Lawrence Berkeley National Laboratory

Recent Work

Title
The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical

Permalink
https://escholarship.org/uc/item/7mj3m1pt

Journal
Journal of Chemical Physics, 145(1)

ISSN
0021-9606

Authors
Buckingham, GT
Porterfield, JP
Kostko, O
et al.

Publication Date
2016-07-07

DOI
10.1063/1.4954895

Peer reviewed
The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical

Citation: *The Journal of Chemical Physics* **145**, 014305 (2016); doi: 10.1063/1.4954895
View online: http://dx.doi.org/10.1063/1.4954895
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/145/1?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
The thermal decomposition of the benzyl radical in a heated micro-reactor. I. Experimental findings

Unimolecular thermal decomposition of dimethoxybenzenes

Thermal decomposition products of butyraldehyde

Thermal decomposition of CH3CHO studied by matrix infrared spectroscopy and photoionization mass spectroscopy

Intense, hyperthermal source of organic radicals for matrix-isolation spectroscopy
The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical

Grant T. Buckingham,1,2 Jessica P. Porterfield,1 Oleg Kostko,3 Tyler P. Troy,3 Musahid Ahmed,3 David J. Robichaud,2 Mark R. Nimlos,2 John W. Dally,4 and G. Barney Ellison1

1Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
2National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA
3Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4Department of Mechanical Engineering, Center for Combustion and Environmental Research, University of Colorado, Boulder, Colorado 80309-0427, USA

(Received 18 April 2016; accepted 15 June 2016; published online 5 July 2016)

Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 μs. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H4CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H3CH2, C6H4CD2, C6D3CH2, and C6D4H2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H4CD2, C6D3CH2, and C6D4H2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K). Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954895]

I. INTRODUCTION

Resonance stabilized radicals are important in combustion processes because they are precursors to soot formation.1 Modern transportation fuels include a large fraction2,3 of aromatics (benzene, toluene, xylenes, alkylbenzenes, and the like); see Fig. 3 of Ref. 4. Consequently, benzyl radicals (C6H4CH2) are important intermediates in the high-temperature oxidation of these fuels. The pyrolysis of the benzyl radical has recently been examined5–7 and evidence was found for several complex decomposition pathways. Fig. 1 is an overview7 of the products that were detected following the pyrolysis of the C6H4CH2 radical. A pathway for fragmentation of benzyl radical to fulvenallene and the fulvenallenyl radical was suggested8 by Benson in 1986. An isomer of the benzyl radical is the cycloheptatrienyl (or tropyl) radical, C7H7. The relationship of tropyl to the benzyl radical is shown in Fig. 1. In the early literature, the interconversion of benzyl to tropyl (C6H4CH2 ⇔ C7H7) was considered by several groups.9–15 However, all recent theoretical studies16–18 find no pathways below 2000 K for the isomerization of benzyl to tropyl. A photoionization search for the isomerization of the C6H4CD2 benzyl radical to the C7H7D2 tropyl radical with tunable VUV radiation found no evidence for tropyl radical formation.7 To date, there are no experimental studies of the thermal decomposition of the tropyl radical, C7H7 (+ M) → products.

The focus of this paper is to generate authentic samples of the tropyl radical and to examine the pyrolysis pathways: C7H7 (+ M) → products. Earlier photoionization studies19 of the C7H7 radical found bitropyl, C7H7—C7H7, to be a convenient thermal precursor for tropyl. As sources of tropyl radicals, we have investigated the flash-pyrolysis of bitropyl, cycloheptatriene, and norbornadiene. The hydrocarbon samples were diluted in a carrier gas of He or Ne and subjected to pyrolysis in a heated silicon carbide (SiC) micro-reactor. The micro-reactor was resistively heated to temperatures up to 1600 K and operated at pressures of roughly 200 Torr. Approximate residence times20 in the reactor are 100 μs after which the gas mixture exits into a vacuum chamber at a pressure of 10−6 Torr. The resulting pyrolysis products are entrained in a molecular beam and are analyzed by a combination of photoionization mass spectroscopy (PIMS) and matrix infrared (IR) absorption spectroscopy.

Because of its importance in organic chemistry, atmospheric chemistry, and combustion processes, the benzyl
radical ($C_6H_5CH_2$, \tilde{X}^2B_1) has been extensively studied and a list of its properties is collected in Table 1 of Ref. 7. The tropyl radical (C_7H_7, \tilde{X}^2E'') is not as well characterized experimentally. Because the tropyl radical has no electric dipole moment, there are no microwave spectra. To date, there are published laser induced fluorescence (LIF) spectra11,12 of the tropyl radical, an IR-UV double resonance study with a free electron laser,15 and preliminary helium nanodroplet IR absorption spectra.21 There is no definitive analysis of the infrared spectrum of C_7H_7. Some of the available experimental properties of the tropyl radical are summarized in Table I.

This paper will demonstrate that pyrolysis of the tropyl radical only produces acetylene and the cyclopentadienyl radical. The tropyl radical does not isomerize to benzyl radical under any conditions observed in this work. As part of the final discussion, we will reconsider the thermal cracking of the $C_6H_5CH_2$ radical in the absence of C_7H_7. We present three separate pathways for the pyrolysis of the benzyl radical that seem to account for all of the current experimental findings, $C_6H_5CH_2 + M \rightarrow \text{products}$.

