Title
The Economic Consequences of Rising U.S. Government Debt: Privileges at Risk

Permalink
https://escholarship.org/uc/item/7kz6v3zs

Author
Bohn, Henning

Publication Date
2010-04-01
The Economic Consequences of Rising U.S. Government Debt:
Privileges at Risk

By Henning Bohn*

University of California Santa Barbara
and CESifo

JEL codes: H63, H62, E60

April 2010

Abstract

The rapidly growing federal government debt has become a concern for policy makers and the public. Yet the U.S. government has seemingly unbounded access to credit at low interest rates. Historically, Treasury yields have been below the growth rate of the economy. The paper examines the ramifications of debt financing at low interest rates. Given the short maturity of U.S. public debt – over $2.5 trillion maturing in 2010 – investor expectations are critical. Excessive debts justify reasonable doubts about solvency and monetary stability and thus undermine a financing strategy built on the perception that U.S. debt is safe.

* Department of Economics, UCSB, Santa Barbara, CA 93106. Phone: (805)-893-4532. E-mail: bohn@econ.ucsb.edu. Home page: http://econ.ucsb.edu/~bohn. A slightly modified version was presented to the Board of Governors of the Federal Reserve System, Academic Consultants Meeting, April 9, 2010.
1. Introduction

The rapidly growing U.S. government debt has become a concern for policy makers and the public. The ratio of U.S. public debt to GDP has increased from 36.2% in 2007 to 53.0% in 2009. Under current policies, the debt-GDP ratio is likely to reach 70% by 2011 and 90% by 2020.¹

What are the consequences of this rising U.S. government debt? The paper will argue that a proper analysis of U.S. debt must account for the U.S. government’s ability to issue debt at interest rates that are on average below the growth rate of the U.S. economy. Evidence suggests that the low interest rates are largely due to perceptions of safety, with a secondary role for liquidity effects. Given the short maturity of U.S. public debt – over $2.5 trillion maturing in 2010 – investor expectations are critical. To refinance its debt, the government must ensure that bond buyers remain firmly convinced of the government’s solvency. Excessive debts justify reasonable doubts about solvency and about inflation. Hence they undermine a financing strategy built on a perception of safety.

The paper is organized as follows. Section 2 examines the government’s role as financial intermediary, focusing on the “specialness” of U.S. debt, on debt limits at low interest rates, and on the ramifications of the U.S. government’s safe-debt financing strategy. Section 3 turns to the problem of managing expectations, notably inflationary expectations and the potential for a confidence crisis. Section 4 comments briefly on the conventional macroeconomic effects of government debt. Section 5 concludes.

2. Government as Financial Intermediary

A government that allows its citizens to defer payments for current public goods and services is in effect providing credit. If this credit to tax payers is financed by public debt, government is acting as financial intermediary. This role is well recognized in special cases, such as student loans, but applies to all public debt. This intermediation function of public debt matters even if the conventional macro

¹ The 2007 and 2009 values are from the U.S Budget 2011. Projections for future debt/GDP necessarily depend on assumptions about the economy, about the fate of expiring tax provisions, and about health care cost. CBO (2010a, Table 1-1) projects 70.1% debt/GDP for 2011 and 90.0% for 2010, assuming current budget proposals are implemented. The CBO baseline projects debt/GDP of only 67.5% for 2020, but under the implausible (politically mandated) assumption that certain temporary tax measures are allowed to expire. CBO (2010b, p.19) projects 98% debt/GDP for 2020 under the assumption that tax cuts expiring in 2011 are extended and AMT provisions inflation indexed.
effects are small. The most relevant measure is the public debt (a.k.a. net debt, publicly held debt). Government-held debt and other obligations, such as Social Security and Medicare, may matter indirectly as they influence the resources available to service the public debt.\(^2\)

Government acting as intermediary raises several questions: What is the value-added, and how does it vary with debt? What are the limits? What are the risks?

2.1. Specialness

A first key question is to what extent government has an inherent cost advantage over private intermediaries, either due to superior debt-collection powers (the IRS) or because government bonds have a “special” collateral or liquidity value. The answer determines the value-added of government intermediation and it matters for the government’s ability (or inability) to float unbacked debt. Specialness should be distinguished from mere safety. Safe assets—defined broadly to include nominal debt—are usually valued under the same stochastic pricing kernel as risky assets. An asset is special if its price is greater than the usual present value. Thus specialness is similar to the medium of exchange value of money.

