’s) made in basic regression models is not appropriate to forecast
building energy consumption. Historical data shows that error
terms are frequently correlated (often positively) over time [33].
In particular, this typically happens when there are some uncon-
trollable, unknown, or non-measurable input variables. A special
case for the regression model with auto-correlated data can be
shown as follows:

yt ¼
Xk

j¼0

bjxtj þ et ; et ¼ nðet�1; . . . ; et�qÞ þ at ; ð1Þ

where n(.) is a function of previous error terms e’s, yt is the power con-
sumed at time t and xtj is the jth input variable affecting the building
energy consumption at time t and at is a white noise. The error terms
are typically modeled using Box and Jenkins model as a first order
auto-regressive model. A preliminary study of our historical data
on cooling and electricity load demands indicates a seasonal pattern
with lag of 24 h. Therefore, the error terms in (1) is generalized to
include seasonal patterns. To do this, assume that p, q, P and Q are
the order of non-seasonal and seasonal autoregressive and moving
range parts respectively, and s is the seasonal order. Then a general
ARMA model for error terms can be written as follows:

/pðBÞUs
PðBÞet ¼ hqðBÞHs

Q ðBÞat ; ð2Þ

where /p and Us
P are autoregressive operators, hq and Hs

Q are mov-
ing average operators and B is backward operator. s is set equal to
24 showing the significance of autocorrelation between loads of
same time in two consecutive days.

Let

/pðBÞUs
PðBÞ ¼ 1�WðBÞ

then

et ¼ WðBÞet þ hqðBÞHs
Q ðBÞat ;

Furthermore, Eq. (2) can be written as follows:

yt ¼
Xk

j¼0

bjxtj þ et

Xp

i¼0

XP

j¼0

ð�1Þiþj�1ui/jB
iþs�j

þ at

Xq

i¼0

XQ

j¼0

ð�1ÞiþjhiHjB
iþs�j; ð3Þ
nt at University of California, Irvine.
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Fig. 2. 95% Confidence interval plots categorized by weekday for (a) cooling load
demand and (b) electricity load demand (Day 1 is Sunday, Day 7 is Saturday).
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Note that u0 ¼ /0 ¼ 0 and h0 ¼ H0 ¼ 1. For example, for the ARMA
(1,0) � (1,0)n=24, Eq. (3) is written as follows:

yt ¼
Xk

j¼0

bjxtj þ etðu1Bþ /1B24 �u1 � /1B25Þ

¼
X

j

bjxtj þu1et�1 þ /1et�24 �u1 � /1et�25; ð4Þ

The main significance of Eq. (3) is that it includes seasonal error
and tends to capture statistical similarities between two periods,
which are n hours apart. The major problem of multiple linear
regression with auto-correlated error terms is the estimation of
coefficients. With auto-correlated error terms, the ordinary least
square (OLS) procedures can be misleading and does not guarantee
estimation with the minimum variance [33]. To overcome this
problem, Cochrane and Orcutt [34] proposed a transformation
when error terms follow a first order autoregressive process.
According to Cochrane–Orcutt model, one should transform the
response values in such a way that

Y 0t ¼ /pðBÞUs
PðBÞYt ;x0t ¼ /pðBÞUs

PðBÞxt and b00 ¼ /pðBÞUs
PðBÞb0:

Therefore, Eq. (3) can be replaced by

Y 0t ¼ b00 þ x0tb
0
t þ at ; ð5Þ

Eq. (5) is an ordinal multiple linear regressions with independent
error terms and can be calculated via OLS estimation method. As
a result, the fitted linear function bY 0t ¼ b̂00 þ x0t b̂

0
t can eliminate the

autocorrelation structure of the error terms. The following
algorithm summarizes our approach:

3.1. Algorithm

{
Step 1: Divide the original dataset into two subsets:
training dataset and testing dataset, which are used for
model estimation and model verification respectively and
denoted by X1 and X2. Set i = 0.
Step 2: Fit a multiple regression model to training subset
and estimate vector of b̂i in y0i1 ¼ X1b̂i, where y1;X1 2 X1 are
response (cooling or electricity load demand) and
independent variables (exogenous variables). Then
calculate initial residual values by êi ¼ y1 � y0i1 ¼ y1 � X1b̂i.
Step 3: If êi’s are correlated fit an ARMA model,

/̂i
pðBÞÛsi

P ðBÞei ¼ ĥi
qðBÞĤsi

Q ðBÞat , and find estimation values for

/̂i
p; Û

si

P ðBÞ and Ĥsi

Q ðBÞ using least square error technique or
other estimators.