II. EXPERIMENTAL METHODS

A. Heated micro-reactor pyrolysis source

To carry out flash-pyrolysis of target molecules, we employ a resistively heated silicon carbide (SiC) reactor with an inner diameter (I.D.) of either 1.0 mm or 0.6 mm and a relatively short heated length, 10–15 mm. This geometry along with the present flow conditions allows for short residence times of around 100 μs. At the exit of the reactor the gas is cooled as it expands into a vacuum chamber pumped to $10^{-4}–10^{-6}$ Torr, where reactive collisions cease. To monitor the temperature of the reactor, a type-C thermocouple is attached to the reactor’s outer wall using tantalum wire as described previously.22 The fluid mechanics of the heated micro-reactors were the subject of a recent detailed computational fluid dynamics investigation20 that
TABLE I. Relevant experimental properties and ionization energies.

<table>
<thead>
<tr>
<th>Tropylium and benzyl radical experimental properties</th>
<th>(\Delta H_{298}^o (C_6H_5))</th>
<th>(\Delta H_{298}^o (C_6H_7 : \tilde{X}^2E''^o))</th>
<th>(\Delta H_{298}^o (C_7H_8 - H))</th>
<th>(\Delta H_{298}^o (C_8H_9 CH_2 \tilde{X}^2B_1))</th>
<th>(\Delta H_{298}^o (C_{10}H_{18} \text{norbornadiene}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pm 4.5 \text{ kcal mol}^{-1})</td>
<td>(181 \pm 2 \text{ kcal mol}^{-1})</td>
<td>(272 \pm 3 \text{ kcal mol}^{-1})</td>
<td>(309 \pm 2 \text{ kcal mol}^{-1})</td>
<td>(376 \pm 3 \text{ kcal mol}^{-1})</td>
<td>(246 \pm 3 \text{ kcal mol}^{-1})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Important ionization energies</th>
<th>(\text{CH}_3)</th>
<th>(\text{HC}≡\text{CH})</th>
<th>(\text{HCCCH}_2)</th>
<th>(\text{C}_2\text{HCHCH}_2)</th>
<th>(\text{o-CH}_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pm 0.0004 \text{ eV})</td>
<td>(9.8380)</td>
<td>(11.400)</td>
<td>(8.7006)</td>
<td>(8.1316)</td>
<td>(9.03)</td>
</tr>
</tbody>
</table>

| \(\pm 0.00002 \text{ eV} \) | \(11.4000 \) | \(8.7006 \) | \(8.1316 \) | \(9.03 \) |

| \(\pm 0.0002 \text{ eV} \) | \(11.4000 \) | \(8.7006 \) | \(8.1316 \) | \(9.03 \) |

| \(\pm 0.002 \text{ eV} \) | \(11.4000 \) | \(8.7006 \) | \(8.1316 \) | \(9.03 \) |

| \(\pm 0.01 \text{ eV} \) | \(11.4000 \) | \(8.7006 \) | \(8.1316 \) | \(9.03 \) |

| \(\pm 0.01 \text{ eV} \) | \(11.4000 \) | \(8.7006 \) | \(8.1316 \) | \(9.03 \) |

| \(\pm 0.01 \text{ eV} \) | \(11.4000 \) | \(8.7006 \) | \(8.1316 \) | \(9.03 \) |

Important findings were that the temperature, pressure, and thus decomposition occurs within a small “sweet-spot” that can be as small as only a few mm of the total heated length. Another important finding was that the temperature, pressure, and thus decomposition rates can vary dramatically upon varying the experimental parameters, including: (1) carrier gas (argon, neon, and helium are all commonly used), (2) upstream and downstream pressure, and (3) mass flow rate, which can be controlled either by use of commercial mass flow controllers or with a pulsed valve. Therefore when comparing results from different experimental techniques, some variation is expected for the onset temperature of decomposition and/or the product ratios of competing decomposition pathways.

B. Photoionization mass spectroscopy

1. Pulsed VUV radiation

The 355 nm output light of a commercial Nd:YAG laser (Spectra Physics Pro-230-10) is focused into a tripling cell filled to 150 Torr with a 9:1 mixture of argon:xenon, which produces 118.2 nm (10.487 eV) photons. At the exit of the tripling cell is a MgF2 lens used to focus the 118.2 nm light into the interaction region of the Jordan time-of-flight spectrometer. This tripling process has been well-studied and has an efficiency of around 1 \(\times 10^{-5} \). Additional losses are introduced by incomplete transmission of 118.2 nm light through the MgF2 lens and intentional off-axis alignment through the lens to spatially separate 118.2 nm light from the remaining 355 nm light that exits the tripling cell, which can cause unwanted multiphoton ionization. As a result, laser powers of 10 mJ pulse\(^{-1}\) at 355 nm yield roughly 10 nJ pulse\(^{-1}\) of 118.2 nm. The region where the ionizing radiation and molecular beam are intersected is maintained at 10\(^{-7}\) Torr by a turbomolecular pump. Any molecule with ionization energy less than 10.487 eV is ionized and the resulting ions are accelerated into a reflectron time-of-flight spectrometer. In order to sustain sufficiently low pressure to maintain collisionless conditions, the gas flow must be pulsed with a Parker general valve operating at 10 Hz with 1 ms opening time. Backing pressures behind the pulsed valve are typically 2000 Torr of helium carrier gas and the pressure downstream of the reactor is typically 10\(^{-6}\) Torr, maintained by an 11-in. diffusion pump. Spectra shown in this work are the result of signal averaging of 1000 scans.