Specialness of debt is based on scarcity and therefore likely to erode with rising debt. Krishnamurthy and Vissing-Jorgensen (2008) document that the spread between AAA-corporate and Treasury yields varies negatively with the debt-GDP ratio.\(^3\) As their non-linear regressions are difficult to interpret, I use the essentially same data to estimate a simple truncated linear regression. For 1925-2007 (pre-crisis), one finds

\[
Spread_t = 31.11 \, \text{bp} - 3.055 \, \text{bp} \cdot \text{Max}[(\text{Debt}/\text{GDP})_t - 55\%, 0]
\]

\[(5.73) \quad (0.296) \]

\(^2\) Government debt has also generational implications, as it effectively allows the old to leave negative bequests. However, intergenerational transfers are a broader issue and do not require explicit debt. For this paper, it is instructive to think about government debt in banking terms.

\(^3\) An earlier literature on specialness was motivated by the declining debt in the late 1990s, and it provides additional empirical evidence; see Fleming (2000), Reinhart and Sack (2000).
with standard errors in parentheses, $R^2 = 0.567$. Debt/GDP is measured at the end of each fiscal year. Spread (in basis points) is the difference between AAA and long-term Treasury yields in the month after the fiscal year ended. Figure 1 shows the regression line and a scatter plot.

Because even AAA corporations are not entirely default-free, the AAA-Treasury spread may reflect safety as well as specialness. The negative slope suggests that specialness matters at least at low debt-GDP ratios. One may suspect that most of the 31bp spread for debt/GDP over 55% is risk-related. Regardless of interpretation, the spread estimates provide an upper bound on specialness. It will be important below that specialness can explain at most a small fraction the equity premium.

The declining spread documents an adverse consequence of high public debt. The fitted line in Figure 1 declines from 152bp at 16% debt/GDP (the sample minimum) to 31bp at 55% debt/GDP. For 2008-09, the spread is above normal. Debt projections for 2010, about 60% of GDP, are already in the flat range. Hence further increases in debt are not likely to reduce the spread—the damage to specialness is already done.

Because most taxpayers would pay interest rates higher than AAA, private benefits from government intermediation are greater than the AAA-Treasury spread. Because the government inevitably extends “credit” to citizens who avoid repayment, debt financing also involves redistribution. Cukierman and Meltzer (1989) provide an excellent political-economy analysis of the intergenerational aspects; similar logic applies at shorter horizons. Public debt yields private benefits to those who would otherwise face credit limits or pay risk premiums. Social gains arise if the government faces lower borrowing cost than private intermediaries.

2.2. Requirements of Debt Sustainability

A second key question is what limits government debt. Can governments grant unbounded credit to its citizens? A plausible consequence of rising debt is a growing concern about monetization and default.

4 The fiscal year closing moved from June to September in 1977. Accordingly, spreads are July values until 1976 and October values since 1977. For more general specifications, one finds slopes estimates near zero (and insignificant) at debt/GDP over 55%, which motivates the simple regression. See Krishnamurthy and Vissing-Jorgensen (2008) for alternative specifications. Values for Oct.2008 and Oct.2009 are shown in Figure 1 as outliers.
Ratings agencies routinely use debt/GDP and related ratios, such as debt/revenues, to determine sovereign credit ratings.

It is instructive to distinguish fundamental questions about debt sustainability from expectational questions about confidence crises and credibility.

Consider fundamentals for now. Coherent answers about debt sustainability require several layers of analysis. First one must reject the still-popular notion that there is a free lunch, an opportunity for governments to issue debt without ever providing debt service by simply rolling it over with interest (a.k.a. Ponzi finance). Second, one must ensure that the intertemporal budget constraint is satisfied. Third, one must worry about the government’s ability to provide the required debt service even under adverse conditions, which imposes additional constraints.

The possibility of rolling over the debt with interest cannot be dismissed lightly because the average interest charge on U.S. public debt has been below the average growth rate of the U.S. economy. This is documented in Table 1. One finds 4.4% nominal interest versus 5.5% growth for 1792-2009 and 4.8% interest versus 6.8% growth for 1915-2009.5

The differences between average growth and interest rates are greater than the average AAA-Treasury spreads. For 1925-2009 (the longest sample for yield spread data) the growth-interest difference was 1.4% and the average AAA-Treasury spread was 0.8%. Thus interest rates below the average growth rate are not a special feature of government borrowing. Moreover, dynamically efficiency does not explain these data (Abel et al. 1999). The average real return to capital of about 6-7% far exceeds the real growth rate of the economy. Thus the low interest rates on public debt must reflect the risk-aversion of investors who accept a low expected real return in exchange for the safety of government bonds.6

In a dynamically efficient economy, fiscal policy is subject to an intertemporal budget constraint (IBC) and a limit condition on public debt (Bohn 1995). To be precise, let \(d_t \) denote the debt-GDP ratio at the start of a period, \(s_t \) the ratio of primary surplus to GDP (primary meaning:

5 Because inflation cancels when one takes the difference of interest and growth, comparisons in nominal and real terms are equivalent; thus concerns about measurement error in inflation are immaterial.