Step 4: Apply following transformations y0i1 ¼ /i
pðBÞU

si

P ðBÞy1

and X0i1 ¼ /i
pðBÞU

si

P ðBÞX1 on y1;X1 2 X1. Then fit a new
multiple regression model to transformed subset and

estimate vector of b̂0i in y0i1 ¼ X0i1b̂0i.

Step 5: Check b̂0i � b̂0i�1
�� �� < d. If the criterion is met then set

b̂0 ¼ b̂0i and go to Step 6. Otherwise, calculate the residual

values by êi ¼ y1 � y0i1 ¼ y1 � X0i1b̂0i and go to Step 3.
Step 6: Apply anti-transformations for b00 ¼ /pðBÞUs

PðBÞb0

and b̂ ¼ b̂0 and use them in Eq. (1).
}

It is quite common to use the estimated parameters as well as
subset X2 to check the adequacy of the given model. In this study,
coefficient of determination R2 and adjusted coefficient of
determination R2
adj are employed as measures for model adequacy

checking. These measures can be calculated as follows:

R2 ¼ b̂0T X0T2 ðI � HÞX02b̂0
y0T2 ðI � ð1=nÞJÞy02

; ð6Þ

and

R2
adj ¼

b̂0T X0T2 ðI � HÞX02b̂0=k� 1
y0T2 ðI � ð1=nÞJÞy02=n2 � k

; ð7Þ

where k is number of exogenous variables, n2 is sample size for test-
ing dataset, I is identity matrix and H can be calculated by
H ¼ X2ðXT

2X2Þ
�1

XT
2 as well. R2 and R2

adj are both between 0 and 1
and explain the percentage of variation that is explained by model.
A closer value to 1 depicts a better model.

4. Case study and experimentation

In this section, the forecast model is employed as a part of opti-
mal dispatching of a CCHP plant at the University of California,
Irvine. Cooling and electricity forecast values are fed into an opti-
mal control strategy, which searches for optimal set points for
24 h ahead. The forecast model then is used to compute optimal
control values to minimize energy consumption during course of
a day in a building.

The UC Irvine Central Plant consists of eight electric chillers,
providing cold water, a 13.5 MW gas turbine (GT), a 5.7 MW steam
turbine (ST), thermal energy storage (TES) tank, and a heat recov-
ery steam generator (HRSG). It provides heating and cooling loads
for the entire campus as well as the majority of the campus electric
loads. The chillers are able to supply as much as 14,500 tons
(51 MW) and the steam driven chiller can provide an additional
2000 tons (7 MW). The TES tank capacity is 60,000 ton-hour (211
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Fig. 3. 95% Confidence interval plots categorized by hours for (a) cooling load
demand (kW) and (b) electricity load demand (kW).

190 A. Vaghefi et al. / Applied Energy 136 (2014) 186–196
megawatt-hour) which is able to shift, on average, 65% of the
cooling load during the day to the night when electricity prices
are lower and temperature is cooler.

Fig. 1 provides a schematic of the plant, where GT is the primary
source of electric power providing electricity for the campus and
for the chillers. As a byproduct, the gas turbine generates the
exhaust gas, which can be source of extra thermal energy. Such
energy is then used to produce steam using HRSG unit. HRSG can
supply 23,500 kg/hour and 54,000 kg/hour without and with duct
fire, respectively. The generated steam drives the steam turbine
(ST). The steam can also be used to produce hot water for the cam-
pus needs. A portion of the produced steam is also transferred to
use in a steam chiller unit. GT and ST supply about 85% of the total
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Fig. 4. Scatter plots of cooling and electricit
electrical needs on the campus with the balance being served by
utility import (14%) and an 893 kW-fixed panel solar photovoltaic
(1%).

As mentioned, the electricity produced by two generators are
either sent directly to the campus to satisfy electricity demand or
supplied as the energy input to the electrical chiller (see [9] for
more details), which is mainly responsible to provide cold water.
Cold water can be either directly supplied to the campus to meet
campus cooling needs or stored in the TES tank for later use. Hence,
the chillers and the TES together are the main sources for the
campus cooling demands. Any additional electricity demand is
provided from the grid.

Such a CCHP system is able to produce thermal energy along
with electricity over time. The thermal energy storage (TES) is a
flexible component of the plant, which allows the campus to
reshape the cooling demand particularly in peak hours. There are
many examples of CCHP supervisory control systems in literature
[5,6,10]. A key element for such optimal control is to have accurate
information about the power (electricity and cooling) demand over
the course of a day, which is the central focus of this study.

