Lawrence Berkeley National Laboratory
Recent Work

Title
Multiple arrivals using Liouville equations

Permalink
https://escholarship.org/uc/item/7kp336r1

Authors
Fomel, S.
Sethian, J.A.

Publication Date
2001-04-16
Multiple Arrivals using Liouville Equations

S. Fomel and J.A. Sethian

Computing Sciences Directorate
Mathematics Department

April 2001

The report and supplemental documentation were printed August 2001.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Multiple Arrivals using Liouville Equations

S. Fomel and J.A. Sethian

Computing Sciences Directorate
Mathematics Department
Ernest Orlando Lawrence Berkeley National Laboratory
University of California
Berkeley, California 94720

April 2001

This work was supported by the Director, Office of Science, Office Advanced Scientific Computing Research, Mathematical, Information, and Computational Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Multiple Arrivals using Liouville Equations
S. Fomel and J.A. Sethian
Mathematics Department
Lawrence Berkeley National Laboratory
University of California, Berkeley
April 16, 2001

Traveltime from a fixed source $\tau(x)$ in an isotropic medium ($x \in \mathbb{R}^N$) is governed by the eikonal equation

$$|\nabla \tau|^2 v^2(x) = 1,$$ \hspace{1cm} (1)

where $v(x)$ is the velocity distribution.

The rays [characteristics of equation (1)] are defined by the system of Hamilton-Jacobi ordinary differential equations:

$$\frac{dx}{dt} = v^2(x) p;$$ \hspace{1cm} (2)

$$\frac{dp}{dt} = -\frac{1}{v(x)} \nabla v;$$ \hspace{1cm} (3)

where t has the meaning of the traveltime along the ray, and p corresponds to $\nabla \tau$ and is constrained by the Hamilton equation

$$|p|^2 v^2(x) = 1,$$ \hspace{1cm} (4)

equivalent to (1).

In the two-dimensional case, where $x = \{x, z\}$, it is convenient to introduce the angle θ between the vertical and the slowness vector p such that $p = \{\sin \theta/v(x,z), \cos \theta/v(x,z)\}$. Equation (4) is then automatically satisfied, and we can rewrite system (2-3) in the form

$$\frac{dx}{dt} = v(x,z) \sin \theta;$$ \hspace{1cm} (5)

$$\frac{dz}{dt} = v(x,z) \cos \theta;$$ \hspace{1cm} (6)

$$\frac{d\theta}{dt} = \frac{\partial v}{\partial z} \sin \theta - \frac{\partial v}{\partial x} \cos \theta.$$ \hspace{1cm} (7)

The initial conditions for solving system (5-7) consist of the initial point $\{x_0, z_0\}$ and the take-off angle θ_0.

The solution of system (5-7) as a function of time t and the initial conditions x_0, z_0, and θ_0 satisfies the Liouville partial differential equations:

$$\frac{\partial x}{\partial t} + v \sin \theta_0 \frac{\partial x}{\partial x_0} + v \cos \theta_0 \frac{\partial x}{\partial z_0} + \left(\frac{\partial v}{\partial x_0} \sin \theta_0 - \frac{\partial v}{\partial x_0} \cos \theta_0 \right) \frac{\partial x}{\partial x_0} - \frac{\partial x}{\partial \theta_0} = 0.$$ \hspace{1cm} (8)

\footnote{This Lawrence Berkeley National Laboratory Technical Report was written on April 16, 2001. Backup files listing from Department of Energy computers are included at the end of the report, as well as dated e-mail containing the correspondence between the two authors.}
\[
\frac{\partial z}{\partial t} + v \sin \theta \frac{\partial z}{\partial x_0} + v \cos \theta \frac{\partial z}{\partial z_0} + \left(\frac{\partial v}{\partial x_0} \sin \theta_0 - \frac{\partial v}{\partial x_0} \cos \theta_0 \right) \frac{\partial z}{\partial \theta_0} = 0 \tag{9}
\]

\[
\frac{\partial \theta}{\partial t} + v \sin \theta \frac{\partial \theta}{\partial x_0} + v \cos \theta \frac{\partial \theta}{\partial z_0} + \left(\frac{\partial v}{\partial z_0} \sin \theta_0 - \frac{\partial v}{\partial z_0} \cos \theta_0 \right) \frac{\partial \theta}{\partial \theta_0} = 0 \tag{10}
\]

where the velocity \(v \) is evaluated at \(\{x_0, z_0\} \). The appropriate initial conditions for system (8-10) are \(\{x, z, \theta\} = \{x_0, z_0, \theta_0\} \) at \(t = 0 \).

