Title
Trivial factors for L-functions of symmetric products of Kloosterman sheaves

Permalink
https://escholarship.org/uc/item/7k62j6b0

Journal
Finite Fields and their Applications, 14(2)

ISSN
1071-5797

Authors
Fu, L
Wan, D

Publication Date
2008-04-01

DOI
10.1016/j.ffa.2007.07.005

Peer reviewed
Trivial Factors For L-functions of Symmetric Products of Kloosterman Sheaves

Lei Fu
Chern Institute of Mathematics and LPMC, Nankai University, Tianjin, P. R. China
leifu@nankai.edu.cn

Daqing Wan
Department of Mathematics, University of California, Irvine, CA 92697
dwan@math.uci.edu

0. Introduction

In this paper, we determine the trivial factors of L-functions of both finite and infinite symmetric products of Kloosterman sheaves.

Let F_q be a finite field of characteristic p with q elements, let l be a prime number distinct from p, and let $\psi : F_q \to \overline{Q}_l^*$ be a nontrivial additive character. Fix an algebraic closure F of F_q. For any integer k, let F_{q^k} be the extension of F_q in F with degree k. Let $n \geq 2$ be a positive integer. If λ lies in F_{q^k}, we define the $(n - 1)$-variable Kloosterman sum by

$$K_{l,n}(F_{q^k}, \lambda) = \sum_{x_1 \cdots x_n = \lambda, x_i \in F_{q^k}} \psi(\text{Tr}_{F_{q^k}/F_q}(x_1 + \cdots + x_n)).$$

Such character sums can be studied via either p-adic methods or l-adic methods. In [D1] Théorème 7.8, Deligne constructs a lisse \overline{Q}_l-sheaf of rank n on $A_1^{F_q} - \{0\}$ pure of weight $n - 1$, which we denote by $K_{l,n}$ and call the Kloosterman sheaf, with the property that for any $x \in (A_1^{F_q} - \{0\})(F_{q^k}) = F_{q^k}$, we have

$$\text{Tr}(F_{q,x}, K_{l,n,\bar{x}}) = (-1)^{n-1} K_{l,n}(F_{q^k}, x),$$

where $F_{q,x}$ is the geometric Frobenius element at the point x. Let η be the generic point of $A_1^{F_q}$. The Kloosterman sheaf gives rise to a Galois representation

$$K_{l,n} : \text{Gal}(\overline{F_q(T)}/F_q(T)) \to \text{GL}((K_{l,n})_\eta)$$

unramified outside 0 and ∞. From the p-adic point of view, the Kloosterman sheaf is given by an ordinary overconvergent F-crystal of rank n over $A_1^{F_q} - \{0\}$. See Sperber [S].
For each positive integer k, denote the L-function of the k-th symmetric product of the Kloosterman sheaf by $L(k, n, T)$:
\[
L(k, n, T) := L(\mathbb{A}_{\mathbb{F}_q}^1 - \{0\}, \text{Sym}^k\text{Kl}_n, T) \in 1 + T\mathbb{Z}[[T]],
\]
and we call it simply the k-th symmetric product L-function. This is a rational function whose reciprocal zeros and poles are Weil q-numbers by theorems of Grothendieck and Deligne. Our aim of this paper is to understand the trivial factors of $L(k, n, T)$ and their variation as the integer k varies p-adically. In the case $n = 2$, the trivial factor problem for $L(k, 2, T)$ was first studied by Robba ([R]) via Dwork’s p-adic cohomology. Robba determined the trivial factors for $L(k, 2, T)$ assuming $p > k/2$. Using l-adic results of Deligne and Katz, we ([FW]) determined the trivial factor at ∞ for general $L(k, n, T)$. The trivial factor at 0 is easy to determine for $n = 2$. But in [FW] we were unable to determine the trivial factor at 0 of $L(k, n, T)$ for $n > 2$. We solve this problem in the present paper.

In a different but related direction, the p-adic limit of $L(k, n, T)$ when k goes to infinity in a fixed p-adic direction was shown to be a p-adic meromorphic function in [W1]. This idea was the key in proving Dwork’s unit root conjecture for the Kloosterman family. See [W1], [W2] and [W3]. To be precise, for a p-adic integer s, we choose a sequence of positive integers k_i which approaches s as p-adic integers but goes to infinity as complex numbers. Then we define the p-adic s-th symmetric product L-function to be
\[
L_p(s, n, T) = \lim_{i \to \infty} L(k_i, n, T) \in 1 + T\mathbb{Z}_p[[T]].
\]
This limit exists as a formal p-adic power series and is independent of the choice of the sequence k_i. It is a sort of two variable p-adic L-function. Note that even when s is a positive integer, $L_p(s, n, T)$ is very different from $L(s, n, T)$. It was shown in [W1] that $L_p(s, n, T)$ is a p-adic meromorphic function by a uniform limiting argument. Alternatively, it was shown in [W2] that
\[
L_p(s, n, T) = L(M_s(\infty), T),
\]
where $M_s(\infty)$ is an infinite rank nuclear overconvergent σ-module on $\mathbb{A}_{\mathbb{F}_q}^1 - \{0\}$. This gives another proof that $L_p(s, n, T)$ is p-adic meromorphic.

In this paper, combining p-adic methods and l-adic methods, we prove the following more precise result.

Theorem 0.1. For each p-adic integer s, the p-adic s-th symmetric product L-function $L_p(s, n, T)$ is a p-adically entire function (i.e., no poles). Furthermore, the entire function $L_p(s, n, T)$ is divisible by the p-adic entire function $\prod_{i=0}^{\infty}(1 - q^i T)^{d_i}$, where d_j is the coefficient of x^j in the power series expansion of
\[
\frac{1}{(1 - x^2)(1 - x^3) \cdots (1 - x^n)^{n-1}},
\]
that is, for each \(s \in \mathbb{Z}_p \), the entire function \(L_p(s, n, T) \) has a zero at \(T = q^{-j} \) with multiplicity at least \(d_j \) for each non-negative integer \(j \).

Remark. Grosse-Klönne [GK] showed the \(p \)-adic meromorphic continuation of \(L_p(s, n, T) \) to some \(s \in \mathbb{Q}_p \) with \(|s|_p < 1 + \epsilon \) for some small \(\epsilon > 0 \). We do not know if Theorem 0.1 can be extended to such non-integral \(p \)-adic \(s \).

In order to prove the above theorem for infinite symmetric product \(L \)-function \(L_p(s, n, T) \), we need to have a good understanding of the finite symmetric product \(L \)-function \(L(k, n, T) \) for every positive integer \(k \). Let \(j : \mathbb{A}_F^1 - \{0\} \to \mathbb{P}_F^1 \) be the canonical open immersion. By definition, we have the following relation between the \(L \)-functions \(L(k, n, T) \) and \(L(\mathbb{P}_F^1, j_*(\text{Sym}^k(K_{\text{fn}})), T) \):

\[
L(k, n, T) = L(\mathbb{P}_F^1, j_*(\text{Sym}^k(K_{\text{fn}})), T)\det(1 - F_0 T, (\text{Sym}^k(K_{\text{fn}})_{\eta})^{I_0})\det(1 - F_\infty T, (\text{Sym}^k(K_{\text{fn}})_{\eta})^{I_\infty}),
\]

where \(I_0 \) (resp. \(I_\infty \)) is the inertia subgroup at 0 (resp. \(\infty \)), and \(F_0 \) (resp. \(F_\infty \)) is the geometric Frobenius element at 0 (resp. \(\infty \)). Here we use the fact that

\[
(\text{Sym}^k(K_{\text{fn}})_{\eta})^{I_0} = (j_*(\text{Sym}^k(K_{\text{fn}})))_{\mathbb{Q}_p}, \quad (\text{Sym}^k(K_{\text{fn}})_{\eta})^{I_\infty} = (j_*(\text{Sym}^k(K_{\text{fn}})))_{\mathbb{Q}_p}.
\]

We call \(\det(1 - F_0 T, (\text{Sym}^k(K_{\text{fn}})_{\eta})^{I_0}) \) (resp. \(\det(1 - F_\infty T, (\text{Sym}^k(K_{\text{fn}})_{\eta})^{I_\infty}) \)) the local factor at 0 (resp. \(\infty \)) of \(L(k, n, T) \). On the other hand, by Grothendieck’s formula for \(L \)-functions, we have

\[
L(\mathbb{P}_F^1, j_*(\text{Sym}^k(K_{\text{fn}})), T) = \frac{\det(1 - FT, H^1(\mathbb{P}_F^1, j_*(\text{Sym}^k(K_{\text{fn}}))))}{\det(1 - FT, H^0(\mathbb{P}_F^1, j_*(\text{Sym}^k(K_{\text{fn}}))))\det(1 - FT, H^2(\mathbb{P}_F^1, j_*(\text{Sym}^k(K_{\text{fn}}))))}.
\]

So we get the factorization

\[
L(k, n, T) = \frac{\det(1 - FT, H^1(\mathbb{P}_F^1, j_*(\text{Sym}^k(K_{\text{fn}}))))\det(1 - F_0 T, ((\text{Sym}^kK_{\text{fn}})_{\eta})^{I_0})\det(1 - F_\infty T, ((\text{Sym}^kK_{\text{fn}})_{\eta})^{I_\infty})}{\det(1 - FT, H^0(\mathbb{P}_F^1, j_*(\text{Sym}^k(K_{\text{fn}}))))\det(1 - FT, H^2(\mathbb{P}_F^1, j_*(\text{Sym}^k(K_{\text{fn}}))))}.
\]

The first factor \(\det(1 - FT, H^1(\mathbb{P}_F^1, j_*(\text{Sym}^k(K_{\text{fn}})))) \) is called the non-trivial factor. It is pure of weight \(k(n-1) + 1 \) by [D2] 3.3.1. All other factors on the right side of the above expression are called trivial factors. The zeros of these trivial factors give rise to the trivial zeros or poles of \(L(k, n, T) \). We will determine all the trivial factors and their variation with \(k \) as \(k \) varies. As a consequence, it gives some partial information on the non-trivial factor and its variation with \(k \) as well.