6 The magnitude of the equity premium is of course a long-standing puzzle (Mehra and Prescott 1985). My risk-based interpretation of return differences is consistent with Rietz (1978) and Barro and Ursua (2009).
excluding interest), and \(u_{t,n} \) the period-\(t \) pricing kernel used for discounting state-contingent claims in period-\((t+n) \). The latter can be interpreted as investors’ marginal rate of substitution between periods \(t \) and \(t+n \), scaled by GDP. Rational investors will refuse to buy government bonds unless fiscal policy satisfies the intertemporal budget constraint

\[
d_t = \sum_{n=0}^{\infty} E_t[u_{t,n} \cdot s_{t+n}].
\]

That is, current and future primary budget surpluses—revenues minus non-interest outlays—must have a risk-adjusted present value that adds up to current public debt. A key implication is that debt service cannot be avoided, in the sense that primary surpluses must be positive sufficiently often and in states of nature that are valued sufficiently highly that (1) holds.

Risk-adjustment implies that the present values depend not only on average values but also on covariances with systematic risks (risks reflected in the pricing kernel). For primary surpluses, one can write

\[
E_t[u_{t,n} \cdot s_{t+n}] = E_t[u_{t,n}] \cdot E_t[s_{t+n}] + \text{Cov}_t[u_{t,n}, s_{t+n}],
\]

where \(E_t[u_{t,n}] \) can be interpreted as the price of a safe \(n \)-period discount bond. So

\[
d_t = \sum_{n=0}^{\infty} E_t[u_{t,n}] \cdot E_t[s_{t+n}] + \sum_{n=0}^{\infty} \text{Cov}_t[u_{t,n}, s_{t+n}].
\]

This equation can be satisfied with primary surpluses that are low or negative on average, provided surpluses co-vary positively with systematic risk. U.S. primary surpluses have indeed been negative: Primary deficits averaged 0.3% of GDP for 1792-2009 and 1.15% for 1915-2009.

The common claim that public debt must be backed by expected primary surpluses is thus not quite correct. U.S. public debt is backed entirely by the covariance terms in (2) that capture the value of safety promised to bond holders. In this sense, U.S. fiscal policy has relied crucially on the perceived safety of Treasury debt. Most U.S. debt is nominal, of course, and therefore not quite safe in real terms; but judging from interest rates, the premium for taking nominal risk has been negligible.

Put differently, neither of the two main paradigms of fiscal analysis—expected present value reasoning under dynamic efficiency and Ponzi finance under dynamic inefficiency—apply to U.S. data. Ponzi finance does not apply because debt must be backed by a risk-adjusted measure of primary
surpluses. But expected primary surpluses can be negative, which means budget constraints cannot be written in terms of expected values.\footnote{A related point is that government bond yields cannot be used to discount future taxes, spending, and primary balances. Correct discounting must account for the distribution of these variables across states of nature.}

When average interest rates are below the average growth rate, average primary deficits are consistent with a stationary debt-GDP ratio. The debt-GDP ratio at the start of period $t+1$ is obtained from the period-t debt-GDP ratio minus the period-t surplus by adding interest payments (rate r_{t+1}) and deflating by GDP growth (y_{t+1}):

$$
d_{t+1} = \frac{1 + r_{t+1}}{1 + y_{t+1}} \cdot (d_t - s_t)
$$

At a zero primary balance, the debt-GDP ratio tends to decline. Under normal conditions—unless growth is less than the interest rate—there is scope for primary deficits without causing a rise in the debt-GDP ratio. Figure 2 shows the history of U.S. debt-GDP ratios to illustrate that recent values are indeed not much different from the starting value in 1792.\footnote{From 1915 to 2009, the debt-GDP ratio increased from 3\% to 53\%, or about 0.5\% per year. This means that of the 1.15\% of GDP average primary deficit, 0.65 percentage points were covered by the growth-interest differential (=1.15\%-0.5\%). Similar logic applies to other sub-samples. The shorter the period, the more a sample average is influenced by large shocks, e.g., wars. Hence I report averages for long periods.}

Debt sustainability in a stochastic setting requires that the primary surplus (at least some elements thereof) respond to economic shocks that disturb the debt-GDP ratio (Bohn 1998). Whenever the debt-GDP ratio rises due to low economic growth or unexpected spending needs arise, fiscal policy must act to restore the equality of debt and the present value of primary surpluses. Such action can take many forms. One systematic and sufficient response is a fiscal reaction function for primary surpluses with positive coefficient on the debt-GDP ratio.