Let us denote by \(T(x, z, \theta) \) the time at which the ray that starts at point \(\{x, z\} \) with the take-off angle \(\theta \) first reaches the surface \(z = 0 \). Correspondingly, the emergence point and the emergence angle of this ray at the surface will be defined by functions \(X(x, z, \theta) \) and \(\Theta(x, z, \theta) \). Differentiating the condition

\[
z(T(x_0, z_0, \theta_0), x_0, z_0, \theta_0) = 0, \tag{11}
\]

we find that, in the region where \(\frac{\partial z}{\partial t} \) is different from zero, the function \(T \) has to satisfy the partial differential equation

\[
v(x, z) \sin \theta \frac{\partial T}{\partial x} + v(x, z) \cos \theta \frac{\partial T}{\partial z} + \left(\frac{\partial v}{\partial x} \sin \theta - \frac{\partial v}{\partial x} \cos \theta \right) \frac{\partial T}{\partial \theta} = 1. \tag{12}
\]

with the boundary condition \(T|_{z=0} = 0 \). As follows from equations (12), (8), and (10), and the conditions

\[
x(T(x_0, z_0, \theta_0), x_0, z_0, \theta_0) = X(x_0, z_0, \theta_0); \tag{13}
\]

\[
\Theta(T(x_0, z_0, \theta_0), x_0, z_0, \theta_0) = \Theta(x_0, z_0, \theta_0), \tag{14}
\]

the functions \(X(x, z, \theta) \) and \(\Theta(x, z, \theta) \) additionally satisfy the orthogonal equations

\[
v(x, z) \sin \theta \frac{\partial X}{\partial x} + v(x, z) \cos \theta \frac{\partial X}{\partial z} + \left(\frac{\partial v}{\partial x} \sin \theta - \frac{\partial v}{\partial x} \cos \theta \right) \frac{\partial X}{\partial \theta} = 0 \tag{15}
\]

\[
v(x, z) \sin \theta \frac{\partial \Theta}{\partial x} + v(x, z) \cos \theta \frac{\partial \Theta}{\partial z} + \left(\frac{\partial v}{\partial z} \sin \theta - \frac{\partial v}{\partial z} \cos \theta \right) \frac{\partial \Theta}{\partial \theta} = 0 \tag{16}
\]

with the boundary conditions \(X|_{z=0} = x \) and \(\Theta|_{z=0} = \theta \).

We propose to apply equations (12), (15) and (16) for a numerical computations of traveltimes on a fixed \(x, z \) grid. Although both \(T(x, z, \theta) \) and \(X(x, z, \theta) \) functions are strictly single-valued, we can extract from them the possibly multi-valued traveltimes from every grid point \(x, z \) to a surface point \(y \) at \(z = 0 \). The extraction would simply amount to evaluating \(T(x, z, \theta) \) at the level set of \(X(x, z, \theta) = y \).
Dated E-mail Correspondence containing Technical Memo

From fomel@math.lbl.gov Mon Apr 16 14:00 PDT 2001
Received: from math.lbl.gov (math.lbl.gov [128.3.7.22])
by math.berkeley.edu (8.9.3/8.9.3) with ESMTP id GAAD04600
for <sethian@math.berkeley.edu>; Mon, 16 Apr 2001 14:00:25 -0700 (PDT)
Received: from dniepr (dniepr.lbl.gov [128.3.3.153])
by math.lbl.gov (8.10.2/8.10.2) with SMTP id f3GLOPD27256
for <sethian@math.berkeley.edu>; Mon, 16 Apr 2001 14:00:25 -0700 (PDT)
Message-Id: <200104162100.f3GLOPD27256@math.lbl.gov>
Date: Mon, 16 Apr 2001 14:01:16 -0700 (PDT)
From: Sergey Fomel <fomel@math.lbl.gov>
Reply-To: Sergey Fomel <fomel@math.lbl.gov>
Subject: Re: Your Message Sent on Tue, 10 Apr 2001 09:41:07 -0700 (PDT)
To: sethian@math.berkeley.edu
MIME-Version: 1.0
X-Mailer: dtmail 1.3.0 CE Version 1.3 SunOS 5.7 sunfu sparc
Content-Type: MULTIPART/mixed; BOUNDARY=Band_of_Gorillas_852_000
Content-Length: 7111
Status: RO
X-Status:
X-Keywords:
X-UID:
352
--Band_of_Gorillas_852_000
Content-Type: TEXT/plain; charset=us-ascii
Content-Description: theory.tex
Content-MD5: m/JCi/3d78hmCIIQgeIGOeg==