We now describe the results for the trivial factors. In [FW], we studied in detail the behavior of the Kloosterman representation at \(\infty \), and we used our results to calculate the local factor at \(\infty \) of \(L(k, n, T) \). To recall our result, let \(\zeta \) be a primitive \(n \)-th root of unity in \(F \). For each
positive integer k, let $S_k(n,p)$ be the set of n-tuples (j_0, \cdots, j_{n-1}) of non-negative integers satisfying $j_0 + j_1 + \cdots + j_{n-1} = k$ and $j_0 + j_1+ \cdots + j_{n-1} \zeta^{n-1} = 0$ in F. Let σ be the cyclic shifting operator

$$\sigma(j_0, \cdots, j_{n-1}) = (j_{n-1}, j_0, \cdots, j_{n-2}).$$

It is clear that the set $S_k(n,p)$ is σ-stable. Let V be a \mathbb{Q}_l-vector space of dimension n with basis $\{e_0, \cdots, e_{n-1}\}$. For an n-tuple $j = (j_0, \cdots, j_{n-1})$ of non-negative integers such that $j_0 + \cdots + j_{n-1} = k$, write

$$e^j = e_0^{j_0} e_1^{j_1} \cdots e_{n-1}^{j_{n-1}}$$

as an element of $\text{Sym}^k V$. For such an n-tuple j, we define

$$v_j = \sum_{i=0}^{n-1} (-1)^{j_{n-1} + \cdots + j_i} e^{\sigma^i(j)}.$$

If $k = j_0 + j_1 + \cdots + j_{n-1}$ is even, then we have $v_{\sigma(j)} = (-1)^{j_{n-1}} v_j$. Let $a_k(n,p)$ be the number of σ-orbits in $S_k(n,p)$. When k is even, let $b_k(n,p)$ be the number of those σ-orbits j in $S_k(n,p)$ such that $v_j \neq 0$, and let $c_k(n,p)$ be the number of σ-orbits j in $S_k(n,p)$ such that $v_j \neq 0$ and that $j_1 + 2j_2 + \cdots + (n-1)j_{n-1}$ is odd. Our result on the local factor at ∞ of $L(k,n,T)$ is the following.

Theorem 0.2. (Theorem 2.5 in [FW]) Suppose $n|(q - 1)$.

1. If n is odd, then for all k, we have

$$\det(1 - F_\infty T, (\text{Sym}^k(K\text{l}_n)_\bar{q})^{I_\infty}) = (1 - q^{\frac{k(n-1)}{2}} T)^{a_k(n,p)}.$$

2. If n is even and k is odd, then we have

$$\det(1 - F_\infty T, (\text{Sym}^k(K\text{l}_n)_\bar{q})^{I_\infty}) = 1.$$

3. Suppose n and k are both even. We have

$$\det(1 - F_\infty T, (\text{Sym}^k(K\text{l}_n)_\bar{q})^{I_\infty}) = \begin{cases}
(1 - q^{\frac{k(n-1)}{2}} T)^{b_k(n,p)} & \text{if } 2n|(q - 1), \\
(1 + q^{\frac{k(n-1)}{2}} T) c_k(n,p)(1 - q^{\frac{k(n-1)}{2}} T)^{b_k(n,p) - c_k(n,p)} & \text{if } 2n \not| (q - 1), \text{ either } 4|n \text{ or } 4|k, \\
(1 - q^{\frac{k(n-1)}{2}} T) c_k(n,p)(1 + q^{\frac{k(n-1)}{2}} T)^{b_k(n,p) - c_k(n,p)} & \text{if } 2n \not| (q - 1), \text{ 4 } |n \text{ and } 4 \not| k.
\end{cases}$$

In this paper, we get the following formula for the local factor at 0 of $L(k,n,T)$.

Theorem 0.3. We have

$$\det(I - F_0 T, (\text{Sym}^k(K\text{l}_n)_\bar{q})^{I_0}) = \prod_{n=0}^{\frac{k(n-1)}{2}} (1 - q^n T)^{m_k(n)},$$

4
where \(m_k(u) \) is determined by
\[
\begin{align*}
\frac{(1 - x^n) \cdots (1 - x^{n+k-2})(1 - x^{n+k-1})}{(1 - x^2) \cdots (1 - x^{k-1})(1 - x^k)} &= \sum_{u=0}^{\infty} m_k(u)x^u.
\end{align*}
\]

We have
\[
m_k(u) = c_k(u) - c_k(u-1),
\]
where \(c_k(u) \) is the number of elements of the set
\[
\{(i_0, \ldots, i_{n-1}) | i_j \geq 0, i_0 + i_1 + \cdots + i_{n-1} = k, 0 \cdot i_0 + 1 \cdot i_1 + \cdots + (n-1) \cdot i_{n-1} = u\}.
\]

The trivial poles of \(L(k, n, T) \) can be derived from Katz’s global monodromy theorem and Grothendieck’s formula for \(L \)-functions. For completeness, we include this deduction in detail by working out the relevant representation theory which should be well known to experts.

Denote by \(G \) the Zariski closure of the image of \(\text{Gal}(\mathbb{F}(T)/\mathbb{F}(T)) \) under the representation \(\text{Kl}_n : \text{Gal}(\overline{\mathbb{F}}(T)/\mathbb{F}(T)) \to \text{GL}((\text{Kl}_n)_{\overline{\eta}}) \).

By [K] 11.1, we have
\[
G = \begin{cases}
\text{Sp}(n) & \text{if } n \text{ is even}, \\
\text{SL}(n) & \text{if } n \text{ is odd, and } p \neq 2, \\
\text{SO}(n) & \text{if } n \text{ is odd, } n \neq 7 \text{ and } p = 2, \\
G_2 & \text{if } n = 7 \text{ and } p = 2.
\end{cases}
\]

If \(pn \) is even, we have \((-1)^n = 1\) in \(\mathbb{F}_q \). By [K] 4.2.1, we then have a perfect paring
\[
\text{Kl}_n \otimes \text{Kl}_n \to \overline{\mathbb{Q}}_l(1 - n).
\]

When \(n \) is even, we have \(G = \text{Sp}(n) \), the paring is alternating, and \(\text{Kl}_n \) is isomorphic to the standard representation of \(\text{Sp}(n) \). When \(n \) is odd and \(p = 2 \), we have \(G = \text{SO}(n) \) or \(G = G_2 \), the paring is symmetric, and \(\text{Kl}_n \) is isomorphic to the standard representation of the \(\text{SO}(n) \) or \(G_2 \). (The standard representation of \(G_2 \) is defined to be the unique irreducible representation of dimension 7.) When \(pn \) is odd, \(\text{Kl}_n \) is isomorphic to the standard representation of \(\text{SL}(n) \). In the Appendix of this paper, we will prove the following result:

Lemma 0.4. Let \(g \) be one of the following Lie algebras
\[
\mathfrak{sl}(n), \mathfrak{sp}(n), \mathfrak{so}(n), \mathfrak{g}_2
\]
and let \(V \) be the standard representation of \(g \). In the case where \(g = \mathfrak{sl}(n) \) or \(\mathfrak{sp}(n) \), the representation \(\text{Sym}^k V \) is irreducible, and in the case where \(g = \mathfrak{so}(n) \) or \(\mathfrak{g}_2 \), the representation \(\text{Sym}^k V \) contains exactly one copy of the trivial representation if \(k \) is even, and contains no trivial representation if \(k \) is odd.
By [D2] 1.4.1, we have

\[H^0(P^1_F, j_*(\text{Sym}^k(Kl_n))) = ((Kl_n)_{\bar{\mathbb{Q}}})^{\text{Gal}(\mathbb{F}_q(t)/\mathbb{F}_q(1))} = ((Kl_n)_{\bar{\mathbb{Q}}})^{G}, \]

\[H^2(P^1_F, j_*(\text{Sym}^k(Kl_n))) = ((Kl_n)_{\bar{\mathbb{Q}}})^{\text{Gal}(\mathbb{F}_q(t)/\mathbb{F}_q(1))(-1)} = ((Kl_n)_{\bar{\mathbb{Q}}})^{G(-1)}. \]

Combined with [K] 11.1 and Lemma 0.4, we get the following.

Corollary 0.5. We have

\[
\det(1 - FT, H^0(P^1_F, j_*(\text{Sym}^k(Kl_n)))) = \begin{cases}
1 & \text{if } n \text{ is even, or } k \text{ is odd, or } p^m \text{ is odd,} \\
1 - q^{(n-1)T} & \text{if } p = 2, \ k \text{ is even and } n \text{ is odd,}
\end{cases}
\]

\[
\det(1 - FT, H^2(P^1_F, j_*(\text{Sym}^k(Kl_n)))) = \begin{cases}
1 & \text{if } n \text{ is even, or } k \text{ is odd, or } p^m \text{ is odd,} \\
1 - q^{(n-1)T+2} & \text{if } p = 2, \ k \text{ is even and } n \text{ is odd.}
\end{cases}
\]

Combining these results with the p-adic limiting argument in [W1], we shall obtain infinitely many trivial zeros (if $n > 2$) for the infinite p-adic symmetric product L-function $L_p(s, n, T)$ as stated in Theorem 0.1. This suggests that there should be an interesting trivial zero theory for the L-function of any infinite p-adic symmetric product of a pure l-adic sheaf whose p-adic unit root part has rank one. Our result here provides the first evidence for such a theory.