Historically, U.S. primary surpluses have responded positively to increases in debt. The response coefficient of primary surplus/GDP to debt/GDP ranges from 0.05 to 0.12, depending on sample period and specification (Bohn 1998, 2008). Thus U.S. fiscal policy has historically operated in a way that is consistent with the risk-adjusted intertemporal budget constraint.

The link between primary surpluses and debt is not mechanical. U.S. primary balances have responded negatively to output gaps and to above-normal military spending. Thus fiscal reaction
functions are consistent with cyclical stabilization and they can accommodate wartime needs. There is also substantial residual variance, including episodes that have caused concerns about excessive deficits (e.g., in the 1980s). But such episodes are noise on a longer time scale, as every major debt buildup has been followed by a period of deficit reduction (as in the 1990s). And because debt changes gradually, only a long time scale is meaningful for fiscal sustainability.

Monetization and seignorage have not played a major role. Giannitsarou and Scott (2008) have used a cointegration approach to examine how fiscal imbalances are typically resolved. In 1960-2005 U.S. data, imbalances were resolved by almost entirely by responses in the primary surplus—about equally by higher taxes and reduced spending—and not by inflation. Seignorage is reflected in Federal Reserve transfers to the Treasury. It averaged 0.16% of GDP for 1915-2009 and is included in the budget. If this revenue were excluded, the average primary deficit would be 1.31% instead of 1.15% of GDP—a minor change.9

These findings do not preclude an insurance role for nominal debt. Nominal debt helps to reduce changes in debt/GDP by exploiting the negative correlation between inflation and GDP. Questions of monetization versus primary surplus responses are about the remaining (unhedged) changes in debt/GDP.

In summary, the foundation of U.S. debt policy is the promise of safety for bondholders backed by primary surpluses only in response to a high debt-GDP ratio.

2.3. Implications of Safe Debt

An obvious attraction of a safe debt policy is that it provides cheap financing for entrepreneurial Americans. It is fitting that Americans hold foreign equities financed by debt and that almost half the Treasury debt is held abroad. Moreover, U.S. debt management has an element of “riding” the yield curve—using T-bills to finance long-term borrowings. This reduces average cost further, though at the expense of refinancing risk.

9 To be meticulous, the budget constraint should be adjusted if debt has a special collateral or liquidity value. One consistent approach is to value debt and primary surpluses under the regular pricing kernel and to count cost-savings from specialness as revenue item. If one measures specialness generously by attributing the entire AAA-Treasury spread to specialness, the revenues would average 0.27% of GDP for 1915-2009. The average primary balance would remain negative at -0.88%.
A serious downside of this policy is its welfare cost in a scenario of prolonged low or negative economic growth. Low growth would drive up the debt-GDP ratio and eventually require sustained primary surpluses—tax increases or spending cuts—and this in a difficult economic situation. The U.S. has never fully experienced this downside. The worst low-growth episode, the Great Depression, was ended by WWII with debt/GDP under 50%. (See Figure 2.) Post-1990 Japan is perhaps a better illustration.

The dynamics of safe debt implies that slow growth causes a high debt/GDP ratio. Reinhart and Rogoff (2010) find low growth conditional on gross debt over 90% of GDP, in the US and abroad, and they suggest high debt might hurt growth. This conclusion seems questionable for the U.S., where gross debt exceeded 90% of GDP only in fiscal years 1944-50. An obvious causal factor is WWII, with demobilization at the end reducing measured growth. In Japan, gross debt/GDP started off at 68% in 1990 (net debt 15%) and breached 90% only after a period of slow growth.

Another serious concern is the potential for credibility problems. A positive response of primary surpluses to debt is sufficient to make the debt-GDP ratio stationary, but it does not preclude episodes with high debt/GDP in response to negative shocks. Such episodes test the government’s credibility because the fiscal benefits from default and from inflation are increasing in the debt-GDP ratio. This concern touches a more general problem: the challenge of managing expectations.

3. The Challenge of Managing Expectations

Rational investors are forward looking. Policies can change. Hence investors may worry about debt repayment in the future even in a country with a long history of fiscal sustainability and no defaults.

Two distinct issues deserve attention: concerns about a structural break and the possibility of a confidence crisis based on self-fulfilling expectations.