> I would think that we should indeed link them together. Can you send me
> a very short latex file
> with the equations, pointing to the exact
> point you mean - I want to think about it while I am traveling....

Jamie,

Please find the latex file enclosed. The explanation is very raw and will
probably need some refining, but the main equations are there.

I have been reading some more literature on the subject. Apparently, the idea of
computing traveltimes in the (x,z,theta) space is not new. This idea is the
essence of Maslov's asymptotic ray theory. Asymptotic theoreticians (like
Hormander) use it to construct uniform asymptotics of the ray-theoretical
solution near the caustics. However, the idea to use Liouville's POE
and the
corresponding numerical scheme look like an entirely new computational approach.

Have a nice trip. I plan to be in the office on Wednesday.

Sergey

--Band_of_Gorillas_852_000
Content-Type: TEXT/plain; name="theory.tex"; charset=us-ascii; x-unix-mode=0644
Content-Description: theory.tex
Content-MD5: s6qS94dnD2Q0H0cC0wLkHq==

Traveltime from a fixed source $\tau(x)$ in an isotropic medium
\begin{equation}
\nabla \tau = 1
\end{equation}
where $v(x)$ is the velocity distribution.

The rays (characteristics of equation (eq:eikonal)) are defined by the system of Hamilton-Jacobi ordinary differential equations:
\begin{eqnarray}
\frac{d (\bold{x})}{dt} & = & v (\bold{x})
\end{eqnarray}
\frac{d \bold{p}}{d t} = t \frac{l}{v(x)} \nabla v, \tag{1}

where t has the meaning of the traveltime along the ray, and $\frac{l}{v(x)} \nabla v$ corresponds to $\nabla \tau$ and is constrained by the Hamilton equation

\left\{ \frac{\partial v}{\partial z} \sin \theta, \frac{\partial v}{\partial x} \cos \theta \right\}. \tag{2}

In the two-dimensional case, where $\bold{x} = \{x, z\}$, it is convenient to introduce the angle θ between the vertical and the slowness vector $\frac{l}{v(x)} \nabla v$ such that $\frac{l}{v(x)} \nabla v = \{\sin \theta(v(x,z)), \cos \theta(v(x,z))\}$. Equation (2) is then automatically satisfied, and we can rewrite system (1)-(2) in the form

\begin{align}
\frac{dx}{dt} &= v \sin \theta \frac{x}{x_0} + \frac{\partial v}{\partial z} \sin \theta \frac{z}{z_0} \cos \theta \frac{\partial v}{\partial x} \cos \theta \frac{\partial v}{\partial \theta} \frac{\partial \theta}{\partial \theta} = 0, \\
\frac{dz}{dt} &= v \sin \theta \frac{x}{x_0} + \frac{\partial v}{\partial z} \sin \theta \frac{z}{z_0} \cos \theta \frac{\partial v}{\partial x} \cos \theta \frac{\partial v}{\partial \theta} \frac{\partial \theta}{\partial \theta} = 0, \\
\frac{d\theta}{dt} &= \frac{\partial v}{\partial z} \sin \theta \frac{z}{z_0} \cos \theta \frac{\partial v}{\partial x} \cos \theta \frac{\partial v}{\partial \theta} \frac{\partial \theta}{\partial \theta} = 0.
\end{align}