The paper is organized as follows. In §1, we recall the canonical form of the local monodromy of the Kloosterman sheaf at 0. In §2, we summarize the basic representation theory for $\mathfrak{sl}(2)$. In §3, we prove Theorem 0.3 using results in the previous two sections. In §4, we apply our results on local factors at 0 to prove Theorem 0.1. In section 5, we derive some consequences for the non-trivial factors and its variation with k. In the appendix, we include a proof of Lemma 0.4 which implies Corollary 0.5.

Acknowledgements. The research of Lei Fu is supported by NSFC (10525107). The research of Daqing Wan is partially supported by NSF.

1. The Canonical Form of the Local Monodromy

Let K be a local field with residue field \mathbb{F}_q, and let

\[\rho: \text{Gal}(\overline{K}/K) \to \text{GL}(V) \]

be a \mathbb{Q}_l-representation. Suppose the inertia subgroup I of $\text{Gal}(\overline{K}/K)$ acts unipotently on V. Fix a uniformizer π of K, and consider the l-adic part of the cyclotomic character

\[t_l: I \to \mathbb{Z}_l(1), \sigma \mapsto \left(\frac{\sigma(\sqrt[l]{\pi})}{\sqrt[l]{\pi}} \right). \]
Note that for σ in the inertia group, the l^n-th root of unity $\frac{\sigma\sqrt[n]{\pi}}{\sqrt[n]{\pi}}$ does not depend on the choice of the l^n-th root $\sqrt[n]{\pi}$ of π. Since the restriction to I is unipotent, there exists a nilpotent homomorphism

$$N : V(1) \rightarrow V$$

such that

$$\rho(\sigma) = \exp(t_1(\sigma).N)$$

for any $\sigma \in I$. Fix a lifting $F \in \text{Gal}(\overline{K}/K)$ of the geometric Frobenius element in $\text{Gal}(\mathbb{F}/\mathbb{F}_q)$. We have

$$t_1(F^{-1}\sigma F) = t_1(\sigma)^q.$$

So

$$\exp(t_1(\sigma).N) \rho(F) = \rho(\sigma) \rho(F) = \rho(\sigma F) = \rho(F F^{-1} \sigma F) = \rho(F) \rho(F^{-1} \sigma F) = \rho(F) \exp(t_1(F^{-1} \sigma F).N) = \rho(F) \exp(qt_1(\sigma).N).$$

Therefore

$$\rho(F)^{-1} \exp(t_1(\sigma).N) \rho(F) = \exp(qt_1(\sigma).N).$$

Hence

$$\rho(F)^{-1}(t_1(\sigma).N) \rho(F) = qt_1(\sigma).N.$$

Fix a generator ζ of $\mathbb{Z}_l(1)$. Choose $\sigma \in I$ so that $t_1(\sigma) = \zeta$. For convenience, denote $\rho(F)$ by F, and denote the homomorphism

$$V \rightarrow V, v \mapsto N(v \otimes \zeta)$$

by N. Then the last equation gives

$$F^{-1}NF = qN,$$

that is,

$$NF = qFN.$$

Now let’s take K to be the completion of $\mathbb{F}_q(T)$ at 0, and let $\rho : \text{Gal}(\overline{K}/K) \rightarrow \text{GL}(V)$ be the restriction of the representation $K_{l,0} : \text{Gal}(\overline{\mathbb{F}_q(T)}/\mathbb{F}_q(T)) \rightarrow \text{GL}((K_{l,n})_{\bar{\eta}})$ defined by the Kloosterman sheaf. In [D1] Théorème 7.8, it is shown that the inertia group J_0 at 0 acts unipotently on $(K_{l,n})_{\bar{\eta}}$ with a single Jordan block, and the geometric Frobenius F_0 at 0 acts trivially on the invariant $((K_{l,n})_{\bar{\eta}})^{J_0}$ of the inertia group. With the above notations, this means the nilpotent map
N has a single Jordan block, and F acts trivially on $\ker(N)$. By [D2] 1.6.14.2 and 1.6.14.3, the eigenvalues of F are $1, q, \ldots, q^{n-1}$. Since the number of distinct eigenvalues is exactly the rank of the Kloosterman sheaf, F is diagonalizable. Let v be a (nonzero) eigenvector of F with eigenvalue q^{n-1}. Using the equation $NF = qFN$, we see $N(v)$ is an eigenvector of F with eigenvalue q^{n-2}. Note that if $n \geq 2$, then $N(v)$ can not be 0 since otherwise v lies in $\ker(N)$ and F does not acts trivially on v. This contradicts to the property of the Kloosterman sheaf. Similarly, if $n \geq 3$, then $N^2(v)$ is a nonzero eigenvector of F with eigenvalue q^{n-3}, and $N^{n-1}(v)$ is a nonzero eigenvector of F with eigenvalue 1, and $N^n(v) = 0$. As $v, N(v), \ldots, N^{n-1}(v)$ are nonzero eigenvectors of F with distinct eigenvalues, they are linearly independent and form a basis of V. With respect to the basis $\{N^{n-1}(v), \ldots, N(v), v\}$, the matrix of N is

$$
\begin{pmatrix}
0 & 1 & & \\
& 0 & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{pmatrix},
$$

and the matrix of F is

$$
\begin{pmatrix}
1 & & & \\
& q & \ddots & \\
& & \ddots & \\
& & & q^{n-1}
\end{pmatrix}.
$$

We summarize the above results as follows.

Proposition 1.1. Notation as above. For the triple (V, F, N) defined by the Kloosterman sheaf, there exists a basis e_0, \ldots, e_{n-1} of V such that

$$F(e_0) = e_0, \quad F(e_{n-1}) = q^{n-1}e_{n-1}$$

and

$$N(e_0) = 0, \quad N(e_1) = e_0, \quad N(e_{n-1}) = e_{n-2}.$$

2. Representation of $\mathfrak{sl}(2)$

In this section, we summarize the representation theory of the Lie algebra $\mathfrak{sl}(2)$ of traceless matrices over the field \mathbb{Q}_l. Consider the following three elements

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

We have

$$[X,Y] = H, \quad [H,X] = 2X, \quad [H,Y] = -2Y.$$
Let V be a finite dimensional irreducible \mathbb{Q}_l-representation of $\mathfrak{sl}(2)$, and let $u \in V$ be a (nonzero) eigenvector of the action H on V with eigenvalue λ. Using the above relations, we get

$$HXu = (\lambda + 2)Xu, \quad HYu = (\lambda - 2)Yu.$$

It follows that u, Xu, X^2u, \ldots are eigenvectors of H with different eigenvalues $\lambda, \lambda + 2, \lambda + 4, \ldots$. Since V is finite dimensional, we must have $X^k u = 0$ for sufficiently large integer k. Let m be the largest integer such that $X^m u \neq 0$. It is an eigenvector of H with eigenvalue $\lambda + 2m$. Set $v = X^m u$ and $\mu = \lambda + 2m$. Then $Xv = 0$ and v, Yv, Y^2v, \ldots are eigenvectors of H with different eigenvalues $\mu, \mu - 2, \mu - 4, \ldots$. Let n be the largest integer such that $Y^n v \neq 0$. Then $\{v, Yv, \ldots, Y^n v\}$ are linearly independent. The space span$\{v, Yv, \ldots, Y^n v\}$ is invariant under the actions of H and Y. Moreover, we have

$$Xv = 0,$$

$$X(Yv) = Y(Xv) + [X,Y]v = Hv = \mu v,$$

$$X(Y^2v) = Y(X(Yv)) + [X,Y](Yv) = (\mu + (\mu - 2))Yv,$$

$$\ldots$$

$$X(Y^iv) = Y(X(Y^{i-1}v)) + [X,Y](Y^{i-1}v)$$

$$= (\mu + (\mu - 2) + \cdots + (\mu - 2(i - 1)))Y^{i-1}v,$$

$$= i(\mu - i + 1)Y^{i-1}v,$$

$$\ldots$$

So span$\{v, Yv, \ldots, Y^n v\}$ is also invariant under the action of X. Hence span$\{v, Yv, \ldots, Y^n v\}$ is invariant under the action of $\mathfrak{sl}(2)$. Since V is an irreducible representation of $\mathfrak{sl}(2)$, it follows that $\{v, Yv, \ldots, Y^n v\}$ is a basis of V. By the choice of n, we have $Y^n v \neq 0$ and $Y^{n+1} v = 0$. On the other hand, we have

$$0 = X(Y^{n+1}v) = (n + 1)(\mu - n)Y^n v.$$

So $(n + 1)(\mu - n) = 0$, and hence $\mu = n$. We summarize our results as follows.

Proposition 2.1. Let V be a finite dimensional irreducible \mathbb{Q}_l-representation of $\mathfrak{sl}(2)$. Then there exists a (nonzero) eigenvector v of H such that $Xv = 0$. Such a vector is called a highest weight vector for the representation V. Let $n = \dim(V) - 1$. For any highest weight vector v, we have

$$Hv = nv.$$

We call n the weight of the representation. Moreover, the set $\{v, Yv, \ldots, Y^n v\}$ is a basis of V, and we have

$$H(Y^iv) = (n - 2i)Y^iv \quad (i = 0, 1, \ldots, n),$$

9
\[X(Y^i v) = i(n - i + 1)Y^{i-1} v \quad (i = 0, 1, \ldots, n), \]
\[Y(Y^i v) = Y^{i+1} v \quad (i = 0, 1, \ldots, n - 1), \]
\[Y(Y^n v) = 0. \]

Remark 2.2. The trivial representation \(V_0 = \mathbf{C} \) of \(\mathfrak{sl}(2) \) is the irreducible representation of weight 0. Let \(V_1 = \mathbf{C}^2 \) be the standard representation of \(\mathfrak{sl}(2) \) on which \(\mathfrak{sl}(2) \) acts as the multiplication of matrices on column vectors. It is the irreducible representation of weight 1, and \(f_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) is a highest weight vector. Let \(V_n = \text{Sym}^n(V_1) \) be the \(n \)-th symmetric product of \(V_1 \). It is the irreducible representation of weight \(n \), and \(f_0^n \) is a highest weight vector.