Suppose that Wk
CHC is the cooling load generated by the kth chil-

ler (kW), and that Wk
CHW is the power consumed by the kth chiller

(kW) to generate Wk
CHC units of cooling load. Then Wk

CHC is propor-
tional with Wk

CHW as follows:

Wk
CHW ¼ wk

CHC=COPk ð8Þ

where COPk is the coefficient of performance for the kth chiller
which is the ratio between efficient energy acquired by and sup-
plied to the chiller; this is typically determined by the chiller man-
ufacturer. In this study, COPk is fixed and given by the chillers’
manufacturer. However, in reality, it is a function of the real oper-
ating temperature and reliability of the absorption chiller. This
information is not often available. Therefore, any variation due to
change in COPk is appeared in error term of (1) and should be mod-
eled via time series part of the proposed model.

Wk
CHW presents the actual power (electricity) consumed by the

kth chiller to produce Wk
CHC . The total power consumed by all

chillers is given by:

WCHW ¼
X8

k¼1

Wk
CHW : ð9Þ

Note that Wk
CHCvalues do not reflect the cooling power supplied to

the campus. A portion of cooling load produced by the chillers is
sent to the TES tank and stored for peak hours. Thus, Wk

CHC values
cannot be a good measure for determining the total cooling demand
of campus at any time. Instead, the amount of cooling supplied to
the campus can be expressed as follows:
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Q cooling ¼ _mchw � cw � ðTCHRw � TCHSwÞ; ð10Þ

where Qcooling is the total amount of cooling (kW) provided by the
chillers and supplied to the campus to meet cooling demands,
TCHRw is the temperature of returned water to chillers (K), TCHSw is
the supply water temperature from chillers (K), _mchw is the chilled
water mass flow rate (kg/s) and cw is the specific heat capacity of
water (kJ/kg K) [9]. All above parameters are known and available
in the plant. This allows us to accurately estimate the actual cooling
load demands.

Similar to the cooling load, the direct values for the electricity
load demand are not available. However, this can be calculated
from the hourly power consumption by the chillers, the total
power generated by gas and steam turbines, and the power pro-
vided by grid. The electricity load at time t is therefore:

Welectricity ¼WGT þWST þWgrid �WCHW ; ð11Þ

where WGT and WST are the power produced by gas and steam tur-
bines, respectively, and Wgrid is the power purchased from grid at
any time. WCHW is the total power consumed by all chillers, which
is calculated in (9), and Welectricity is the electricity load demand at
time t. In this study, due to lack of data, we ignore the power
consumption by pumps and chiller compressors, which account
for a relatively negligible portion of the power consumption
throughout the campus. The proposed forecast model is used to
forecast both Qcooling and Welectricity using a set of weather and time
variables as well as historical cooling and electricity data.
5. Results for the CCHP plant data

In this section, the performance of the proposed method is dis-
cussed using the CCHP plant data collected from the UCI campus.
In this example, one year (September 2009–2010) and 4 months
data (September 2009–December 2009) are used for building the
forecast models for the cooling and electricity load demands,
respectively. Both datasets are provided by the UCI campus plant
based on actual values of the cooling and electricity consumption.
Each dataset is divided into two subsets. The first set is used for
model building and estimation purposes (training dataset). The
rest of the data is used for validation purposes (testing dataset).
In this work, Matlab is employed for creating and testing the pro-
posed forecast model and plotting and visualization is done by
Minitab and R. In this phase, Eqs. (6) and (7) are used to investigate
the performance of the forecast models. The testing subset does
not share any information with the training dataset.



10000

12000

14000

16000

18000

3000200010000
Time (hour)

E
le

ct
ric

ity
 D

em
an

d 
(k

W
)

-5000

-2500

0

2500

3000200010000
Time (hour)

R
es

id
ua

ls
 (k

W
)

0.00

0.25

0.50

0.75

1.00

3020100
lag

A
C

F

0.0

0.5

1.0

3020100
lag

P
A

C
F

a 

b 

c

d

Fig. 6. (a) Time series plot for electricity load demand, (b) the residuals for a preliminary linear model, (c) autocorrelation plot and (d) partial autocorrelation plot.

a

b

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5
x 10

4

Time

C
oo

lin
g 

Lo
ad

 (k
w

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5
x 10

4

Time

a

b

C
oo

lin
g 

Lo
ad

 (k
w

)

Fig. 7. Comparison of actual and forecasted values for cooling load demand using (a) training dataset (above) and (b) testing dataset (below).
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Before building the forecast model, an exploratory data analysis
is performed to capture the behavior of data over time. Fig. 2
depicts the 95% confidence interval plots for the cooling and elec-
tricity load demands categorized by weekdays. It is observed that
both the cooling and the electricity load demands are higher in
working days than weekends. This is particularly obvious for the
electricity load demand that is less than 12,000 (kW) in weekends
and more than 13,000 (kW) for weekdays. This implies that mixing



Table 1
The estimates values for cooling and electricity forecast models.