The initial conditions for solving system (1)-(3) consist of the initial point $\{x(0), z(0), \theta(0)\}$ and the take-off angle $\theta(0)$. The solution of system (1)-(3) as a function of time t and the initial conditions $x(0), z(0), \theta(0)$ satisfies the Liouville partial differential equations:

\begin{align}
\frac{\partial x}{\partial t} &= v \sin \theta \frac{x}{x_0} + \frac{\partial v}{\partial z} \sin \theta \frac{z}{z_0} \cos \theta \frac{\partial v}{\partial x} \cos \theta \frac{\partial v}{\partial \theta} \frac{\partial \theta}{\partial \theta} = 0, \\
\frac{\partial z}{\partial t} &= v \sin \theta \frac{x}{x_0} + \frac{\partial v}{\partial z} \sin \theta \frac{z}{z_0} \cos \theta \frac{\partial v}{\partial x} \cos \theta \frac{\partial v}{\partial \theta} \frac{\partial \theta}{\partial \theta} = 0, \\
\frac{\partial \theta}{\partial t} &= \frac{\partial v}{\partial z} \sin \theta \frac{z}{z_0} \cos \theta \frac{\partial v}{\partial x} \cos \theta \frac{\partial v}{\partial \theta} \frac{\partial \theta}{\partial \theta} = 0.
\end{align}

The velocity v is evaluated at $\{x(0), z(0)\}$. The appropriate initial conditions for system (1)-(3) are $x(0), z(0), \theta(0)$ as $t=0$. Let us denote by $T(x,z,\theta)$ the time at which the ray that starts at point $\{x(0), z(0)\}$ with the take-off angle $\theta(0)$ first reaches the surface $z(0)$. Correspondingly, the emergence point and the emergence angle of this ray at the surface will be defined by functions $X(x,z,\theta)$ and $\Theta(x,z,\theta)$. Differentiating the condition...
\begin{equation}
\begin{aligned}
z(T(x_O,z_O,\theta_O),x_O,z_O,\theta_O) &= 0, \\
\end{aligned}
\end{equation}

where \(z(t,x_O,z_O,\theta_O)\) is the solution of equation-(\ref{eq:zl}), we find that, in the region where \(\frac{\partial z}{\partial t}\) is different from zero, the function \(T\) has to satisfy the partial differential equation

\begin{equation}
\begin{aligned}
v(x,z) \sin(\theta) \frac{\partial T}{\partial x} + v(x,z) \cos(\theta) \frac{\partial T}{\partial z} &+ \left(\frac{\partial v}{\partial z} \sin(\theta) - \frac{\partial v}{\partial x} \cos(\theta) \right) \frac{\partial T}{\partial \theta} = 1 \\
\end{aligned}
\end{equation}

with the boundary condition \(T|_{z=0} = 0\). As follows from equations-(\ref{eq:tmarch}), (\ref{eq:xmarch}), and (\ref{eq:thetamarch}), and the conditions

\begin{eqnarray}
x(T(x_O,z_O,\theta_O),x_O,z_O,\theta_O) &= X(x_O,z_O,\theta_O); \\
\theta(T(x_O,z_O,\theta_O),x_O,z_O,\theta_O) &= \Theta(x_O,z_O,\theta_O); \\
\end{eqnarray}

the functions \(X(x,z,\theta)\) and \(\Theta(x,z,\theta)\) additionally satisfy the orthogonal equations

\begin{eqnarray}
v(x,z) \sin(\theta) \frac{\partial X}{\partial x} + v(x,z) \cos(\theta) \frac{\partial X}{\partial z} &+ \left(\frac{\partial v}{\partial z} \sin(\theta) - \frac{\partial v}{\partial x} \cos(\theta) \right) \frac{\partial X}{\partial \theta} = 0; \\
\frac{\partial \Theta}{\partial x} + v(x,z) \cos(\theta) \frac{\partial \Theta}{\partial z} &+ \left(\frac{\partial v}{\partial z} \sin(\theta) - \frac{\partial v}{\partial x} \cos(\theta) \right) \frac{\partial \Theta}{\partial \theta} = 0; \\
\end{eqnarray}

with the boundary conditions \(X|_{z=0} = x\) and \(\Theta|_{z=0} = \theta\).

We propose to apply equations-(\ref{eq:tmarch}), (\ref{eq:xmarch}) and (\ref{eq:thetamarch}) for a numerical computations of travel times on a fixed \(x,z\) grid. Although both \(T(x,z,\theta)\) and \(X(x,z,\theta)\) functions are strictly single-valued, we can extract from them the possibly multi-valued travel times from every grid point \(x,z\) to a surface point \(y\) at \(z=0\). The extraction would simply amount to evaluating \(T(x,z,\theta)\) at the level set of \(X(x,z,\theta) = y\).