Let \(V_n \) be the irreducible representation of \(\mathfrak{sl}(2) \) of weight \(n \). Note that the eigenvalues \(n, n - 2, n - 4, \ldots, -n \) of \(H \) form an unbroken arithmetic progression of integers with difference \(-2 \), and each eigenvalue has multiplicity 1. Moreover, the space \(\ker(X) \) has dimension 1 and coincides with the eigenspace of \(H \) corresponding to the eigenvalue \(n \). For any integer \(w \), let \(V_n^w \) be the eigenspace of \(H \) corresponding to the eigenvalue \(w \). We then have

\[
\dim(V_n^w) = \begin{cases}
1 & \text{if } w \equiv n \mod 2 \text{ and } -n \leq w \leq n, \\
0 & \text{otherwise.}
\end{cases}
\]

Moreover, we have

\[
V_n \cap \ker(X) = V_n^n, \\
V_n^w \cap \ker(X) = \begin{cases}
V_n^w & \text{if } w = n, \\
0 & \text{otherwise.}
\end{cases}
\]

In general, any finite dimensional representation \(V \) of \(\mathfrak{sl}(2) \) is a direct sum of irreducible representations. Let

\[
V = m_0 V_0 \oplus m_1 V_1 \oplus \cdots \oplus m_k V_k
\]

be the isotypic decomposition of \(V \). For any integer \(w \), let \(V^w \) be the eigenspace of \(H \) corresponding to the eigenvalue \(w \). If \(w \) is non-negative, then we have

\[
V^w = m_w V_w^w \oplus m_{w+2} V_{w+2}^w \oplus \cdots
\]

and

\[
\dim(V^w) = m_w + m_{w+2} + \cdots.
\]

Moreover, we have

\[
\ker(X) = (m_0 V_0 \cap \ker(X)) \oplus (m_1 V_1 \cap \ker(X)) \oplus \cdots \oplus (m_k V_k \cap \ker(X))
= m_0 V_0^0 \oplus m_1 V_1^1 \oplus \cdots \oplus m_k V_k^k.
\]

and hence

\[
\ker(X) \cap V^w = m_w V_w^w.
\]
It follows that
\[\ker X = (\ker(X) \cap V^0) \oplus (\ker(X) \cap V^1) \oplus \cdots \oplus (\ker(X) \cap V^k) \]
and
\[\dim(\ker(X) \cap V^w) = m_w = \dim(V^w) - \dim(V^{w+2}). \]

We summarize these results as follows.

Proposition 2.3. Let \(V \) be a finite dimensional \(\mathbb{Q}_l \)-representation of \(\mathfrak{sl}(2) \). For any integer \(w \), let \(V^w \) be the eigenspace of \(H \) corresponding to the eigenvalue \(w \). Then we have
\[\ker X = (\ker(X) \cap V^0) \oplus (\ker(X) \cap V^1) \oplus \cdots, \]
and for any non-negative \(w \), we have
\[\dim(\ker(X) \cap V^w) = \dim(V^w) - \dim(V^{w+2}). \]

3. The Local Factor at 0

In this section, we calculate the local factor
\[\det(I - Ft, (\text{Sym}^k(K_{n+1})) f_0) \]
at 0 of the \(L \)-function of the \(k \)-th symmetric product of the Kloosterman sheaf. Let \((V, N, F)\) be the triple defined in §1 corresponding to the Kloosterman sheaf. Then the above local factor is simply
\[\det \left(I - Ft, \ker(N : \text{Sym}^k(V) \to \text{Sym}^k(V)) \right). \]

Let \(V_1 = \mathbb{Q}_{l}^2 \) be the standard representation of \(\mathfrak{sl}(2) \). Set
\[f_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad f_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \]

We have
\[H(f_0) = f_0, \quad H(f_1) = -f_1, \]
\[X(f_0) = 0, \quad X(f_1) = f_0. \]

Let \(V_{n-1} = \text{Sym}^{n-1}(V_1) \), and set
\[e_i = \frac{1}{i!} f_0^{n-1-i} f_1^i \ (i = 0, 1, \ldots, n-1). \]
We have
\[H(e_0) = (n-1)e_0, \ H(e_1) = (n-3)e_1, \ldots, \ H(e_{n-1}) = -(n-1)e_{n-1} \]
and
\[X(e_0) = 0, \ X(e_1) = e_0, \ldots, \ X(e_{n-1}) = e_{n-2}. \]
Comparing with Proposition 1.1, we can identify \(V_{n-1} \) with \(V \) coming from the triple \((V, F, N)\) defined by the Kloosterman sheaf such that \(N \) is identified with \(X \), and the eigenspace of \(F \) with eigenvalue \(q^w \) is identified with the eigenspace of \(H \) with eigenvalue \((n-1)w \equiv -2w \mod 2\).

Consider the \(k \)-th symmetric product \(\text{Sym}^k(V_{n-1}) \). It has a basis
\[\{e_0^{i_0} e_1^{i_1} \cdots e_{n-1}^{i_{n-1}} | i_j \geq 0, i_0 + i_1 + \cdots + i_{n-1} = k\}. \]
We have
\[H(e_0^{i_0} e_1^{i_1} \cdots e_{n-1}^{i_{n-1}}) = ((n-1) \cdot i_0 + (n-3) \cdot i_1 + \cdots + (-n-1) \cdot i_{n-1}) e_0^{i_0} e_1^{i_1} \cdots e_{n-1}^{i_{n-1}}. \]
So \(e_0^{i_0} e_1^{i_1} \cdots e_{n-1}^{i_{n-1}} \) is an eigenvector of \(H \) with eigenvalue \((n-1) \cdot i_0 + (n-3) \cdot i_1 + \cdots + (-n-1) \cdot i_{n-1} \).

It is also an eigenvector \(F \) with eigenvalue
\[q^{0i_0+1i_1+\cdots+(n-1)i_{n-1}} = q^{\frac{1}{2}((n-1)k - (n-1)\cdot i_0 + (n-3) \cdot i_1 + \cdots + (-n-1) \cdot i_{n-1})}. \]
Here we use the fact that
\[
2(0 \cdot i_0 + 1 \cdot i_1 + \cdots + (n-1) \cdot i_{n-1}) + ((n-1) \cdot i_0 + (n-3) \cdot i_1 + \cdots + (-n-1) \cdot i_{n-1}) \\
\quad = (n-1)(i_0 + i_1 + \cdots + i_{n-1}) \\
\quad = k(n-1).
\]
This equality also shows that
\[(n-1) \cdot i_0 + (n-3) \cdot i_1 + \cdots + (-n-1) \cdot i_{n-1} \equiv k(n-1) \mod 2. \]

For each non-negative integer \(w \), let
\[D_k(w) = \{(i_0, \ldots, i_{n-1}) | i_j \geq 0, i_0 + i_1 + \cdots + i_{n-1} = k, (n-1) \cdot i_0 + (n-3) \cdot i_1 + \cdots + (-n-1) \cdot i_{n-1} = w\}, \]
and let \(d_k(w) \) be the number of elements of \(D_k(w) \). We have \(d_k(w) = 0 \) if \(w \neq k(n-1) \mod 2 \) or if \(w > k(n-1) \). Note that
\[\{e_0^{i_0} e_1^{i_1} \cdots e_{n-1}^{i_{n-1}} | (i_0, i_1, \ldots, i_{n-1}) \in D_k(w)\} \]
is a basis of the eigenspace \((\text{Sym}^k(V_{n-1}))^w \) of \(H \) with eigenvalue \(w \). By Proposition 2.3, we have
\[\ker(X) = \bigoplus_{w=0}^{k(n-1)} \ker(X) \cap (\text{Sym}^k(V_{n-1}))^w \]

12
Comparing the coefficients of \(y \) that is,
\[
d_As_{k} = \text{dim} (\ker (X) \cap (\text{Sym}^k(V_{n-1}))^w) = d_k(w) - d_k(w + 2).
\]
Now \((\text{Sym}^k(V_{n-1}))^w\) is also the eigenspace of \(F \) on \(\text{Sym}^k(V) \) with eigenvalue \(q^{\frac{k(n-1)-w}{2}} \). So we have
\[
\det \left(I - Ft, \ker (N : \text{Sym}^k(V) \to \text{Sym}^k(V)) \right) = \prod_{w=0}^{k(n-1)} (1 - q^{\frac{k(n-1)-w}{2}}) d_k(w) - d_k(w + 2).
\]
As \(d_k(w) = 0 \) if \(w \neq k(n-1) \mod 2 \) or if \(w > k(n-1) \), we have
\[
\det \left(I - Ft, \ker (N : \text{Sym}^k(V) \to \text{Sym}^k(V)) \right) = \prod_{u=0}^{[\frac{k(n-1)}{2}]} (1 - q^{u}) c_k(u) - c_k(u-1).
\]
In the following, we find an expression for \(c_k(u) - c_k(u-1) \).