2. Continuous VUV radiation

A similar experimental setup for the micro-reactor scheme is used at the Chemical Dynamics Beamline endstation 9.0.2 at the advanced light source (ALS) in the Lawrence Berkeley National Laboratory. Using synchrotron light for PIMS adds a new experimental degree of freedom: tunable photon energy. The energy of the synchrotron photons can be tuned between 7.4 eV and 30 eV, sufficiently high to ionize all species produced in the heated reactor. By measuring ion current at a single mass-to-charge ratio (m/z) while varying the photon energy and normalizing to the measured VUV power, it is possible to record photoionization spectra, which can be used to identify individual isomers that may be present. Signal averaging is used to increase signal-to-noise ratio; typical spectra are the composite of between 5 \(\times 10^2 \) and 2 \(\times 10^5 \) sweeps. To control the flow of gas through the reactor, an MKS mass flow controller is used along with a slightly smaller SiC reactor with an I.D. of 0.6 mm. Typical flow conditions include setting the flow controller to 200 standard cm\(^3\) min\(^{-1}\) (scm) backed by 5 atm of He. This yields pressures of 100 Torr between the mass flow controller and entrance of the reactor and roughly 10\(^{-4}\) Torr at the exit of the nozzle. With a 1 mm skimmer, the pressure in the ionization chamber can be maintained at roughly 5 \(\times 10^{-6}\) Torr by a large turbomolecular pump.

C. Matrix isolation Fourier transform infrared spectroscopy

Since all polyatomic molecules possess characteristic vibrational spectra, IR spectroscopy is an excellent technique for identifying molecular species and serves as valuable complement to the PIMS experiments. The matrix IR spectrometer has been described before. Briefly, a 1 mm I.D. SiC reactor is coupled to a pulsed valve assembly very

Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.138.65.120 On: Tue, 12 July 2016 21:03:00
similar to the PIMS system described above. The upstream pressure is between 800 and 1000 Torr, and with the pulsed valve operating with a roughly 1 ms opening time and 15 Hz repetition rate, the pressure at the reactor exit is typically \(10^{-6}\) Torr, which is maintained with a small turbomolecular pump. The output of the reactor impinges on a cryogenically cooled CsI window 4 cm downstream that is maintained at 5 K by a helium cryostat. The carrier gas for this experiment is neon, which condenses into a solid matrix upon colliding with the 5 K window. A standard matrix is formed by flowing 200 Torr of sample mixture from a roughly 3 liter gas manifold, which leads to a deposition time of around 1 h. After dosing is complete, the reactor assembly is rotated 90° out of the way and the CsI window is lowered into the beampath of a commercial Fourier transform IR spectrometer (Nicolet 6700).

The MCT-A detector has a spectral range of 4000–600 cm\(^{-1}\) and is operated with 0.25 cm\(^{-1}\) resolution, with typical spectra constructed by averaging 500 scans. Although the neon matrix is chemically inert, it does affect the vibrational spectra of entrained molecules. Average matrix shifts are on the order of 1–5 cm\(^{-1}\) from the unperturbed, gas-phase values.

D. Sample preparation

Pyrolysis of bitropyl \((7,7′-bi(1,3,5-cycloheptatriene))\) is a good source of the tropyl radical.\(^{19}\) Cleavage of the \(\text{C—C}\) bond produces two tropyl radicals,

\[
\text{C}_7\text{H}_7—\text{C}_7\text{H}_7(\text{M}) \rightarrow \text{C}_7\text{H}_7 + \text{C}_7\text{H}_7. \tag{1}
\]

The bond energy, \(\text{DH}_{298}(\text{C}_7\text{H}_7—\text{C}_7\text{H}_7)\), was measured\(^{29}\) to be 43 ± 1 kcal mol\(^{-1}\). Bitropyl is solid at room temperature and was purchased from Sigma-Aldrich and used without further purification. Another tropyl precursor, cycloheptatriene \((\text{C}_7\text{H}_8)\), was explored. The \(\text{C—H}\) bond strength\(^{30}\) of cycloheptatriene is 74 kcal mol\(^{-1}\) and this implies that \(\text{C}_7\text{H}_8\) could be an attractive thermal precursor for the tropyl radical; see Table I. Cycloheptatriene is a liquid at room temperature and was purchased from Sigma-Aldrich with a purity of 95% and used without further purification. A final potential precursor for tropyl radical to be considered is 2,5-norbornadiene. This hydrocarbon was purchased from Sigma-Aldrich with 98% purity and was used without further purification. All of the pyrolysis experiments use dilute gas samples with either helium or neon as the carrier gas. Previous work with SiC reactors\(^{7,31,32}\) has shown that bimolecular chemistry can obscure decomposition spectra so samples were made as dilute as possible while maintaining sufficient signal-to-noise. Typical dilutions are 0.1%–0.01%. For some experiments the dilution is difficult to control because the solid bitropyl precursor must be heated to 50–65 °C to achieve sufficient vapor pressure, depending on the gas flow rate and amount of sample surface area present. At the ALS, the sample was heated in a 1 cm I.D. glass test tube and He carrier gas was directed over the surface before traveling downstream to the reactor. The matrix IR experiments make use of a 1 mm I.D. glass vial that is inserted directly behind the pulse valve, where it is then heated. Pyrolysis appears to be unimolecular since no change in products was observed over a range of sample temperatures.