3.1. Inflation Fears

Concerns about a structural break in U.S. fiscal policy could upset investor expectations. The financial problems of pay-go Social Security and Medicare are well known. Investors concerns are likely reinforced by official projections of persistent primary deficits even under optimistic
assumptions, by open-ended credit guarantees to mortgage lenders, and by uncertainty about the fiscal implications of new health care programs. Estimated fiscal reaction functions call for primary surpluses when the debt-GDP ratio rises above a critical value, which is around 55-60% under normal conditions. Current official projections assume substantial and unending primary deficits at debt-GDP ratios well above this range (see, e.g., the *U.S. Budget 2011* and CBO 2010a,b). Such projections can reasonably be interpreted as sign of a structural break.10

The nature and timing of a shift in investor expectations is difficult to determine. History shows that expectations can shift suddenly; see Reinhart and Rogoff (2009). The primary concern reported in the media is a fear of inflation as a consequence of rising debt.

Fiscal gains from inflation depend on debt structure and ownership (Calvo and Guidotti 1990; Bohn 1991; Aizenman and Marion 2009). The over-90% non-indexed share and near-50% foreign ownership of U.S. debt favor inflation, but the short duration limits the gains. As of December 2009, 37% of marketable nominal debt was due within a year and 60% within three years. A jump in inflation to, say, 4% (a la Blanchard) sustained for 30 years would devalue the U.S. public debt by about 4% of GDP.11 Fiscal gains would be greater if debt were higher or if inflation increased more. It is unclear, however, under what conditions—if any—politicians would find the gains large enough to push the Fed into sacrificing price stability. Interestingly, economists who favor higher inflation tend to invoke Phillips curve arguments and not fiscal gains (e.g., Blanchard 2010). This suggests that to the extent politics influences inflation, it’s more about jobs than about the nominal debt.

If inflation fears were tightly related to debt, this should be reflected in spreads between nominal and inflation-indexed yields. Between Feb. 2007 (pre-crisis) and Feb. 2010, CBO projections of 5-year-ahead debt/GDP doubled from 33% to 66%. But inflation implicit in 10-year yields was

10 A cautious interpretation is appropriate, however, because scary projections are arguably an element in the political process that encourages deficit reduction.

11 See Appendix for details. As most of the inflation gains accrue within the first few years, the amount is sensitive to delays. A one-year lag, e.g. due to slow implementation or price rigidities, would reduce the gain from 4% to 3% of GDP. My approach differs from Aizenman and Marion (2009). The gains here are for moving to a new inflation level (flat 4%), accounting for expected inflation already implicit in the yield curve. Aizenman and Marion estimate gains from a given change in inflation (i.e., one top of implicit inflation). They compute gains as product of inflation change and average maturity. A more precise estimate would be the product of inflation change and the average *duration* of nominal debt (3.35 years as of Dec.2009). Thus an increase in inflation by, say, 3% would devalue nominal debt by 10%; given 50% nominal debt/GDP, the fiscal gain would be 5% of GDP.
almost unchanged (about 2.3%), and similar to the pre-2007 average. See Figure 3 for illustration. Thus the debt-inflation link is still more a perception than a reality.

Inflation fears are nonetheless difficult to dismiss because throughout history, countries in trouble have debased their currencies (Reinhart and Rogoff 2009). The logic of Sargent and Wallace (1981) provides theoretical support, and the fiscal theory of the price level seems to make inflationary solutions intellectually respectable.

The Fiscal Theory of the Price Level is problematic in this context because it treats the existence of nominal debt as given. Once nominal debt is outstanding, of course it can be inflated away. Ex ante, however—before nominal bonds are issued—the government must convince bond buyers that debt will pay a competitive real return. Put differently, the government must overcome the time consistency problem, and this is accomplished credibly with an independent central bank and Ricardian monetary-fiscal coordination. In a Ricardian regime, it is destructive for credibility to portrait the intertemporal budget constraint as a mere equilibrium condition, because investors can reasonably interpret a refusal to treat the IBC as constraint as statement of intent to pursue time-inconsistent (inflationary) policies—to subordinate monetary policy to fiscal pressures.

Quantitatively, public debt is small relative to implicit pay-as-you-go obligations—$7.8 trillion versus $52 trillion closed-group liability for social insurance, which is mostly Social Security and Medicare (for details, see the U.S. Financial Statements). Hence a credible plan to address pension and health care cost should help calm inflation fears.

3.2. Is a Confidence Crisis Possible?

A confidence crisis is a serious concern because the U.S. Treasury relies on serial refinancing as it issues short-term debt backed by tax revenues in the far future. The U.S. government is in effect operating like a bank and therefore subject to bank runs. In game theoretic terms, a confidence crisis can occur even along an otherwise sustainable path if the market for debt has multiple equilibria.