---End of Gorillas, 852,000---
Traveltime from a fixed source $\tau(\mathbf{x})$ in an isotropic medium ($\mathbf{x} \in \mathbb{R}^n$) is governed by the eikonal equation

\begin{equation}
\frac{1}{v^2(\mathbf{x})} \nabla \tau \cdot \nabla \tau = 1, \tag{eq:eikonal}
\end{equation}

where $v(\mathbf{x})$ is the velocity distribution.

The rays [characteristics of equation-(\ref{eq:eikonal})] are defined by the system of Hamilton-Jacobi ordinary differential equations:

\begin{eqnarray}
\frac{d \mathbf{x}}{dt} & = & v(\mathbf{x}) \frac{\partial v}{\partial \mathbf{x}}, \tag{eq:xray} \\
\frac{d \mathbf{p}}{dt} & = & - \frac{1}{v(\mathbf{x})} \nabla v, \tag{eq:pray}
\end{eqnarray}

where t has the meaning of the traveltime along the ray, and \mathbf{p} corresponds to $\nabla \tau$ and is constrained by the Hamilton equation

\begin{equation}
\frac{1}{v^2(\mathbf{x})} \nabla \tau \cdot \nabla \tau = 1, \tag{eq:hamilton}
\end{equation}
equivalent to-(\ref{eq:eikonal}).

In the two-dimensional case, where $\mathbf{x} = \{x,z\}$, it is convenient to introduce the angle-θ between the vertical and the slowness vector-\mathbf{p} such that $\mathbf{p} = \{\sin{\theta}/v(x,z),\cos{\theta}/v(x,z)\}$.

Equation-(\ref{eq:hamilton}) is then automatically satisfied, and we can rewrite system-(\ref{eq:xray}-\ref{eq:pray}) in the form

\begin{eqnarray}
\frac{d x}{dt} & = & v(x,z) \sin{\theta}, \tag{eq:xt} \\
\frac{d z}{dt} & = & v(x,z) \cos{\theta}, \tag{eq:zt} \\
\frac{d \theta}{dt} & = & \frac{\partial v}{\partial z} \sin{\theta} - \frac{\partial v}{\partial x} \cos{\theta}. \tag{eq:thetat}
\end{eqnarray}

The initial conditions for solving system-(\ref{eq:xt}-\ref{eq:thetat}) consist of the initial point-$\{x_O,z_O\}$ and the take-off angle-θ_O.

The solution of system-(\ref{eq:xt}-\ref{eq:thetat}) as a function of time t and the initial conditions x_O, z_O, and θ_O satisfies the Liouville partial differential equations:

\begin{eqnarray}
\frac{\partial x}{\partial t} + v \sin{\theta_0} \frac{\partial x}{\partial x_0} + v \cos{\theta_0} \frac{\partial x}{\partial z_0} + \left(\frac{\partial v}{\partial z_0} \sin{\theta_0} - \frac{\partial v}{\partial x_0} \cos{\theta_0} \right) \frac{\partial x}{\partial \theta_0} & = & 0, \tag{eq:xl} \\
\frac{\partial z}{\partial t} + v \sin{\theta_0} \frac{\partial z}{\partial x_0} + v \cos{\theta_0} \frac{\partial z}{\partial z_0} + \left(\frac{\partial v}{\partial z_0} \sin{\theta_0} - \frac{\partial v}{\partial x_0} \cos{\theta_0} \right) \frac{\partial z}{\partial \theta_0} & = & 0, \tag{eq:zl}
\end{eqnarray}
\begin{eqnarray}
\frac{\partial v}{\partial z_O}\sin\theta_O - \frac{\partial v}{\partial x_O}\cos\theta_O)
\frac{\partial z}{\partial \theta_O} &=& 0; \\
\label{eq:thetal} \\
-\frac{\partial \theta}{\partial t} + v\sin\theta_O \frac{\partial \theta}{\partial x_a} + v\cos\theta_O \frac{\partial \theta}{\partial z_O} + \left(\frac{\partial v}{\partial z_O}\sin\theta_O - \frac{\partial v}{\partial x_O}\cos\theta_O\right)\frac{\partial \theta}{\partial \theta_O} &=& 0,
\end{eqnarray}

where the velocity v is evaluated at $\{x_O, z_O\}$. The appropriate initial conditions for system-(\ref{eq:xl}-\ref{eq:thetal}) are $\{x, z, \theta\} = \{x_O, z_O, \theta_O\}$ at $t=0$.