III. RESULTS AND DISCUSSION

Fig. 2 shows the 9.5 eV PIMS spectrum that results from a dilute sample of bitropyl being heated in a continuous flow micro-reactor to 600 K, where there should be no thermal decomposition of bitropyl. Earlier threshold photoelectron spectra of bitropyl reported\(^{19}\) ions at both m/z 91 and 182 with UVV photons of 8.7 eV. The 9.5 eV spectrum in Fig. 2 shows signals at m/z 91 and 104 only; there are no parent ions at m/z 182 indicating that the bitropyl sample is completely dissociatively ionized.

\[
\text{C}_7\text{H}_7—\text{C}_7\text{H}_7 + 9.5 \text{ eV} \rightarrow [\text{C}_7\text{H}_7—\text{C}_7\text{H}_7]^+ \rightarrow \text{products}. \tag{2}
\]

The m/z 91 ion is \(\text{C}_7\text{H}_7^+\) while the smaller feature at m/z 104 remains unidentified but given its similar response to heating as other dissociative ionization products, we believe it is not a contaminant but rather that it stems from dissociative ionization of bitropyl. The results in Fig. 2 are consistent with earlier PIMS studies,\(^{29}\) which revealed that the appearance energy for the \(\text{C}_7\text{H}_7^+\) ion from bitropyl was 8.09 ± 0.05 eV.

The extensive dissociative ionization in Fig. 2 results from the fragmentation of the \([\text{C}_7\text{H}_7—\text{C}_7\text{H}_7]^+\) cation into a pair of exceptionally stable products: \(\tilde{X}\ ^2\text{E}^+\text{C}_7\text{H}_7\) and \(\tilde{X}^+\text{A}^+\text{C}_7\text{H}_7^+\), which is an aromatic cation.

Fig. 3 shows the PIMS spectra that result as bitropyl is heated in the micro-reactor up to 1500 K. As the sample is heated to 1100 K, the 11.8 eV PIMS reveals the appearance of a peak at m/z 26 (circled in red) that is shown to be \(\text{HCC}^+\) by PIE spectra. The signal at m/z 65 is assigned to \(\text{C}_3\text{H}_5^+\) via PIE spectra at reactor temperatures of 1200 K and higher. At temperatures below 1100 K, signals at m/z...
FIG. 3. PIMS spectra of bitropyl (C$_7$H$_7$—C$_7$H$_7$) recorded in a continuous flow micro-reactor at temperatures of 400 K, 1100 K, 1200 K, 1300 K, 1400 K, and 1500 K. Pyrolysis of tropyl (C$_7$H$_7$ (M) \rightarrow HCCH + C$_5$H$_5$) commences at 1100 K as indicated by the small signal for HCCH$^+$ at m/z 26 (denoted with a red circle).

FIG. 4. PIE (m/z 65) recorded during the thermal decomposition of bitropyl (C$_7$H$_7$—C$_7$H$_7$) in a continuous flow micro-reactor in He at 900 K, 1200 K, and 1500 K. The red trace is the PIE spectrum of the C$_5$H$_5$ radical recorded previously.36 The ionization threshold35 for X$^2E'$ C$_5$H$_5$ is indicated. There is no evidence for cyclopentadienyl radical being present at 900 K.

FIG. 5. Neon matrix absorption IR spectrum of the 1200 K pyrolysis of bitropyl (C$_7$H$_7$—C$_7$H$_7$) in a pulsed micro-reactor is shown in red. The presence of acetylene83 is demonstrated by observation of the intense bands of ν_3(HCCH). The black trace is that of the bitropyl precursor, which is un-structured at 400 K. The green trace is the background spectrum of pure Ne heated to 1100 K.

FIG. 6. PIMS spectra comparing the thermal decomposition of the benzyl radical and the tropyl radical. In both experiments the precursors (ethyl benzene and bitropyl) are decomposed in a continuous, 0.6 mm I.D. micro-reactor that is heated to 1500 K. No isomerization from the C$_7$H$_7$ radical to the more stable C$_6$H$_5$CH$_2$ is observed, as indicated by the paucity of benzyl decomposition products found in tropyl decomposition spectra.
65 arise from dissociative ionization. Since the ionization energy of acetylene is so large (11.4 eV, see Table I), the signal at m/z 26 will only arise from photoionization of thermally produced HC≡CH and not from dissociative ionization. When molecules are ionized with excess photon energy, cations are formed with internal energy that can be used to fragment the cation to a daughter ion and a neutral fragment(s). Dissociative ionization pathways are generally governed by energetic considerations. A pathway that produces HCCCH$_2^+$ and C$_5$H$_5$ will be energetically less favorable than one producing HCCCH + C$_5$H$_5^+$ by 3 eV, given the difference in ionization energies (IE(HCCCH) = 11.4 eV and IE(C$_5$H$_5$) = 8.4 eV). By recording PIMS at 11.8 eV, we conclude that the feature at m/z 65 results from dissociative ionization whenever the co-produced fragment, HC≡CH, is not detected. At 1100 K and hotter, the spectra imply thermal cracking of tropyl to acetylene and cyclopentadienyl,

