Lawrence Berkeley National Laboratory
Recent Work

Title
SPIN POLARIZATION EFFECTS IN THE 3H(d,n)4He FUSION REACTION

Permalink
https://escholarship.org/uc/item/7kj7093t

Authors
Conzett, H.E.
Rioux, C.

Publication Date
1985-06-01
To be presented at the 6th International Symposium on Polarization Phenomena in Nuclear Physics, Osaka, Japan, August 26-30, 1985

SPIN POLARIZATION EFFECTS IN THE $^3\text{H}(d,n)^4\text{He}$ FUSION REACTION

H.E. Conzett and C. Rioux

June 1985

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Spin Polarization Effects in the $^3\text{H}(d,n)^4\text{He}$ Fusion Reaction

H.E Conzett and C. Rioux†

Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

6th International Symposium on Polarization Phenomena in Nuclear Physics,
Osaka, Japan
August 26–30, 1985

This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

†Department of Physics, Laval University, Quebec, P.Q., CANADA G1K7P4
Spin Polarization Effects in the $^3\text{H}(d,n)^4\text{He}$ Fusion Reaction

H.E. Conzett and C. Rioux

Nuclear Science Division, Lawrence Berkeley Laboratory
University of California, Berkeley, California 94720

[Department of Physics, Laval University, Quebec, P.Q., CANADA G1K7P4]

A recent investigation has shown that the $^3\text{H}(d,n)^4\text{He}$ fusion reaction rate could be enhanced by a factor of $3/2$ if the fusion plasma consisted of both polarized deuterons and tritons, forming exclusively the channel-spin $S = 3/2$, $J = 3/2^+$ state. This result follows simply from the statistical weights of the quartet $S = 3/2$ and doublet $S = 1/2$ initial states, with the assumption of the single $J = 3/2^+$ reaction amplitude.

Since, with a small but nonzero $J = 1/2^+$ amplitude, the maximum enhancement of the reaction occurs at the peak of the $J = 3/2^+$ resonance, corresponding to a deuteron lab energy of 107 keV, it is of obvious interest to know what the enhancement would be at the lower energies that are typical of fusion plasmas. We are able to address this question by extending earlier calculations which gave the values of all of the spin-polarization observables at this $J = 3/2^+$ resonance in both the $^3\text{H}(d,n)^4\text{He}$ and the $^3\text{He}(d,p)^4\text{He}$ reactions.

With the inclusion of a $J = 1/2^+$ amplitude, for which $l = 0$, $s = 1/2$, $l = 0$, $s' = 1/2$, two additional K-matrix elements appear in eq.(4) of reference 2. These are, for $J = 1/2^+$,

$$K_{1/2} = K - 1/2 - 1/2 = \frac{\sqrt{2}}{k} Y_0(\theta) U(1/2),$$

where $U(J)$ is the reaction amplitude for the state of total angular momentum J. Defining

$$U(1/2)/U(3/2) \equiv r e^{i\delta}, \quad r = |U(1/2)|/|U(3/2)|$$

is the ratio of the absolute values of the $J = 1/2$ and $J = 3/2$ reaction amplitudes. The M-matrix elements (eq.(5)), reference 2) then become

$$M_{1/2,1} = \sqrt{1/5} Y_1(\theta) U, \quad M_{1/2,0} = [\sqrt{4/15} Y_0(\theta) - \sqrt{1/3} Y_0(\theta) e^{i\delta}] U = F$$
$$M_{1/2,-1} = \sqrt{1/5} Y_{-1}(\theta) U, \quad M_{1/2,1} = [\sqrt{2/15} Y_0(\theta) + \sqrt{2/15} Y_0(\theta) e^{i\delta}] U = (-B - C)/\sqrt{2}$$

$$M_{1/2,0} = \sqrt{2/5} Y_{-1}(\theta) U, \quad M_{1/2,-1} = \sqrt{4/5} Y_{-1}(\theta) U = (-B + C)/\sqrt{2}$$

with $U = (i\sqrt{\pi}/k)U(3/2)$.