Table 2 documents the maturity structure of Treasury debt in December 2009. Maturing in 2010 are $2.46 trillion in nominal debt, which includes $1.79 trillion Treasury bills. Also due in 2010 are $164b nominal coupon payments, plus $59b principal and interest on inflation-indexed bonds. This
adds up to a debt service requirement of $2.68 trillion. Budgeted revenues are less $2.2 trillion. So refi-ning is essential. This places U.S. debt into Cole and Kehoe’s (2000) “crisis zone,” a range where self-fulfilling debt crises are possible.

Most models of confidence crises assume that there is one “good” scenario in which investors expect no default and refinance the debt at default-free interest rates. The good scenario is an equilibrium if government satisfies its intertemporal budget constraint and does not intend to default when financing is available. In the crisis zone, there is also a “bad” equilibrium, where default is unavoidable without access to refinancing. If investors expect a default and refuse to refinance, their expectations will be confirmed. (See Alesina et al. (1990) for an simple model of this type.)

One could speculate about the aftermath of a default—say, ask if a refusal to refinance is rational if a suspension of payments were followed by sufficient payoffs later—but experience suggests that fears of illiquidity per se are destructive. A recent example is the collapse of the auction rate securities market.

In a broader sense, the existence of a bad equilibrium depends on the Federal Reserve, because as last resort, the Federal Reserve could monetize the debt. The logic follows Sargent and Wallace’s (1981) famously unpleasant monetarist arithmetic, but applied to a path off the desired equilibrium. Because the U.S. government is undoubtedly too big to fail, a Fed bailout is likely. Thus a default is unlikely. However, monetization points to a high-inflation “bad” equilibrium as modeled by Calvo (1988): Investors who expect high inflation may demand interest rates that are prohibitive at normal inflation rates. Monetization conditional on refinancing problems could rationalize such expectations. The result would be a jump in interest rates, an expansion in high-powered money, and likely a sharp drop in the dollar.

The rationality of a speculative attack depends on how the Federal Reserve and the Treasury would handle a failed Treasury auction. One contingency plan might be to issue long-term inflation-indexed securities to avoid or quickly reverse monetization. Inflation-indexed bond are senior to nominal debt if a refinancing cutoff is known to trigger monetization and not default. A maturity ladder that distributes real debt service uniformly over a long horizon would remove the necessity of
future refinancing. Hence inflation-indexed bonds should be marketable even in a confidence crisis. Given this option, an investor refusal to refinance would not be rational.

If a confidence crisis is triggered only by concerns about refinancing, a high level of debt is a complication, but the danger depends more on debt structure and contingency planning than on the level of debt. If a confidence crisis were triggered by doubts about fundamental solvency, however, a shift to inflation indexing would not suffice. It could even fuel inflation fears because extracting a given inflation gain from a smaller nominal debt would require a higher rate of inflation. Then cuts in current and projected deficits would be essential—a credible display of “debt aversion” (Calvo and Guidotti 1990). Even then, confidence might be difficult to restore. Thus there is potentially destructive interaction between concerns about a structural break in policy and the problem of multiple equilibria.

Hopefully the U.S. government’s track record—AAA rating, history of sustainable policies, and no defaults—will ensure that the good equilibrium continues to be the focal point for coordinating investor expectations.

A brief note on credit default spreads is appropriate. How can one reconcile the alleged safety of U.S. debt with a positive CDS (about 35bp in April 2010)? Sovereign CDS for a country with fiat currency are an odd creature. Treasury securities, which are normally the best collateral, would be devalued in the default event. Natural buyers—hyper risk-averse investors—should be hyper-concerned about counterparty risk. This suggests that collateral requirements and their dynamics are central, so the price may largely reflect the option value of claiming collateral in a panic. It should not be interpreted as default probability or as the value of a fundamental tail risk. To the extent U.S. credit default swaps do reflect fundamentals, perhaps the Federal Reserve should take pride because a positive price is a sign of credibility in resisting monetization.

4. Conventional Macroeconomic Effects

Though the paper focuses on solvency issues, the standard macro effects of public debt deserve a brief comment. The main point is that because the macro effects are gradual and arguably modest, they are
manageable and thus not the main cause of concern. A brief comment should suffice because the economics are well explained in survey articles, e.g., Elmendorf and Mankiw (1999).

Conventional macro theories of government debt assume a world with well-functioning financial markets. Debt is issued to finance budget deficits. Unless private saving rise by an offsetting amount, the increased supply of government bonds raises interest rates. Higher interest rates raise the required return on private borrowing and thereby crowd out capital investment. A lower capital stock reduces the economy’s productive capacity and thus reduces future GDP. The damage is magnified if debt service requires distortionary taxes. If debt attracts foreign buyers, the interest rate and implied crowding-out effects are dampened, but then payments to foreign lenders reduce future GNP. Either way, debt accumulation reduces future consumption opportunities.