$$C_7H_7 \tilde{X} 2E_{c^+}(+M) \rightarrow HC\equiv CH + C_5H_5 \tilde{X} 2E_{c^+}.$$ \hspace{1cm} (3)

As the reactor temperature is increased to 1500 K, the pyrolysis of tropyl radical is complete and m/z 91 is no longer present. At 1400 K, a 10.0 eV PIMS signal at m/z 39 is detected that is assigned to propargyl radical; the IE(HCCCH$_2$) is 8.7 eV (see Table I). In earlier studies,23,33 it was observed that at 1300 K the cyclopentadienyl radical thermally dissociates to propargyl radical and acetylene,

$$C_5H_5(+M) \rightarrow HC\equiv CH + HCCCH_2.$$ \hspace{1cm} (4)

The thermal decomposition of the tropyl radical from 1200 K up to 1500 K is remarkably simple. We observe features at m/z 65 and 26 that are predicted to be cyclopentadienyl and acetylene, consistent with Eq. (3) and Fig. 1. To confirm the identity of the feature at m/z 65, the PIE spectrum of m/z 65 was recorded between 8.0 and 10.5 eV; see Fig. 4. At 900 K and below there is no signal for PIE(m/z 65). At temperatures of 1200 K and above, the PIE for m/z 65 shows a threshold at 8.5 ± 0.1 eV, consistent with the observed35 IE(C$_5$H$_5$) of 8.4 eV (see Table I). The PIE(m/z 65) at 1200 K and 1500 K in Fig. 4 agrees with the PIE of an authentic sample36 of C$_5$H$_5$. The assignment of m/z 39 to the propargyl radical in Fig. 3 is also confirmed37 by a measurement of the PIE(m/z 39). Both the threshold and the shape of the PIE(m/z 39) match the known38 IE(HCCCH$_2$) and photoionization cross section39 of the propargyl radical.

Fig. 5 shows the neon matrix IR spectrum of the products of the thermal decomposition of bitropyl in a pulsed reactor at 1200 K. This vibrational spectrum confirms HC≡CH as a pyrolysis product of tropyl radical. Both the PIE(m/z 65) spectrum in Fig. 4 and the IR spectrum in Fig. 5 confirm the products in Eq. (3).

Fig. 6 is a contrast between the pyrolysis products of ethylbenzene (top) and bitropyl (bottom). Both samples are thermally decomposed in a 0.6 mm I.D., continuous flow.
micro-reactor that is heated to 1500 K. The thermal cracking of C₆H₇CH₂CH₃ initially generates methyl radicals (m/z 15) and benzyl radicals (m/z 91). Subsequent fragmentation of the C₆H₇CH₂ radical leads to the complex set of products at m/z 26, 39, 50, 63, 65, 76, 78, 89, and 90 that are discussed in Ref. 7. Pyrolysis of bitropyl at the bottom of Fig. 6 produces C₂H₅ (m/z 91) and the fragmentation products from tropyl, C₆H₅ (m/z 65), and HC≡CH (m/z 26). Propargyl radical, HCCCH₂ (m/z 39), results from the thermal cracking of the cyclopentadienyl radical, Eq. (4). The dramatic differences between these two PIMS spectra in Fig. 6 provide strong evidence that the tropyl radical does not isomerize to the benzyl radical.

A. Matrix isolation spectroscopy

Because of the extensive dissociative ionization of the tropyl radical precursor, C₇H₇→C₆H₇, the application of PIMS to study tropyl radical pyrolysis is somewhat limited. Photons of the pyrolysis products will always be partially obscured by fragments of dissociative ionization. Consequently IR spectroscopy is a very useful complementary detection tool.

However, the matrix IR spectroscopy of tropyl radical has its own set of complications. There are no definitive vibrational spectra of the C₇H₇ radical in a matrix environment. The gas phase IR spectrum was recorded for the tropyl radical (formed in a discharge from cycloheptatriene) with an IR-UV double resonance technique¹⁵ that used the free electron laser “FELIX.” Several vibrational modes of tropyl were observed in the fingerprint region but none could be assigned. LIF spectroscopy¹² has been used to identify some of the modes of C₇H₇, X ²E₂′. This study presented a vibrational analysis of the Å ²E₂′ ← X electronic spectrum and several gas phase modes of the ground ²E₂′ state were reported. Unfortunately, because of the nature of LIF spectroscopy, there is no information available regarding IR intensities for the ground state C₇H₇, X ²E₂′ fundamentals. An important complication for studying tropyl radical in a neon matrix is the presence of the Jahn–Teller effect, which distorts the tropyl radical from the D₉₅ surface to the C₂₉ surface. The effect of inert gas matrices on Jahn-Teller distorted molecules is not easy to predict and is expected to cause greater perturbations from gas-phase frequencies.