From eq.(3) we then find that

$$A = 0, \quad D = E = N(3 \sin \theta \cos \theta)$$
$$B = -N(1 + r e^{i\delta}), \quad F = N[(3 \cos^2 \theta - 1) - r e^{i\delta}]$$
$$C = -N[(3 \cos^2 \theta - 2) + r e^{i\delta}] \quad \text{with} \quad N = U/2\sqrt{3}$$

Eqs.(4) reduce to eqs.(6) of reference 2 for $r = 0$.

From the tabulation of polarization observables in terms of the amplitudes A to F, we have the following results:

a) $\sigma(\theta) = \frac{2}{3} \sigma(1/2)(1 + r^2/2)$, where $\sigma(3/2)$ is the differential cross section with only the $J = 3/2^+$ state contributing. Since the cross-section with
both deuterons and tritons polarized to form the quartet $S = 3/2$ state is equal to $\sigma(3/2)$, we define an enhancement factor

$$f \equiv \frac{\sigma(3/2)}{\sigma} = \frac{3}{2} \left(1 + \frac{r^2}{2}\right)^{-1}$$

(5)

One sees that the spin-polarization enhancement of the cross section is related directly to the ratio of the reaction amplitudes, eq.(2). Thus, for $r = 0$, $f = 3/2$ and for $r = 1$, $f = 1$, i.e. no enhancement. Clearly, the maximum enhancement of the reaction rate occurs at the peak of the $J = 3/2^+$ resonance since r has a minimal value there. Then since r increases with decreasing energy below $E_d = 107$ keV, the enhancement of the reaction rate decreases correspondingly. Assuming that $U(1/2,E)$ is essentially constant below $E_d = 107$ keV, the energy dependence of r^2 can be estimated from

$$r^2(E) = \left(\frac{U(1/2,E)}{U(3/2,E)}\right)^2 = C \left[(E - E_R)^2 + \frac{p^2}{4}\right]^{-1}$$

(6)

with $\Gamma_{CM} = 80 \pm (16-20)$ keV for the $J = 3/2$ resonance. Then with the estimate1 that $(2/3)f(E) = 0.95$ at $E_R = 64$ keV ($E_d = 107$ keV), the energy dependence of $f(E)$ is shown in Table I.

Table I. Energy dependence of the spin-polarization enhancement factor $f(E)$ in the 3H(d,n)4He fusion reaction

<table>
<thead>
<tr>
<th>E_d(keV)</th>
<th>E_{CM}</th>
<th>$(E - E_R)^2$</th>
<th>$r^2(E)$</th>
<th>$f(E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>64</td>
<td>0</td>
<td>0.105</td>
<td>1.43</td>
</tr>
<tr>
<td>73</td>
<td>44</td>
<td>$\Gamma/4)^2$</td>
<td>0.131</td>
<td>1.41</td>
</tr>
<tr>
<td>40</td>
<td>24</td>
<td>$\Gamma/2)^2$</td>
<td>0.210</td>
<td>1.35</td>
</tr>
</tbody>
</table>

It is seen that at $E_d = 40$ keV $f(E) = 1.35$, which is an appreciable reduction from the maximum possible value of 1.5. This 40 keV lab energy corresponds to about 12 keV plasma temperature.

b) From our calculated spin-polarization observables we find that the fusion rate enhancement can be determined experimentally from rather simple measurements in the presently unexplored energy region below $E_d = 107$ keV. For this purpose, the tensor analyzing power A_{yy} and the polarization transfer coefficient K^y can be used. They are

$$A_{yy} = \frac{1}{2} \left(1 - 2r \cos \delta\right) \left(1 + \frac{r^2}{2}\right)^{-1}$$

$$K^y = -\frac{1}{3} \left(2 + r \cos \delta - r^2\right) \left(1 + \frac{r^2}{2}\right)^{-1}$$

Then, forming the experimental quantity

$$X \equiv (2A_{yy} - 6K^y) = (5 - 2r^2) \left(1 + \frac{r^2}{2}\right)^{-1}$$

$$r^2 = (5 - X) \left(2 + \frac{X}{2}\right)^{-1}$$

(7)

(8)

Since both A_{yy} and K^y are isotropic, A_{yy} can be measured at any convenient angle, whereas K^y can be measured most easily at $\theta = 0$ degrees. From the experimentally determined $X(E)$, the enhancement factor $f(E)$ can then be determined via eqs.(5) and (8).

This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

References

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.