Note that \(c_k(u) \) is the number of elements of the set
\[
\{(i_0, \ldots, i_{n-1})| i_j \geq 0, i_0 + i_1 + \cdots + i_{n-1} = k, 0 \cdot i_0 + 1 \cdot i_1 + \cdots + (n-1) \cdot i_{n-1} = u\}.
\]
Taking power series expansion, we get
\[
\frac{1}{(1 - y)(1 - xy) \cdots (1 - x^{n-1}y)} = \sum_{k=0}^{\infty} \sum_{u=0}^{\infty} c_k(u) x^u y^k.
\]
Since
\[
(1 - y) \frac{1}{(1 - y)(1 - xy) \cdots (1 - x^{n-1}y)} = (1 - x^n y) \frac{1}{(1 - xy) \cdots (1 - x^n y)},
\]
we have
\[
(1 - y) (\sum_{k,u} c_k(u) x^u y^k) = (1 - x^n y) (\sum_{k,u} c_k(u) x^u (xy)^k),
\]
that is,
\[
\sum_{k,u} c_k(u) x^u y^k - \sum_{k,u} c_k(u) x^u y^{k+1} = \sum_{k,u} c_k(u) x^{u+k} y^k - \sum_{k,u} c_k(u) x^{n+u+k} y^{k+1}.
\]
Comparing the coefficients of \(y^k \), we get
\[
\sum_{u} c_k(u) x^u - \sum_{u} c_{k-1}(u) x^u = (\sum_{u} c_k(u) x^u) x^k - (\sum_{u} c_{k-1}(u) x^u) x^{n+k-1},
\]
13
that is,
\[\sum_u c_k(u) x^u = \frac{1-x^{n+k-1}}{1-x^k} \sum_u c_{k-1}(u) x^u. \]

Applying this expression repeatedly, we get
\[
\sum_u c_k(u) x^u = \frac{1-x^{n+k-1}}{1-x^k} \sum_u c_{k-1}(u) x^u
= \frac{(1-x^{n+k-2})(1-x^{n+k-1})}{(1-x^{k-1})(1-x^k)} \sum_u c_{k-2}(u) x^u
= \ldots
= \frac{(1-x^n) \cdots (1-x^{n+k-2})(1-x^{n+k-1})}{(1-x) \cdots (1-x^{k-1})(1-x^k)}.
\]

Therefore
\[
\sum_u (c_k(u) - c_k(u-1)) x^u = \sum_u c_k(u) x^u - x \sum_u c_k(u) x^u
= (1-x) \sum_u c_k(u) x^u
= (1-x) \frac{(1-x^n) \cdots (1-x^{n+k-2})(1-x^{n+k-1})}{(1-x) \cdots (1-x^{k-1})(1-x^k)}
= \frac{(1-x^n) \cdots (1-x^{n+k-2})(1-x^{n+k-1})}{(1-x^2) \cdots (1-x^{k-1})(1-x^k)}.
\]

So \(c_k(u) - c_k(u-1)\) is the coefficients of \(x^u\) in the power series expansion of \(\frac{(1-x^n) \cdots (1-x^{n+k-2})(1-x^{n+k-1})}{(1-x^2) \cdots (1-x^{k-1})(1-x^k)}\).

We finally get the following, which is Theorem 0.2 in the Introduction.

Theorem 3.1. We have
\[
\det(I - F_0 t, (\text{Sym}^k(K_{ln}))^{T_0}) = \prod_{u=0}^{\left\lfloor \frac{k(n-1)}{2} \right\rfloor} (1-q^u t)^{m_k(u)},
\]
where \(m_k(u)\) is determined by
\[
\frac{(1-x^n) \cdots (1-x^{n+k-2})(1-x^{n+k-1})}{(1-x^2) \cdots (1-x^{k-1})(1-x^k)} = \sum_{u=0}^{\infty} m_k(u) x^u.
\]

We have
\[m_k(u) = c_k(u) - c_k(u-1), \]
where \(c_k(u)\) is the number of elements of the set
\[\{(i_0, \ldots, i_{n-1}) | i_j \geq 0, i_0 + i_1 + \cdots + i_{n-1} = k, 0 \cdot i_0 + 1 \cdot i_1 + \cdots + (n-1) \cdot i_{n-1} = u\}. \]

4. **L-functions of p-Adic Symmetric Products**
Let s be a p-adic integer. Define the p-adic symmetric product L-function to be the p-adic limit
\[L_p(s, n, T) = \lim_{i \to \infty} L(\text{Sym}^{k_i}(K_{n}), T), \]
where k_i is any sequence of increasing positive integers going to infinity as complex numbers and approaching to s as p-adic integers. This L-function is really the L-function of some infinite rank overconvergent nuclear σ-module. Confer [W2]. As a consequence, it is a p-adic meromorphic function. This L-function plays the key role in the proof [W1] of Dwork’s unit root conjecture for the Kloosterman family. In this section, we prove the following more precise results about $L_p(s, n, T)$.

Theorem 4.1. Let d_j be the coefficient of x^j in the power series
\[\frac{1}{(1 - x^2)(1 - x^3) \cdots (1 - x^{n-1})}. \]
For each p-adic integer s, we can write
\[L_p(s, n, T) = A_p(s, n, T) \prod_{j=0}^{\infty} (1 - q^j T)^{d_j}, \]
where $A_p(s, n, T)$ is a p-adically entire function. In particular, the p-adic series $L_p(s, n, T)$ is p-adically entire and it has a zero at $T = q^{-j}$ with multiplicity at least d_j for each non-negative integer j.

Proof. Take a sequence k_i of increasing positive integers going to infinity as complex numbers and approaching to s as p-adic integers. Since K_n is pure of weight $n - 1$, for each positive integer k_i, Grothendieck’s formula for L-functions implies that we can write
\[L(k_i, n, T) := L(\mathbf{A}_F^{k_i}, \text{Sym}^{k_i}(K_{n}), T) = \frac{P(k_i, n, T)}{((1 - q^{(n-1)k_i/2}T)(1 - q^{(n-1)k_i+2/2}T))^{e_i}}, \]
where
\[P(k_i, n, T) = \det(1 - FT, H^1(\mathbf{P}_F, j_*(\text{Sym}^{k_i}(K_{n}))))\det(1 - F_0 T, ((\text{Sym}^{k_i}K_{n})_{\bar{\eta}})^{I_0})\det(1 - F_\infty T, ((\text{Sym}^{k_i}K_{n})_{\bar{\eta}})^{I_{\infty}}), \]
and e_i is the multiplicity of the geometrically trivial representation in $\text{Sym}^{k_i}(K_{n})$. In fact, by Corollary 0.5, we know that $e_i = 0$ unless $p = 2$, k_i even and n odd, in which case we have $e_i = 1$. Taking the limit, we deduce that
\[L_p(s, n, T) = \lim_{i \to \infty} P(k_i, n, T). \]
Fix a positive integer r. By the results in [W1] (Theorem 5.7 and Lemma 5.10), the number of zeros and poles of the L-function $L(k_i, n, T)$ as k_i varies is uniformly bounded in the disk $|T|_p < p^r$. 15
In particular, the number of zeros of the polynomial \(P(k_i, n, T) \) (the numerator of \(L(k_i, n, T) \)) as \(k_i \) varies is uniformly bounded in the disk \(|T|_p < p^r \). Under the condition \(k \geq n \), we have

\[
\frac{(1 - x^n) \cdots (1 - x^{n+k-2}) (1 - x^{n+k-1})}{(1 - x^2) \cdots (1 - x^{k-1})} = \frac{(1 - x^{k+1}) \cdots (1 - x^{n+k-2}) (1 - x^{n+k-1})}{(1 - x^2) \cdots (1 - x^{n-2}) (1 - x^{n-1})}.
\]

It follows that \(m_k(j) = d_j \) for \(j \leq k \), where \(m_k(j) \) is defined in Theorem 3.1. So we have \(m_k(j) = d_j \) for all \(1 \leq j \leq r \) provided that \(k_i \geq \max(r, n) \). Then by Theorem 3.1, we can write

\[
P(k_i, n, T) = B_r(k_i, n, T) \prod_{j=0}^{r} (1 - q^j T)^{d_j},
\]

where \(B_r(k_i, n, T) \in 1 + T \mathbf{Z}[T] \) is a polynomial in \(T \). Furthermore, the number of the zeros of \(B_r(k_i, n, T) \) in the disk \(|T|_p < p^r \) is uniformly bounded as \(k_i \) varies. This implies that the limit

\[
C_r(s, n, T) := \lim_{i \to \infty} B_r(k_i, n, T) = \frac{L_p(s, n, T)}{\prod_{j=0}^{r} (1 - q^j T)^{d_j}}
\]

exists and is \(p \)-adically analytic in the disk \(|T|_p < p^r \). In particular, \(L_p(s, n, T) \) is \(p \)-adically analytic in the disk \(|T|_p < p^r \) and has a zero at \(T = q^{-j} \) with multiplicity at least \(d_j \) for \(0 \leq j \leq r \). As we can take \(r \) to be an arbitrarily large integer, we deduce that

\[
A_p(s, n, T) := \lim_{r \to \infty} C_r(s, n, T) = \frac{L_p(s, n, T)}{\prod_{j=0}^{\infty} (1 - q^j T)^{d_j}}
\]

is \(p \)-adically entire. The theorem is proved.