In spite of these difficulties, matrix isolation IR spectroscopy is useful as a secondary confirmation for tropyl radical decomposition. The precursor used is bitropyl and the experiments were performed using neon as the carrier gas. Fig. 7 shows four scans taken at different reactor temperatures for bitropyl decomposition: 400 K, 1000 K, 1100 K, and 1200 K; as well as a scan of pure neon run at 1100 K as a control to rule out any systematics. The thin black trace shows an absorption feature from the precursor, which has not undergone decomposition at 400 K. This peak is significantly depleted upon heating to 1000 K (thick black line) and a strong, broad feature has developed centered at 3056 ± 6 cm⁻¹. Upon heating to 1100 K (thick red trace) and 1200 K (thick red trace), this new peak is depleted as tropyl radical thermally decomposes. The feature from the bitropyl precursor is completely absent by 1100 K. This temperature dependence is in qualitative agreement with that observed in Fig. 3, although one could expect minor discrepancies due to differing carrier gas (Ne vs. He) and flow conditions (pulsed vs. continuous). None of the vibrational features for tropyl radical in the CH stretch region have been previously assigned. A recent helium nanodroplet study observed a pair of vibrational bands at 3052.9 cm⁻¹ and 3057.4 cm⁻¹ that are assigned to the tropyl radical. The helium nanodroplet spectra agree well with the matrix IR feature illustrated in Fig. 7. Fig. 8 shows an additional intense absorption feature appearing in the decomposition of bitropyl at 1451 cm⁻¹. This feature exhibits similar temperature dependence to that shown in Fig. 7; it is not observed at 400 K and is strongest at 1000 K and begins to decay at 1100 K and 1200 K.

Neither the 3056 cm⁻¹ nor the 1451 cm⁻¹ bands were observed in the spectra from benzyl decomposition nor were any vibrational assignments for benzyl radical observed in the tropyl radical decomposition spectra. This provides further confirmation that the benzyl and tropyl radicals do not interconvert, even at temperatures where both radicals thermally decompose.

B. Cycloheptatriene or norbornadiene as tropyl precursors?

In addition to bitropyl, cycloheptatriene (C₇H₈) was considered as a pyrolytic source of C₇H₇. Cycloheptatriene has been successfully used as a precursor to prepare gas-
phase tropyli radicals in discharge sources. However, shock tube studies of high-temperature pyrolysis of cycloheptatriene demonstrate complete conversion of C$_7$H$_8$ to C$_6$H$_3$CH$_3$. A gas-phase, stirred-flow reactor was used to explore the isomerizations of norbornadiene, cycloheptatriene, and toluene. No intermediate radicals could be detected in this early study because the reaction products were detected by gas chromatography with flame ionization detection. Fig. 9 is a summary of the interconversions of norbornadiene, cycloheptatriene, and toluene. Norcaradiene has been predicted as an intermediate in the equilibration phase tropyl radicals in discharge sources. However, shock tube studies of high-temperature pyrolysis of cycloheptatriene demonstrate complete conversion of C$_7$H$_8$ to C$_6$H$_3$CH$_3$. A gas-phase, stirred-flow reactor was used to explore the isomerizations of norbornadiene, cycloheptatriene, and toluene. No intermediate radicals could be detected in this early study because the reaction products were detected by gas chromatography with flame ionization detection. Fig. 9 is a summary of the interconversions of norbornadiene, cycloheptatriene, and toluene. Norcaradiene has been predicted as an intermediate in the equilibration phase tropyl radicals in discharge sources.

Fig. 10 shows the IR spectra of a dilute mixture of 0.05% cycloheptatriene in neon that was thermally decomposed in a pulsed micro-reactor. As predicted, C$_7$H$_8$ isomerizes to toluene rather than forming tropyli radical. This finding was confirmed by assigning 11 absorption features to gas-phase C$_6$H$_3$CH$_3$. At 300 K the only feature in this spectral window is due to the precursor, cycloheptatriene, but upon heating, three new bands emerge. The three peaks are assigned as ν_{11} at 730 cm$^{-1}$, ν_4 at 695 cm$^{-1}$, and ν_{18b} at 1083 cm$^{-1}$, which agree well with the gas-phase values: $\nu_{11} = 728$ cm$^{-1}$, $\nu_4 = 695$ cm$^{-1}$, and $\nu_{18b} = 1080$ cm$^{-1}$. At the highest temperature (1500 K), a few small features are observed that are assigned to C$_6$H$_3$CH$_2$ including ν_7 (762 cm$^{-1}$) and ν_{13} (1308 cm$^{-1}$), in agreement with the argon matrix spectrum of benzyl radical.

The isomerization of C$_7$H$_8$ to C$_6$H$_3$CH$_3$ is confirmed by the 118.2 nm PIMS, shown in Fig. 11. In this experiment, cycloheptatriene is subjected to pyrolysis in a pulsed micro-reactor heated to 300 K, 1400 K, and 1600 K. The products shown at 1600 K are nearly identical to those observed from benzyl radical precursors but with a higher temperature for decomposition onset; compare with top panel of Fig. 6.

