Lawrence Berkeley National Laboratory

Recent Work

Title
INTERPRETATION OF THE PONDEROMOTIVE POTENTIAL FOR A MAGNETIZED PARTICLE IN A LOW FREQUENCY WAVE

Permalink
https://escholarship.org/uc/item/7k6262g8

Author
Cary, John R.

Publication Date
1978-08-01
INTERPRETATION OF THE PONDEROMOTIVE POTENTIAL FOR
A MAGNETIZED PARTICLE IN A LOW FREQUENCY WAVE

John R. Cary and James H. Hammer

August 1978

Prepared for the U. S. Department of Energy
under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 6782
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
INTERPRETATION OF THE PONDEROMOTIVE POTENTIAL FOR A MAGNETIZED PARTICLE IN A LOW FREQUENCY WAVE*

John R. Cary and James H. Hammer

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

August 1978

ABSTRACT

One term in the expression for the ponderomotive potential of a low-frequency magnetoplasma wave has a simple interpretation: it is the parallel-electric-field potential produced directly by the wave.

*Work supported by the U.S. Department of Energy.
The average motion of a particle (charge \(e\), mass \(m\)) in a uniform magnetic field plus an electromagnetic oscillation,

\[
\mathbf{B}(x, t) = \hat{z}B_0 + \left(\mathbf{B}(x)e^{-i\omega t} + \text{c.c.}\right)
\]

\[
\mathbf{E}(x, t) = \mathbf{E}(x)e^{-i\omega t} + \text{c.c.},
\]

can be analyzed by means of the ponderomotive potential,\(^1\text{-}^3\)

\[
\psi(x) = \frac{e^2|\mathbf{E}_z|^2}{m\omega^2} + \frac{e^2(|\mathbf{E}_x|^2 + |\mathbf{E}_y|^2)}{m(\omega^2 - \Omega^2)} + \frac{i\omega(\mathbf{E}_x^* \mathbf{E}_y - \mathbf{E}_y^* \mathbf{E}_x)}{m\omega(\omega^2 - \Omega^2)},
\]

if the displacement of the particle in one oscillation period is small compared to the scale length of the wave amplitude. In the low frequency \((\omega \ll \Omega \equiv eB_0/mc)\) limit the ponderomotive potential (2) reduces to

\[
\psi(x) = \frac{e^2|\mathbf{E}_z|^2}{m\omega^2} - \frac{m(\omega^2 - \Omega^2)}{B_0^2} \mathbf{E}_z^2 - \frac{iec(\mathbf{E}_x^* \mathbf{E}_y - \mathbf{E}_y^* \mathbf{E}_x)}{\omega B_0}.
\]

The first term in this expression is the familiar parallel oscillation energy \(1/2 \frac{mv^2}{z}\). The second term also has a simple interpretation:\(^4\text{-}^6\) it is the negative of the perpendicular electric-drift energy \(1/2 \frac{m\omega^2}{B}\). Here we offer an interpretation for the last term of (3), for a low frequency \((\omega \ll \Omega)\) wave.

Consider the parallel electric field in the presence of this wave:

\[
E_\parallel \equiv \mathbf{E} \cdot \mathbf{B} / |\mathbf{B}|
\]

To second order in \(\mathbf{E}\) and \(\delta \mathbf{B} \equiv \mathbf{B} - \hat{z}B_0\) we find

\[
E_\parallel = E_z + (\mathbf{E} \cdot \delta \mathbf{B} - E_z \delta B_z)/B_0 + 0(E^3)
\]
Averaging this expression over one oscillation and using Faraday's law,\[\mathcal{B} = -ic \nabla \times \mathbf{E}/\omega, \] we obtain
\[
E_{\parallel} = -\frac{\partial}{\partial z} \left[-\frac{ic(\mathcal{E}_x^* \mathcal{E}_y - \mathcal{E}_y^* \mathcal{E}_x)}{\omega B_0} \right]
+ \frac{ic}{\omega B_0} \left[\mathcal{E}_x^* \frac{\partial \mathcal{E}_z}{\partial y} + \mathcal{E}_y^* \frac{\partial \mathcal{E}_z}{\partial x} - \mathcal{E}_x \frac{\partial \mathcal{E}_z^*}{\partial y} - \mathcal{E}_y \frac{\partial \mathcal{E}_z^*}{\partial x} \right].
\] (6)

In order of magnitude, the ratio of the last term of this expression to the first term is \(L_z \mathcal{E}_z/L_\perp \mathcal{E}_\perp \), where \(L_z \) and \(L_\perp \) are the parallel and perpendicular scale lengths of the wave amplitude.

Now the low frequency \((\omega \ll \Omega_\perp) \) modes of a plasma with \(T_e \) and \(T_\perp \) comparable are characterized by \(|\mathcal{E}_z| \ll |\mathcal{E}_\perp| \). (For example, Hasegawa and Chen, and Ott, Wehringer, and Bonoli show that kinetic Alfven waves and magnetosonic waves satisfy this inequality). Therefore, assuming parallel and perpendicular scale lengths to be comparable, we can neglect the last term of (6), and we find \(E_{\parallel} \equiv -\partial \psi/\partial z \), with the parallel-electric-field potential \(\psi \) given by
\[
\psi(z) = -\frac{ic(\mathcal{E}_x^* \mathcal{E}_y - \mathcal{E}_y^* \mathcal{E}_x)}{\omega B_0}. \] (7)

Comparing (7) and (3) we see that the last term of \(\psi(z) \) is simply the potential energy \(e\psi(z) \).

Thus we see that, in the low frequency limit, one term of the ponderomotive potential can be interpreted as the second-order parallel-electric-field potential produced directly by the wave. Of course an additional potential also arises in a self-consistent analysis of the effects of the ponderomotive potential.6,9,10
REFERENCES

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.