Note that Theorem 0.2 shows that for \((n, p) = 1 \), the limit of the local factors at infinity disappears and hence has no contribution to the zeros of \(L \)-functions of \(p \)-adic infinite symmetric products. This together with the above proof implies that

\[
A_p(s, n, T) = \lim_{i \to \infty} \det(1 - FT, H^1_p(\mathbf{P}^1 \mathbf{F}, j_* (\text{Sym}^k(Kl_n))))
\]

that is, \(A_p(s, n, T) \) is the \(p \)-adic limit of the non-trivial factor of \(L(A_{k_i}^{1} - \{0\}, \text{Sym}^k(Kl_n), T) \) as \(k_i \) approaches to \(s \). It is a \(p \)-adic entire function. Its zeros are called non-trivial zeros of \(L_p(s, n, T) \). Some partial results on the distribution of the zeros of \(L_p(s, n, T) \) were obtained in [W2].

Remark. The same proof shows that the entireness property for \(L_p(s, n, T) \) can be extended to any \(p \)-adic \(s \)-th symmetric product \(L \)-function of a lisse pure positive weight \(l \)-adic sheaf whose \(p \)-adic unit part has rank one and is a \(p \)-adic 1-unit. The Kloosterman sheaf is just the first such example. The ordinary family of Calabi-Yau hypersurfaces is another important example, generalizing the ordinary family of elliptic curves which has been well studied in connection with the theory of \(p \)-adic modular forms.

5. Variation of the non-trivial factor
In this section, we derive some consequences for the non-trivial factor

\[K_q(k, n, T) := \det(1 - FT, H^1(\mathbf{P}_F, j_*(\text{Sym}^k(K_l^n)))) \in 1 + T\mathbb{Z}[T]. \]

This is a polynomial with integer coefficients, pure of weight \(k(n - 1) + 1\). Its degree can be computed explicitly by the degree formula for \(L(k, n, T)\) (Theorem 0.1 in [FW]) and the degree formulas for the trivial factors of \(L(k, n, T)\) as implicit in Theorem 0.2, Theorem 0.3 and Corollary 0.5.

In the simplest case \(n = 2\) and \(q = p\), the polynomial \(K_p(k, n, T)\) is the Kloosterman analogue of the \(p\)-th Hecke polynomial acting on weight \(k + 2\) modular forms. It would be interesting to understand how the polynomial \(K_p(k, n, T)\) varies as \(p\) varies while \(k\) is fixed or as \(k\) varies while \(p\) is fixed.

For fixed \(k\) and \(n\), the polynomial \(K_p(k, n, T)\) should be the \(p\)-th Euler factor of a motive \(M_{k, n}\) over \(\mathbb{Q}\). It would be interesting to construct explicitly this motive (its underlying scheme) or its corresponding compatible system of Galois representation or its automorphic interpretation. In the special case when \(n = 2\) and \(k = 5, 6\), the polynomial \(K_p(k, n, T)\) has degree 2 and is conjectured by Choi-Evans-Stark ([CE]) to be the Euler factor at \(p\) of an explicit modular form of weight \(k + 2\).

Just like the case for \(L(k, n, T)\), we are interested in how the polynomial \(K_p(k, n, T)\) varies as \(k\) varies \(p\)-adically. This question was studied by Gouvea-Mazur for \(p\)-th Hecke polynomials in connection with \(p\)-adic variation of modular forms. The first simple result is a \(p\)-adic continuity result.

Proposition 5.1. Let \(k_1, k_2\) and \(k_3\) be positive integers such that \(k_1 = k_2 + p^{m}k_3\) with \(k_1\) not divisible by \(p\). Then we have the congruence

\[K_p(k_1, n, T) \equiv K_p(k_2, n, T)(\mod p^{\min(m, k_2/2)}). \]

Proof: Let \(q = p\). The Frobenius eigenvalues of the Kloosterman sheaf at each closed point are all divisible by \(p\) except for exactly one eigenvalue which is a \(p\)-adic 1-unit. From this and the Euler product definition of the \(L\)-function \(L(k, n, T)\), we deduce the slightly stronger congruence:

\[L(k_1, n, T) \equiv L(k_2, n, T)(\mod p^{\min(m, k_2)}). \]

To prove the proposition, it remains to check that the same congruence in the proposition holds for the trivial factors. This follows from the explicit results stated in Theorem 0.2, Theorem 0.3 and Corollary 0.5.

Let \(s\) be a \(p\)-adic integer. Choose a sequence of positive integers \(k_i\) going to infinity as complex numbers and approaching \(s\) as \(p\)-adic integers. The above congruence for \(K_p(k, n, T)\) implies that the limit

\[A_p(s, n, T) := \lim_{i \to \infty} K_p(k_i, n, T) \]
exists and it is exactly the non-trivial factor $A_p(s, n, T)$ in Theorem 4.1. It follows that $A_p(s, n, T)$ is a p-adic entire function. It would be interesting to determine the p-adic Newton polygon of the entire function $A_p(s, n, T)$. This would give exact information on the distribution of the zeros of $A_p(s, n, T)$.

The rigid analytic curve in the (s, T) plane defined by the equation $A_p(s, n, T) = 0$ is the Kloosterman sum analogue of the eigencurve in the theory of p-adic modular forms studied by Coleman-Mazur [CM]. It would be interesting to study the properties of the rigid analytic curve $A_p(s, n, T) = 0$ and its relation to p-adic automorphic forms.

6. Appendix

In this section, we prove the following proposition, which is Lemma 0.4 in the Introduction.

Proposition 6.1. Let g be one of the following Lie algebras

- $\mathfrak{sl}(n)$,
- $\mathfrak{sp}(n)$,
- $\mathfrak{so}(n)$,
- \mathfrak{g}_2

and let V be the standard representation of G. Then in the case where $g = \mathfrak{sl}(n)$ or $\mathfrak{sp}(n)$, the representation $\text{Sym}^k(V)$ is irreducible, and in the case where $g = \mathfrak{so}(n)$ or \mathfrak{g}_2, the representation $\text{Sym}^k(V)$ contains exactly one copy of the trivial representation if k is even, and contains no trivial representation if k is odd.

Proof. First recall the dimension formula for irreducible representations of simple Lie algebras. Let g be a simple Lie algebra (over $\overline{\mathbb{Q}}$). Choose a Cartan subalgebra \mathfrak{h} of g, and let R be the set of roots. We have the Cartan decomposition

$$g = \mathfrak{h} \bigoplus \bigoplus_{\alpha \in R} \mathfrak{g}_\alpha.$$

For each $\alpha \in R$, let H_α be the unique element in $[\mathfrak{g}_\alpha, \mathfrak{g}_{-\alpha}]$ such that $\alpha(H_\alpha) = 2$. The weight lattice Λ_W is the lattice in \mathfrak{h}^* generated by those linear functionals β with the property $\beta(H_\alpha) \in \mathbb{Z}$ for all $\alpha \in R$. Fix an ordering of R. Let R^+ be the set of positive roots, and let W be the Weyl chamber. Set

$$\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha.$$

For any $\lambda \in \Lambda_W \cap W$, the dimension of the irreducible representation Γ_λ with highest weight λ is given by

$$\dim(\Gamma_\lambda) = \prod_{\alpha \in R^+} \frac{\langle \lambda + \rho, \alpha \rangle}{\langle \rho, \alpha \rangle} = \prod_{\alpha \in R^+} \frac{\langle \lambda + \rho, \alpha \rangle}{\langle \rho, \alpha \rangle},$$

18
where (,) is the Killing form on \mathfrak{h}^*, and
\[
\langle \beta, \alpha \rangle = \beta(H_\alpha) = \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle}
\]
for any $\beta \in \mathfrak{h}^*$ and $\alpha \in R$.

For each pair $1 \leq i, j \leq n$, let E_{ij} be the $(n \times n)$-matrix whose only nonzero entry is on the i-th row and j-th column, and this nonzero entry is 1. For each $1 \leq i \leq n$, let L_i be the linear functional on the space of diagonal matrices with the property
\[
L_i(E_{jj}) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}
\]

Consider the Lie algebra $\mathfrak{sl}(n)$ of traceless $(n \times n)$-matrices. Let \mathfrak{h} be the space of diagonal matrices in $\mathfrak{sl}(n)$. It is a Cartan subalgebra of $\mathfrak{sl}(n)$. The set of roots of $\mathfrak{sl}(n)$ are
\[
R = \{ L_i - L_j | i \neq j \}
\]
and
\[
H_{L_i - L_j} = E_{ii} - E_{jj} (i \neq j).
\]
Choose an ordering of roots so that
\[
R^+ = \{ L_i - L_j | i < j \}
\]
is the set of the positive roots. We have
\[
\rho = \sum_{i=1}^{n} (n - i)L_i.
\]
(To deduce this formula, we use the fact that $L_1 + \cdots + L_n = 0$ for $\mathfrak{sl}(n)$.) By the dimension formula, for any
\[
\lambda = \lambda_1 L_1 + \cdots + \lambda_n L_n
\]
lying in the intersection of the weight lattice and the Weyl chamber, the dimension of the irreducible representation Γ_λ of $\mathfrak{sl}(n)$ with highest weight λ is
\[
\dim(\Gamma_\lambda) = \prod_{\alpha \in R^+} \frac{(\lambda + \rho, \alpha)}{\langle \rho, \alpha \rangle} = \prod_{i<j} \frac{(\sum_{i} (\lambda_i + (n - i)L_i))(E_{ii} - E_{jj})}{\rho(E_{ii} - E_{jj})} = \prod_{i<j} \frac{\lambda_i - \lambda_j + j - i}{j - i}
\]

19
In the case where $\lambda = kL_1$, we have
\[
\lambda_i = \begin{cases}
 k & \text{if } i = 1, \\
 0 & \text{if } i \geq 2.
\end{cases}
\]
So we have
\[
\dim(\Gamma_{kL_1}) = \prod_{1 < j} \frac{k + j - 1}{j - 1} = \left(\frac{k + n - 1}{n - 1} \right).
\]
Note that the dimension of Γ_{kL_1} is exactly the dimension of $\text{Sym}^k(V)$. Since the weights of the standard representation V are L_1, \ldots, L_n, the representation $\text{Sym}^k(V)$ has a highest weight kL_1. So we must have
\[
\text{Sym}^k(V) = \Gamma_{kL_1}.
\]
In particular, $\text{Sym}^k(V)$ is irreducible.