A vast empirical literature has examined the strength of these effects. The most striking general insight is that significant effects are remarkably difficult to find. A leading explanation is Ricardian Neutrality, the hypothesis that private savings increase one-for-one with government debt because households recognize that debt implies future taxes. Studies of tax rebates find that consumers typically save a large fraction of a tax rebate. Shapiro and Slemrod (2009) suggest savings of two-thirds. Only the remainder—the deviation from neutrality—exerts upward pressure on interest rates.

Interest rates effects are nonetheless significant. For example, Engen and Hubbard (2005) provide estimates for a range of specifications, and a survey of other studies. They find that a one-percentage point increase in 5-year-ahead CBO projections of debt/GDP raises the 10-year Treasury yield by 2.8 basis points (bp for short). This estimate is significant at the 10% level and economically sensible, but subject to specification uncertainty. Because the transmission mechanism for other macro effects goes through interest rates, the interest rate effect puts an upper bound on crowding-out and output effects. Elmendorf and Mankiw (1999) calculate that a 50%-of-GDP increase in debt would reduce national income in the long run by only about 3%.

Though these effects of debt are harmful, they are arguably modest in size, take effect gradually, and could be reversed straightforwardly—more easily than a confidence crisis.
5. Conclusions: A Precautionary Case for Keeping Debt Low

Yields on long-term inflation-indexed Treasury bonds, about 2.2% as of April 2010, are still below the long-run growth rate of the U.S. economy. Treasury bill yields are even lower. This means the United States is in an extraordinarily privileged position, having access to credit in fiat currency and at interest rates that do not require debt service except under unusual circumstances.

Privileges are at risk when they are overused. A serious consequence of rising debt is to create reasonable doubts about the government’s solvency and about monetary stability. Such doubts are created by public debt and by implicit obligations such as Medicare and social security. Because privileges are worth protecting, there is a precautionary case for keeping U.S. government obligations low enough that the safety of U.S. debt will remain unquestionable.
Appendix

A1. Description of U.S. fiscal data
The fiscal data reported in the text, Figure 2, and Table 1 are taken from Bohn (2008), which covered 1792-2003, and updated from the U.S. Budget 2011. Years refer to fiscal years unless noted. Debt is recorded at book value. Table 2 is constructed from the Monthly Statement of the Public Debt, Dec. 2009.

In Table 1, the interest rate is the ratio of (nominal) interest payments on Treasury debt divided by the average of debt outstanding at the beginning and end of a fiscal year. Because securities are redeemed at par and original issue discounts are amortized, this interest rate measures the average rate of return until maturity. For shorter periods, the interest rate differs from the total return that one would obtain from market values because capital gains are disregarded. However, the objective here is to measure average returns over long samples, which (assuming ergodicity) can be interpreted as expected values. For this purpose, buy-and-hold is a reasonable assumption. Attempts to estimate market values would likely introduce measurement errors—noise from high-frequency fluctuations in interest rates—especially for historical periods with limited data. Growth and inflation in Table 1 refer to GDP growth and to the percentage change in the GDP deflator. The 1792-2009 sample is the longest available; 1915-2009 covers the Federal Reserve era. For both periods, Table 1 shows an average interest rate less than the average growth rate.

A2. Fiscal Gains from Inflating the Nominal Debt
The inflation gains reported in Section 3.1 are computed from the Treasury debt as listed in the Monthly Statement of the Public Debt, and from Federal Reserve yields quotes for Dec. 31, 2009 (release H.15). Spreads between nominal and inflation-indexed yields are interpreted as initial expected inflation (ranging from near zero to over 2.5%). The basic thought experiment is to increase inflation to 4%, starting January 1, 2010. Holding inflation-indexed yields constant, nominal yields are assumed to increase such that inflation equals 4% at all maturities. The increased nominal yields are converted into reduced discount factors for valuing principal and interest payments on non-indexed debt securities. This calculation yields a debt reduction equal to 7.9% of the outstanding nominal debt. This value is multiplied by the ratio of outstanding nominal debt to GDP (50.9%) to obtain the 4.0% of GDP estimated inflation gain stated in the text. The calculations can be modified easily to model other scenarios, e.g., delayed increases in inflation, constant increases (on top of implicit inflation), or a return to lower inflation. Scenarios with a constant increase in inflation are particularly simple because then the debt reduction can be expressed as product of inflation change and debt duration (3.35 years for nominal securities).
References

Aizenman, Joshua, and Nancy Marion, 2009, Using Inflation to Erode the U.S. Public Debt, NBER working Paper 15562.