We also studied the decomposition of 2,5-norbornadiene (Fig. 12). The IE(2,5-norbornadiene) is less than 8.35 eV (Table I) and the initial scan (400 K) reveals a small amount of dissociative ionization: norbornadiene + 118.2 nm \rightarrow C$_6$H$_3$CH$_2^+$ (m/z 91) + H atom. At 1300 K, it is observed that norbornadiene undergoes a retro-Diels-Alder reaction: norbornadiene (+ M) \rightarrow C$_3$H$_6$ (m/z 66) + H@CH (see Fig. 9). As the reactor is heated to 1600 K, it appears that 2,5-norbornadiene isomerizes to C$_6$H$_3$CH$_3$, which thermally dissociates to H atom and benzyl radical. The fragmentation of C$_6$H$_3$CH$_2$ (top scan in Fig. 12) is very similar to the pyrolysis pattern observed for norbornadiene (bottom Fig. 12). At higher reactor temperatures, the retro-Diels-Alder pathway is still active but is obscured by fragmentation of the product cyclopentadiene: C$_3$H$_6$ (+ M) \rightarrow C$_3$H$_5$ (m/z 65) + H. See Fig. 5 of Ref. 46.
FIG. 12. PIMS spectra from the pyrolysis of norbornadiene in pulsed helium are shown at three reactor temperatures, 400 K, 1300 K, and 1600 K. At 1300 K, norbornadiene undergoes a retro-Diels-Alder fragmentation and produces HCCH and C5H6 (m/z 66); bottom scan. At 1600 K a set of products appears that is very similar to those characteristics of benzyl radical decomposition; top scan uses C6H8CH3 as a source of benzyl radical.

IV. CONCLUSIONS

The results of Figs. 3–8 eliminate any participation of the C2H2 radical from the pyrolysis pathways of the C6H6CH2 radical at temperatures up to 1600 K. Tropyl radical only decomposes to acetylene and the cyclopentadienyl radical, Eq. (3). These findings are consistent with the failure of tunable PIMS to detect C2H2 radicals as benzyl undergoes pyrolysis. Very recently, time-resolved PIMS spectroscopy was used to study soot formation. The addition of acetylene to propargyl radical in a slow flow quartz reactor at (10 Torr/1000 K) was found to induce molecular weight growth via the sequence: HC≡CH + HCCCH2 → C6H3 + C2H7. This is exactly the reverse of the pyrolysis reactions (3) and (4) above. We conclude this paper with a reconsideration of the pathways for the thermal fragmentation of benzyl radical based on all experimental findings.

The pyrolysis of the benzyl radical is a complex problem. None of the early experimental papers describing the pyrolysis of C6H5CH2 were able to identify any of the thermal fragments except for the H atoms detected by ARAS. The only organic radicals resulting from pyrolysis of benzyl radical come from a few studies using heated micro-reactors outfitted with VUV PIMS.

The pyrolysis of toluene was studied in a quartz flow tube reactor at pressures of 8–15 Torr and temperatures of 1136–1507 K. A more recent study of toluene pyrolysis used a heated alumina (Al2O3) micro-reactor coupled to a VUV PIMS driven by tunable radiation from a synchrotron. The 248 nm photochemistry of benzyl radical has been studied by photofragment translational spectroscopy. Dissociation occurs following relaxation from the excited state to the ground state, C6H5CH2 + X = C6H5CH + CH3 excited by 5 eV. The benzyl radicals fragment to H + C6H5 and CH3 + C6H4 radicals.

A. Pyrolysis of benzyl radical without tropyl

In all the pyrolysis experiments performed on benzyl radicals or tropyl radicals (this paper), care was taken to study dilute samples (0.1%–0.02% hydrocarbons in He or Ne). In the analysis of these results, we assume all fragmentation products result from unimolecular chemistry; there is no bimolecular chemistry to be analyzed. Pathways for the unimolecular, thermal decomposition of the benzyl radical are shown in Figs. 13 and 14. These schemes are based on the experimental findings from shock tubes with ARAS detection and heated micro-reactors monitored by PIMS and IR spectroscopy. Heating the C6H5CH2 radical to 1300 K triggers an “extended” Benson fragmentation. The original suggestion only offered pathways for H atom loss and formation of the fulvenallenyl radical, C6H4=C==CH. This mechanism also implies formation of the cyclopentadienyl radical and acetylene. The bicyclic radicals and vinylidene (C=CH2) in Fig. 13 will not be stable in the hot micro-reactor and are enclosed in brackets. The production of H atoms is known from both ARAS and PIMS spectra.

The Benson fragmentation in Fig. 13 leads to formation of the cyclopentadienyl and the fulvenallenyl radicals (one could view C6H4=C==CH as a substituted cyclopentadienyl radical). As shown in Eq. (4), C6H5 decomposes to acetylene and propargyl radicals at 1300 K. Likewise the fulvenallenyl radical has been observed to decompose to propargyl radical and diacetylene. This can be summarized.