Now suppose $n = 2m$ is an even number and consider the Lie algebra $\mathfrak{sp}(n)$ of matrices of the form
\[
\begin{pmatrix} A & B \\
 C & D \end{pmatrix},
\]
where A, B, C, D are $(m \times m)$-matrices, B and C are symmetric and $A^t + D = 0$. Let \mathfrak{h} be the space of diagonal matrices in $\mathfrak{sp}(n)$. It is a Cartan subalgebra of $\mathfrak{sp}(n)$. The set of roots of $\mathfrak{sp}(n)$ are
\[
R = \{ \pm L_i \pm L_j | 1 \leq i, j \leq m \} - \{0\}
\]
and
\[
\begin{align*}
H_{L_i - L_j} &= (E_{ii} - E_{m+i,m+i}) - (E_{jj} - E_{m+j,m+j}) (i \neq j), \\
H_{L_i + L_j} &= (E_{ii} - E_{m+i,m+i}) + (E_{jj} - E_{m+j,m+j}) (i \neq j), \\
H_{2L_i} &= E_{ii} - E_{m+i,m+i}.
\end{align*}
\]
Choose an ordering of roots so that
\[
R^+ = \{ L_i - L_j | i < j \} \cup \{ L_i + L_j | i \leq j \}
\]
is the set of the positive roots. We have
\[
\rho = \sum_{i=1}^{m} (m + 1 - i)L_i.
\]
By the dimension formula, for any
\[
\lambda = \lambda_1L_1 + \cdots + \lambda_mL_m
\]
lying in the intersection of the weight lattice and the Weyl chamber, the dimension of the irreducible representation Γ_λ of $\mathfrak{sp}(n)$ with highest weight λ is
\[
\dim(\Gamma_\lambda) = \prod_{\alpha \in R^+} \frac{(\lambda + \rho, \alpha)}{(\rho, \alpha)}
\]
\[
\prod_{i<j} \frac{(\lambda + \rho((E_{ii} - E_{m+i,m+i}) - (E_{jj} - E_{m+j,m+j}))}{\rho((E_{ii} - E_{m+i,m+i}) - (E_{jj} - E_{m+j,m+j}))}
\]
\[
\prod_{i<j} \frac{(\lambda + \rho((E_{ii} - E_{m+i,m+i}) + (E_{jj} - E_{m+j,m+j}))}{\rho((E_{ii} - E_{m+i,m+i}) + (E_{jj} - E_{m+j,m+j}))}
\]
\[
\prod_i \frac{(\lambda + \rho(E_{ii} - E_{m+i,m+i}))}{\rho(E_{ii} - E_{m+i,m+i})}
\]
\[
= \prod_{i<j} \lambda_i - \lambda_j + j - i \prod_{i<j} \lambda_i + \lambda_j + 2m + 2 - i - j \prod_i \lambda_i + m + 1 - i.
\]

In the case where \(\lambda = kL_1\), we have
\[
\lambda_i = \begin{cases}
 k & \text{if } i = 1, \\
 0 & \text{if } i \geq 2.
\end{cases}
\]

So we have
\[
\dim(\Gamma_{kL_1}) = \left(\prod_{1<j \leq m} \frac{k + j - 1}{j - 1} \right) \left(\prod_{1<j \leq m} \frac{k + 2m + 2 - 1 - j}{2m - 2 - 1 - j} \right) \left(\frac{k + m + 1 - 1}{m + 1 - 1} \right)
\]
\[
= \frac{(k + 1)(k + 2) \cdots (k + m - 1)(k + m + 1) \cdots (k + 2m - 1)}{1 \cdot 2 \cdots (m - 1) \cdot (m + 1) \cdots (2m - 1)} \cdot \frac{k + m}{m}
\]
\[
= \left(\frac{k + 2m - 1}{2m - 1} \right).
\]

Note that the dimension of \(\Gamma_{kL_1}\) is exactly the dimension of \(\text{Sym}^k(V)\). Since the weights of the standard representation \(V\) are \(L_1, \ldots, L_n\), the representation \(\text{Sym}^k(V)\) has a highest weight \(kL_1\).

So we must have
\[
\text{Sym}^k(V) = \Gamma_{kL_1}.
\]

In particular, \(\text{Sym}^k(V)\) is irreducible.

Now consider the cases where \(\mathfrak{g} = \mathfrak{so}(n)\) or \(\mathfrak{g}_2\). In these cases, there is a symmetric non-degenerate \(\mathfrak{g}\)-invariant bilinear form \(Q(\ , \)\) on \(V\). Consider the contraction map
\[
\text{Sym}^k(V) \rightarrow \text{Sym}^{k-2}(V),
\]
\[
v_1 \cdots v_k \mapsto \sum_{i<j} Q(v_i, v_j)v_1 \cdots \hat{v}_i \cdots \hat{v}_j \cdots v_k.
\]

It is an epimorphism of representations of \(\mathfrak{g}\). We will show the kernel of the contraction map is irreducible.

First consider the case where \(n = 2m\) is even, and the Lie algebra is \(\mathfrak{so}(n)\) of matrices of the form
\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix},
\]
where \(A, B, C, D\) are \((m \times m)\)-matrices, \(B\) and \(C\) are skew-symmetric and \(A^t + D = 0\). Let \(\mathfrak{h}\) be the space of diagonal matrices in \(\mathfrak{so}(n)\). It is a Cartan subalgebra of \(\mathfrak{so}(n)\). The set of roots of
\[R = \{ \pm L_i \pm L_j | 1 \leq i, j \leq m, i \neq j \} \]

and

\[H_{L_i-L_j} = (E_{ii} - E_{m+i,m+i}) - (E_{jj} - E_{m+j,m+j}) \quad (i \neq j), \]
\[H_{L_i+L_j} = (E_{ii} - E_{m+i,m+i}) + (E_{jj} - E_{m+j,m+j}) \quad (i \neq j). \]

Choose an ordering of roots so that

\[R^+ = \{ L_i - L_j | i < j \} \cup \{ L_i + L_j | i < j \} \]

is the set of the positive roots. We have

\[\rho = \sum_{i=1}^{m} (m - i) L_i. \]

By the dimension formula, for any \(\lambda = \lambda_1 L_1 + \cdots + \lambda_m L_m \)

lying in the intersection of the weight lattice and the Weyl chamber, the dimension of the irreducible representation \(\Gamma_{\lambda} \) of \(\mathfrak{so}(n) \) with highest weight \(\lambda \) is

\[
\dim(\Gamma_{\lambda}) = \prod_{\alpha \in R^+} \frac{(\lambda + \rho, \alpha)}{(\rho, \alpha)}
= \prod_{i<j} \frac{(\lambda + \rho)((E_{ii} - E_{m+i,m+i}) - (E_{jj} - E_{m+j,m+j}))}{\rho((E_{ii} - E_{m+i,m+i}) - (E_{jj} - E_{m+j,m+j}))}
\prod_{i<j} \frac{(\lambda + \rho)((E_{ii} - E_{m+i,m+i}) + (E_{jj} - E_{m+j,m+j}))}{\rho((E_{ii} - E_{m+i,m+i}) + (E_{jj} - E_{m+j,m+j}))}
= \prod_{i<j} \frac{\lambda_i - \lambda_j + j - i}{j - i} \prod_{i<j} \frac{\lambda_i + \lambda_j + 2m - i - j}{2m - i - j}.
\]

In the case where \(\lambda = kL_1 \), we have

\[\lambda_i = \begin{cases} k & \text{if } i = 1, \\ 0 & \text{if } i \geq 2. \end{cases} \]

So we have

\[
\dim(\Gamma_{kL_1}) = \prod_{1<j \leq m} \frac{k + j - 1}{j - 1} \prod_{1<j \leq m} \frac{k + 2m - 1 - j}{2m - 1 - j}
= \frac{(k+m-1)!}{k!} \frac{(k+2m-3)!}{(m-1)!} \frac{(k+m-2)!}{(2m-3)!} \frac{(k+2m-3)!}{(m-1)(2m-3)!k!}
= \frac{(k + m - 1)(k + 2m - 3)!}{(m-1)(2m-3)!k!}
= \left(\begin{array}{c} k + 2m - 1 \\ k \end{array} \right) - \left(\begin{array}{c} k + 2m - 3 \\ k - 2 \end{array} \right)
= \dim(\text{Sym}^k(V)) - \dim(\text{Sym}^{k-2}(V)).
\]
Since the contraction map $\text{Sym}^k(V) \to \text{Sym}^{k-2}(V)$ is surjective, and its kernel has a highest weight kL_1, it follows that Γ_{kL_1} coincides with the kernel of the contraction map. So we must have

$$\text{Sym}^k(V) = \Gamma_{kL_1} \oplus \text{Sym}^{k-2}(V).$$

Using this expression repeatedly, we get

$$\text{Sym}^k(V) = \bigoplus_{i=0}^{\lfloor k/2 \rfloor} \Gamma_{(k-2i)L_1}.$$

In particular, when k is even, $\text{Sym}^k(V)$ contains one copy of the trivial representation, and when k is odd, it contains no trivial representation.