Cooling Electricity

Weekdays Weekends

Estimate Standard error Estimate Standard error Estimate Standard error

b0 �13441.85 1851.10 12,783 458.2 9825.557 704.74
b1 357.28 13.98 21.0180 6.1137 39.168 8.809

u1 0.9059 0.016 0.8775 0.0319 1.1882 0.0750
u2 0.0513 0.021 0.0018 0.0425 �0.1848 0.1162
u3 �0.0830 0.02134 �0.1298 0.0423 �0.0140 0.1168
u4 �0.0314 0.02138 0.0606 0.0425 �0.0594 0.1168
u5 �0.0299 0.02138 �0.1054 0.0425 �0.2021 0.1169
u6 �0.0405 0.02137 0.0073 0.0425 0.1319 0.1178
u7 0.0829 0.02138 0.1304 0.0422 0.1240 0.1160
u8 �0.0264 0.02142 �0.1095 0.0423 �0.1624 0.1170
u9 �0.0289 0.02142 �0.0625 0.0425 0.1140 0.1190
u10 �0.0094 0.02140 0.0484 0.0425 �0.1592 0.1195
u11 0.0191 0.02136 0.0155 0.0426 0.1565 0.1210
u12 0.0017 0.02135 �0.0777 0.0427 �0.0218 0.1219
u13 �0.0138 0.02135 0.0466 0.0427 0.1390 0.1204
u14 �0.0112 0.02134 �0.0047 0.0427 �0.1450 0.1190
u15 0.0275 0.02134 �0.0287 0.0427 �0.1449 0.1189
u16 �0.0021 0.02134 0.0276 0.0426 0.0813 0.1194
u17 0.0012 0.02134 0.0957 0.0425 0.2598 0.1193
u18 �0.0074 0.02129 �0.1241 0.0424 �0.2818 0.1206
u19 0.0084 0.02128 0.0501 0.0426 �0.0009 0.1222
u20 0.0191 0.02128 0.0550 0.0425 0.0622 0.1233
u21 0.0392 0.02128 �0.0531 0.0425 0.0664 0.1228
u22 0.0728 0.02124 0.0966 0.0423 0.1109 0.1241
u23 0.0751 0.02125 0.0439 0.0424 �0.0776 0.1239
u24 �0.0322 0.01576 0.0797 0.0319 �0.0285 0.0814
R2 0.884 0.708 0.430
R2

adj 0.883 0.700 0.405
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all data and building a global forecast model without considering
the factor of ‘‘day’’ may result in a less powerful model. Thus, in
this work, two different models are constructed for weekdays
and weekends.

Fig. 3 presents the 95% confidence interval plots for the cooling
and the electricity load demands categorized by 24 h of the day.
For example, 17 in x-axis means the 95% confidence interval for
the cooling and electricity load demands at time 17:00, which is
constructed by all data collected at this particular time slot. This
figure can easily represent peak time for the cooling and electricity
load demands.

For cooling, the load demand increases constantly from 6:00
and reaches its maximum value at time14:00 then decreases until
end of the day. The peak hours for the cooling load demand are
between 11:00 and 17:00. This also implies that the cooling
demand load is highly correlated with the ambient temperature.
Similarly, the peak hours for electricity load demand are between
9:00 and 19:00 as well.

Fig. 4 shows scatter plots of the cooling and electricity load
demands versus the ambient temperature. The cooling load values
show higher correlation with ambient temperature than the elec-
tricity load demand. The estimated correlations between cooling
and electricity load demands with ambient temperature are
0.905 and 0.374, respectively. This means that to find an accurate
model for the electricity load demand, it is required to add more
significant exogenous factors than ambient temperature.

For example, the average number of people in the campus at
time t would be a potential exogenous factor for modeling the
campus electricity load demand. As number of people in the cam-
pus increases, it is logical to presume that the electricity load
demand increases. However, in this example, since the number
of people in the campus at time t is not available, it is not possible
to analyze its effect. As a result, those parts of variation that are
related to such missing exogenous factor(s) should be explained
and modeled by time series part of the proposed method.

Fig. 5a and b present the hourly cooling load of the campus and
the residual values given by fitting a linear model of cooling versus
ambient temperature. The residuals are highly autocorrelated over
time in different lags (Fig. 5c). Furthermore, Fig. 5d is the partial
autocorrelation function (PCAF) for residual values and can identify
the extent of lags in an autocorrelation model. In this figure, PACF
illustrates a strong autocorrelation structure in the first lag and the
24th lag, which accounts for seasonality in the data. Therefore, a
seasonal ARMA(2,0,0) � (1,0,0)24 seems an appropriate candidate
for the electricity load dataset.