Blanchard, Olivier, Giovanni Dell’Ariccia, and Paolo Mauro, 2010, Rethinking Macroeconomic Policy, IMF Staff Position Note.

____ and Pablo Guidotti, 1990, Credibility and Nominal Debt: Exploring the Role of Maturity in Managing Inflation, IMF Staff Papers 37, 612-635.

CBO (Congressional Budget Office), 2010, An Analysis of the President’s Budgetary Proposals for Fiscal Year 2011. (a)

CBO (Congressional Budget Office), 2010, The Budget and Economic Outlook: Fiscal Years 2010 to 2020. (b)

16

Table 1: Average U.S. interest rates and growth rates

<table>
<thead>
<tr>
<th>Period</th>
<th>Interest - Growth Difference</th>
<th>Interest Nominal</th>
<th>Growth Nominal</th>
<th>Interest Real</th>
<th>Growth Real</th>
<th>Memo: Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1792-2009</td>
<td>-1.1%</td>
<td>4.4%</td>
<td>5.5%</td>
<td>2.8%</td>
<td>3.9%</td>
<td>1.5%</td>
</tr>
<tr>
<td>1915-2009</td>
<td>-1.9%</td>
<td>4.7%</td>
<td>6.8%</td>
<td>1.4%</td>
<td>3.4%</td>
<td>3.2%</td>
</tr>
</tbody>
</table>

Note: See appendix for data description.

Table 2: The Maturity Structure of Marketable U.S. Debt

(December 31, 2009. All amounts in $billions)

<table>
<thead>
<tr>
<th>Years</th>
<th>Nominal Treasury Securities Maturing Principal</th>
<th>Coupon Payments</th>
<th>Sum</th>
<th>Inflation-indexed Securities Maturing Principal (at Dec. 2009 prices)</th>
<th>Debt Service Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>2,460.2*</td>
<td>164.6</td>
<td>2,624.8</td>
<td>46.5</td>
<td>2,684.1</td>
</tr>
<tr>
<td>2011</td>
<td>825.0</td>
<td>145.4</td>
<td>970.4</td>
<td>35.6</td>
<td>1,017.9</td>
</tr>
<tr>
<td>2012</td>
<td>707.7</td>
<td>128.6</td>
<td>836.3</td>
<td>53.4</td>
<td>900.5</td>
</tr>
<tr>
<td>2013</td>
<td>375.7</td>
<td>110.4</td>
<td>486.1</td>
<td>38.9</td>
<td>534.4</td>
</tr>
<tr>
<td>2014</td>
<td>566.0</td>
<td>98.6</td>
<td>664.6</td>
<td>62.0</td>
<td>735.4</td>
</tr>
<tr>
<td>2015</td>
<td>144.5</td>
<td>84.4</td>
<td>228.9</td>
<td>40.4</td>
<td>277.1</td>
</tr>
<tr>
<td>2016</td>
<td>448.7</td>
<td>75.9</td>
<td>524.5</td>
<td>39.9</td>
<td>571.5</td>
</tr>
<tr>
<td>2017</td>
<td>130.0</td>
<td>60.0</td>
<td>190.0</td>
<td>33.1</td>
<td>229.2</td>
</tr>
<tr>
<td>2018</td>
<td>181.3</td>
<td>51.9</td>
<td>233.2</td>
<td>31.9</td>
<td>270.5</td>
</tr>
<tr>
<td>2019</td>
<td>271.1</td>
<td>44.3</td>
<td>315.4</td>
<td>30.2</td>
<td>350.5</td>
</tr>
</tbody>
</table>

Memo: Maturing principal by decade:

<table>
<thead>
<tr>
<th>Years</th>
<th>Maturing Principal</th>
<th>Debt Service Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-2019</td>
<td>6,110.2</td>
<td>411.9</td>
</tr>
<tr>
<td>2020-2029</td>
<td>299.2</td>
<td>150.0</td>
</tr>
<tr>
<td>2030-2039</td>
<td>283.1</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Note: The table shows annual cash flows required to service the Treasury debt outstanding at the end of calendar year 2009.
* The 2010 value includes $1,793.5b in Treasury bills; 51% of these mature within 91 days.
Figure 1: The AAA-Treasury Yield Spread and the U.S. Debt-GDP ratio, 1925-2007

Figure 2: The U.S. Debt-GDP ratio, 1792-2009

Note: See appendix for data description.
Figure 3: Inflation implied by nominal and inflation-indexed 10-Year Treasury yields

Note: Yield data are from Federal Reserve release H.15, monthly.