Next consider the case where $n = 2m + 1$ is odd, and the Lie algebra is $\mathfrak{so}(n)$ of matrices of the form

$$\begin{pmatrix} A & B & E \\ C & D & F \\ G & H & 0 \end{pmatrix},$$

where A, B, C, D are $(m \times m)$-matrices, E and F are $(m \times 1)$-matrices, G and H are $(1 \times m)$-matrices, B and C are skew-symmetric, $A^t + D = 0$, $E^t + H = 0$, and $F^t + G = 0$. Let \mathfrak{h} be the space of diagonal matrices in $\mathfrak{so}(n)$. It is a Cartan subalgebra of $\mathfrak{so}(n)$. The set of roots of $\mathfrak{so}(n)$ are

$$R = \{ \pm L_i \pm L_j | 1 \leq i, j \leq m, \ i \neq j \} \cup \{ \pm L_i | 1 \leq i \leq m \}$$

and

$$\begin{align*}
H_{L_i - L_j} &= (E_{ii} - E_{m+i,m+i}) - (E_{jj} - E_{m+j,m+j}) (i \neq j), \\
H_{L_i + L_j} &= (E_{ii} - E_{m+i,m+i}) + (E_{jj} - E_{m+j,m+j}) (i \neq j), \\
H_{L_i} &= 2(E_{ii} - E_{m+i,m+i}).
\end{align*}$$

Choose an ordering of roots so that

$$R^+ = \{ L_i - L_j | i < j \} \cup \{ L_i + L_j | i < j \} \cup \{ L_i \}$$

is the set of the positive roots. We have

$$\rho = \sum_{i=1}^{m} (m + \frac{1}{2} - i)L_i.$$

By the dimension formula, for any

$$\lambda = \lambda_1 L_1 + \cdots + \lambda_m L_m$$

lying in the intersection of the weight lattice and the Weyl chamber, the dimension of the irreducible representation Γ_λ of $\mathfrak{so}(n)$ with highest weight λ is

$$\dim(\Gamma_\lambda) = \prod_{\alpha \in R^+} \frac{\langle \lambda + \rho, \alpha \rangle}{\langle \rho, \alpha \rangle}.$$
= \prod_{i<j} (\lambda + \rho)((E_{ii} - E_{m+i,m+i}) - (E_{jj} - E_{m+j,m+j})) \\
\prod_{i<j} (\lambda + \rho)((E_{ii} - E_{m+i,m+i}) + (E_{jj} - E_{m+j,m+j})) \\
\prod_{i} (\lambda + \rho)(2(E_{ii} - E_{m+i,m+i})) \\
= \prod_{i<j} \left(\frac{\lambda_i - \lambda_j + j - i}{j - i} \prod_{i<j} \frac{\lambda_i + \lambda_j + 2m + 1 - i - j}{2m + 1 - i - j} \prod_i \frac{\lambda_i + m + \frac{1}{2} - i}{m + \frac{1}{2} - i} \right).

In the case where \(\lambda = kL_1 \), we have

\[\lambda_i = \begin{cases} k & \text{if } i = 1, \\ 0 & \text{if } i \geq 2. \end{cases} \]

So we have

\[\dim(\Gamma_{kL_1}) = \left(\prod_{1<j \leq m} \frac{k + j - 1}{j - 1} \right) \left(\prod_{1<j \leq m} \frac{k + 2m + 1 - j}{2m + 1 - j} \right) \left(\frac{k + m + \frac{1}{2} - 1}{m + \frac{1}{2} - 1} \right) \]

\[= \frac{(k+m-1)!}{k!} \frac{(k+2m-2)!}{(m-1)!} \frac{2k + 2m - 1}{2m - 1} \]

\[= \frac{(2k + 2m - 1)(k + 2m - 2)!}{(2m - 1)!(k)!} \]

\[= \left(\frac{k + 2m}{k} \right) - \left(\frac{k + 2m - 2}{k - 2} \right) \]

\[= \dim(\text{Sym}^k(V)) - \dim(\text{Sym}^{k-2}(V)). \]

Since the contraction map \(\text{Sym}^k(V) \to \text{Sym}^{k-2}(V) \) is surjective, and its kernel has a highest weight \(kL_1 \), it follows that \(\Gamma_{kL_1} \) coincides with the kernel of the contraction map. So we must have

\[\text{Sym}^k(V) = \Gamma_{kL_1} \oplus \text{Sym}^{k-2}(V). \]

Using this expression repeatedly, we get

\[\text{Sym}^k(V) = \bigoplus_{i=0}^{k} \Gamma_{(k-2i)L_1}. \]

In particular, when \(k \) is even, \(\text{Sym}^k(V) \) contains one copy of the trivial representation, and when \(k \) is odd, it contains no trivial representation.

Finally let \(n = 7 \) and consider the Lie algebra \(\mathfrak{g}_2 \). The following points on the real plane form the root system \(R \) of \(\mathfrak{g}_2 \):

\[\alpha_1 = (1,0) \]
\[\alpha_2 = \left(\frac{3\sqrt{3}}{2}, \frac{1}{2} \right), \]
\[\cdots \]
\[\alpha_3 = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right), \]
\[\alpha_4 = (0, \sqrt{3}), \]
\[\alpha_5 = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2} \right), \]
\[\alpha_6 = \left(-\frac{3}{2}, \frac{\sqrt{3}}{2} \right), \]
\[\beta_1 = -\alpha_1, \beta_2 = -\alpha_2, \beta_3 = -\alpha_3, \beta_4 = -\alpha_4, \beta_5 = -\alpha_5, \beta_6 = -\alpha_6. \]

Moreover, the Killing form induces the canonical inner product on the real plane spanned by the roots. Choose an order on \(R \) so that \(\alpha_i (i = 1, \ldots, 6) \) are the positive roots. The Weyl chamber \(\mathcal{W} \) is the positive cone generated by \(\alpha_3 \) and \(\alpha_4 \), and the weight lattice \(\Lambda_W \) is the lattice generated by \(\alpha_1 \) and \(\alpha_6 \). Any element in \(\Lambda_W \cap \mathcal{W} \) is of the form
\[\lambda = a\alpha_3 + b\alpha_4 = \left(\frac{1}{2}a, \frac{\sqrt{3}}{2}a + \sqrt{3}b \right), \]
where \(a \) and \(b \) are non-negative integers. We have
\[\rho = \frac{1}{2} \sum_{i=1}^{6} \alpha_i = \left(\frac{1}{2}, \frac{3\sqrt{3}}{2} \right), \]
and
\[(\lambda + \rho, \alpha_1) = \frac{1}{2}(a + 1), \quad (\rho, \alpha_1) = \frac{1}{2}, \]
\[(\lambda + \rho, \alpha_2) = \frac{3}{2}(a + b + 2), \quad (\rho, \alpha_2) = 3, \]
\[(\lambda + \rho, \alpha_3) = \frac{3}{2}(2a + 3b + 5), \quad (\rho, \alpha_3) = \frac{9}{2}, \]
\[(\lambda + \rho, \alpha_4) = \frac{3}{2}(a + 2b + 3), \quad (\rho, \alpha_4) = \frac{9}{2}, \]
\[(\lambda + \rho, \alpha_5) = \frac{3}{2}(a + 3b + 4), \quad (\rho, \alpha_5) = 2, \]
\[(\lambda + \rho, \alpha_6) = \frac{3}{2}(b + 1), \quad (\rho, \alpha_6) = \frac{3}{2}. \]

By the dimension formula, the dimension of the irreducible representation \(\Gamma_\lambda \) with highest weight \(\lambda = a\alpha_3 + b\alpha_4 \) is
\[\dim(\Gamma_\lambda) = \prod_{\alpha \in \mathbb{R}^+} \frac{(\lambda + \rho, \alpha)}{(\rho, \alpha)} \]
\[= \frac{1}{2}(a + 1) \cdot \frac{3}{2}(a + b + 2) \cdot \frac{3}{2}(2a + 3b + 5) \cdot \frac{3}{2}(a + 2b + 3) \cdot \frac{3}{2}(a + 3b + 4) \cdot \frac{3}{2}(b + 1) \]
\[= \frac{(a + 1)(a + b + 2)(2a + 3b + 5)(a + 2b + 3)(a + 3b + 4)(b + 1)}{120}. \]

In particular, the dimension of the irreducible representation \(\Gamma_{\alpha_3} \) is
\[\dim(\Gamma_{\alpha_3}) = \frac{2 \cdot 3 \cdot 7 \cdot 4 \cdot 5 \cdot 1}{120} = 7. \]
So \(\Gamma_{\alpha_3} \) is the standard representation \(V \). The dimension of the irreducible representation \(\Gamma_{k\alpha_3} \) is
\[\dim(\Gamma_{k\alpha_3}) = \frac{(k + 1)(k + 2)(2k + 5)(k + 3)(k + 4)}{120}. \]
\[
\binom{k+6}{6} - \binom{k+4}{6} = \dim(\text{Sym}^k(V)) - \dim(\text{Sym}^{k-2}(V)).
\]

Since the contraction map \(\text{Sym}^k(V) \to \text{Sym}^{k-2}(V)\) is surjective, and its kernel has a highest weight \(k\alpha_3\), the representation \(\Gamma_{k\alpha_3}\) coincides with the kernel of the contraction map. So we must have

\[
\text{Sym}^k(V) = \Gamma_{k\alpha_3} \oplus \text{Sym}^{k-2}(V).
\]

Using this expression repeatedly, we get

\[
\text{Sym}^k(V) = \bigoplus_{i=0}^{\lfloor \frac{k}{2} \rfloor} \Gamma_{(k-2i)\alpha_3}.
\]

In particular, when \(k\) is even, \(\text{Sym}^k(V)\) contains one copy of the trivial representation, and when \(k\) is odd, it contains no trivial representation. This finishes the proof of the proposition.

References