Similarly, Fig. 6a and b are the electricity load demand and its
corresponding residual values when applying a linear model to
the data. Again, ACF and PACF in Fig. 6c and d reveal a correlated
structure for the electricity load dataset. Particularly, PACF illus-
trates a positive autocorrelation for the first lag and a remarkable
negative correlation for the 24th lag. This means that a seasonal
ARMA(1,0,0) � (1,0,0)24 model would be enough for the electricity
load demand.

Fig. 7a and b depict the result of forecast modeling for the cool-
ing load demand using training and testing datasets. In Fig. 7a, the
forecast values are very close to the corresponding actual values.
This is because the training dataset is used for parameter estima-
tion of the forecast model. Therefore, the model includes the infor-
mation of actual data.

Fig. 7b represents the performance of the model with testing
dataset, which does not share any information with the estimated
parameters. It is observed that the model adequately fits with the
actual data. In addition, Table 1 provides the estimate values of the
model parameter, their standard errors as well as coefficient of
determinations for both cooling and electricity load demands. For
the cooling demand, coefficient of determination R2 and adjusted
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Fig. 8. Comparison of actual and forecasted values for electricity load demand in weekdays using training dataset (above) and testing dataset (below).
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coefficient of determination R2
adj are 88.4% and 88.3%, respectively

implying that the proposed model can explain more than 88% of
the total variability within data.

Figs. 8 and 9 present the actual and forecast values of electricity
load demand using both training and testing datasets for weekdays
and weekends, respectively. As shown in Fig. 2b, the electricity
demand patterns are significantly different in weekends and week-
days, probably because of fewer numbers of people in the campus
in weekends. Therefore, to improve the performance of the pro-
posed method, two separate models should be built for weekdays
and weekends.

In addition, It is observed from Figs. 8 and 9 that the perfor-
mance of the proposed model for the electricity load demand is
still less than the same model proposed for the cooling load
demand. This is mainly due to lack of other exogenous factors in
electricity demand model. As shown in Fig. 4, the correlation
between electricity load demand and the ambient temperature is
moderate. It means that the ambient temperature can only explain
a relatively small portion of variation in electricity demand. This
can be confirmed by observing Table 1. In this table, R2 and R2
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Fig. 9. Comparison of actual and forecasted values for electricity load demand
for electricity load demand in weekdays are namely 70.8% and
70% and for electricity load demand in weekends are namely 43%
and 40%. Therefore, the electricity load model should be enhanced
by adding more exogenous factors e.g. occupancy into the forecast
model in order to capture larger amount of variability over time.

Another potential reason for lower performance of the electric-
ity demand forecast model is shown in Fig. 10. In this figure, the
values of electricity load demand are plotted over time and are
grouped by months. It is shown that the load demand in the last
month follows different pattern than the other months. This is
because the last month is December and the campus is probably
less populated at the last days of December. Since, the model uses
the first two months for training and estimation and the rest of
data (including December data) for the testing purposes, it cannot
fit the last part of December.

A solution for this problem is to add the occupancy as another
exogenous variable into the model and re-estimate the model
parameters accordingly. This way, the model can differentiate
between those days that more people are in campus from the days
that less people are in campus including weekends. Another idea is
00 120 140 160 180 200

ime

00 400 500 600

ime

in weekends using training dataset (above) and testing dataset (below).
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to build a new model solely for December. In doing so, the model
switch to a new model that is designed and built based on
December data as soon as December begins.

6. Conclusions

In this paper, a statistical method for forecasting cooling and
electricity load demands was proposed in both campus and building
level. The performance of the proposed model was evaluated using
the CCHP plant data collected from the UCI campus. The results
revealed that the proposed model was able to provide high quality
forecasts for both cooling and electricity load demands. Coefficient
of determination R2 and adjusted coefficient of determination R2

adj

for forecasting cooling demand were 88.4% and 88.3%, implying that
the proposed model could explain more than 88% of the total vari-
ability within testing data. These indices were 70.8% and 70% for
electricity load demand in weekdays and 43% and 40% in weekends
respectively. The weekend cooling demand forecasts could signifi-
cantly improve by using more stable weekend data.

The proposed model is now running in the campus and is
forecasting both cooling and electricity load demands as a part of
an integrated CCHP optimization platform. Further information
from exogenous factors such as occupancy can improve the perfor-
mance of the proposed model.
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