Let us denote by $T(x, z, \theta)$ the time at which the ray that starts at point $\{x, z\}$ with the take-off angle θ first reaches the surface $z=0$. Correspondingly, the emergence point and the emergence angle of this ray at the surface will be defined by functions $X(x, z, \theta)$ and $\Theta(x, z, \theta)$. Differentiating the condition
\begin{equation}
\label{eq:zsurface}
z(T(x_O, z_O, \theta_O), x_O, z_O, \theta_O) = 0,
\end{equation}
where $z(t, x_O, z_O, \theta_O)$ is the solution of equation-(\ref{eq:zl}), we find that, in the region where $\frac{\partial z}{\partial t}$ is different from zero, the function T has to satisfy the partial differential equation
\begin{equation}
\label{eq:tmarch}
v(x, z)\sin\theta \frac{\partial T}{\partial x} + v(x, z)\cos\theta \frac{\partial T}{\partial z} + \left(\frac{\partial v}{\partial z}\sin\theta - \frac{\partial v}{\partial x}\cos\theta\right)\frac{\partial T}{\partial \theta} = 1;
\end{equation}
with the boundary condition $\left.T\right|_{z=0} = 0$. As follows from equations-(\ref{eq:tmarch}), (\ref{eq:xl}), and-(\ref{eq:thetal}), and the conditions
\begin{eqnarray}
\label{eq:xmarch}
v(x, z)\sin\theta \frac{\partial X}{\partial x} + v(x, z)\cos\theta \frac{\partial X}{\partial z} + \left(\frac{\partial v}{\partial z}\sin\theta - \frac{\partial v}{\partial x}\cos\theta\right)\frac{\partial X}{\partial \theta} &=& 0; \\
\label{eq:thetamarch}
v(x, z)\sin\theta \frac{\partial \Theta}{\partial x} + v(x, z)\cos\theta \frac{\partial \Theta}{\partial z} + \left(\frac{\partial v}{\partial z}\sin\theta - \frac{\partial v}{\partial x}\cos\theta\right)\frac{\partial \Theta}{\partial \theta} &=& 0.
\end{eqnarray}
the functions $X(x, z, \theta)$ and $\Theta(x, z, \theta)$ additionally satisfy the orthogonal equations
\begin{eqnarray}
\label{eq:xmarch}
v(x, z)\sin\theta \frac{\partial X}{\partial x} + v(x, z)\cos\theta \frac{\partial X}{\partial z} + \left(\frac{\partial v}{\partial z}\sin\theta - \frac{\partial v}{\partial x}\cos\theta\right)\frac{\partial X}{\partial \theta} &=& 0; \\
\label{eq:thetamarch}
v(x, z)\sin\theta \frac{\partial \Theta}{\partial x} + v(x, z)\cos\theta \frac{\partial \Theta}{\partial z} + \left(\frac{\partial v}{\partial z}\sin\theta - \frac{\partial v}{\partial x}\cos\theta\right)\frac{\partial \Theta}{\partial \theta} &=& 0; \end{eqnarray}

where the velocity v is evaluated at $\{x_O, z_O\}$. The appropriate initial conditions for system-(\ref{eq:xl}-\ref{eq:thetal}) are $\{x, z, \theta\} = \{x_O, z_O, \theta_O\}$ at $t=0$.
with the boundary conditions $X(z=0) = x \text{ and } \Theta(z=0) = \theta$.

We propose to apply equations (eq:tmarc), (eq:xmarc) and (eq:thetamarc) for a numerical computations of traveltimes on a fixed (x,z) grid. Although both $T(x,z,\theta)$ and $X(x,z,\theta)$ functions are strictly single-valued, we can extract from them the possibly multi-valued traveltimes from every grid point (x,z) to a surface point y at $z=0$. The extraction would simply amount to evaluating $T(x,z,\theta)$ at the level set of $X(x,z,\theta) = y$.

\[\text{Roger J. Cochrane} \]
\[\text{Operations Support MGR} \]
\[8/1/2001 \]