C6H4=C==CH(+ M) → HCCCH2 + HC==C==CH,
(5a)
C6H4=C==CH(+ M) → HC==CH + HC==C==CH–C==CH,
(5b)
C6H4=C==CH(+ M) → HC==CH + HC==C==C==C==CH2.
(5c)
The presence of the cyclopentadienyl radical and HC≡CH is confirmed by PIMS, PIE, and IR spectroscopy. PIMS and PIE spectroscopy also detect both C₆H₅=CH₂ and C₆H₅—C≡CH. The presence of fulvenallene is additionally confirmed by IR spectroscopy. PIMS and IR spectroscopy clearly identify the propargyl radical, HCCCH₂. PIMS signals at m/z 50 and 63 are consistent with the presence of HC≡C—C≡CH and the two radicals, CH₂—C≡C—C≡CH and HC≡C—CH—C≡CH. However, neither the PIE nor IR spectra could distinguish between the (CH₂—C≡C—C≡CH, HC≡C—CH—C≡CH) pair.

The Benson fragmentation predicts loss of H atom from C₆H₅CH₂ to produce a pair of isomers, C₆H₅=CH₂ and C₆H₅—C≡CH, both at m/z 90. Recently pyrolysis of C₆H₅CD₂ in a shock tube with ARAS detection revealed the formation of both H and D atoms in agreement with this prediction. Pyrolysis of C₆H₅CD₂CD₃ in a micro-reactor provided further support with the detection of both C₆H₅=CD=CD₂ (m/z 92) and C₆H₅—CD=CD₂ (m/z 91).

The Benson fragmentation shown in Fig. 13 cannot be the complete story for the thermal cracking of the benzyl radical. PIMS and PIE spectra confirm that heating C₆H₅CH₂ radicals to 1300 K produces CH₃, C₁₃-labeled C₆H₅, and o-C₆H₄; these products cannot be explained by Benson’s mechanism. Fig. 14 shows two additional pathways for thermal cracking of benzyl radicals that address these products.

The pyrolysis of C₆H₅¹³CH₂ produces both CH₃ (m/z 16) and o-C₆H₄ (m/z 76). These products could be the result of an isomerization of the [¹³benzyl] radicals to the [α¹³methyl-phenyl] radicals in Fig. 14. The isomerization would be initiated by H-abstraction from the aromatic ring by the —CH₂ side chain. Such an abstraction would be difficult because of a required (π → σ) curve-crossing (C₆H₅CH₂, ²B₁ → C₆H₅CH₂, ²A'). In addition the internal abstraction will be endothermic by about 1 eV because of the difference in the C₆H₅CH₂—H and C₆H₅—H bond energies (see Table I). Formation of the C₆H₅CH₂, ²A' radical in Fig. 14 will be followed by rapid fragmentation to the methyl and o-benzyne radicals and both are confirmed to be present. Heating o-C₆H₄ to high temperatures is known to trigger fragmentation to HC≡CH and HC≡C—C≡CH. The pyrolysis reactions of both the C₆H₅CD₂ and C₆D₂CH₂ radicals are consistent with this pathway. Decomposition of C₆H₅CD₂ radicals at 1500 K forms small quantities of the CD₃H (m/z 17) radicals while heating C₆D₂CH₂ radicals to 1400 K leads to appearance of CH₂D (m/z 16) radicals.

A second pathway for fragmentation of the benzyl radical shown in Fig. 14 is isomerization of C₆H₅CH₂ to the bridgehead, norbornadienyl radical. Such a bridgehead radical would suffer a retro-Diels-Alder fragmentation producing HC≡CH and the ²A' C₆H₅ radical. The planar (σ) ²A' C₆H₅

FIG. 13. The “extended” Benson fragmentation of the benzyl radical, C₆H₅CH₂, X⁻B₁. The original mechanism provided pathways for H atom loss and formation of the fulvenallenyl radical, C₆H₄—C≡CH. This suggestion also implies formation of the cyclopentadienyl radical and acetylene. The bicyclic radicals and vinylidene (C≡CH₂) will not be stable in the hot micro-reactor and are enclosed in brackets. The tropyl radical, C₆H₅, X⁻E₂'', does not participate.

FIG. 14. Fragmentation pathways of the benzyl radical, C₆H₅CH₂, X⁻B₁, are shown. The internal H-atom abstraction from the ring that leads to the formation of the α methyl-phenyl radical will be endothermic by roughly 1 eV. This process also requires a curve-crossing from the ²B₁ benzyl (π radical) to the ²A' methyl-phenyl (σ radical). Decomposition of the α methyl-phenyl radical produces CH₃ and o-C₆H₄. A second pathway is the isomerization of benzyl to the bridgehead norbornadienyl radical. The α methyl-phenyl radicals, bridgehead norbornadienyl radicals, and ²A' cyclopentadienyl radicals will not be stable in the hot micro-reactor and are enclosed in brackets. The tropyl radical, C₆H₅, X⁻E₂'', does not participate.
radical is certainly the initial adduct in the reaction of propargyl with acetylene and it rapidly isomerizes to the ground state, cyclopentadienyl radical, C_5H_5, X 2E_1. The 13C label into the cyclopentadienyl radical, as observed in Fig. 13 of Ref. 7.

The pyrolysis pathways for C_6H_4CH_2 shown in Figs. 13 and 14 are consistent with all of the major peaks of the PIMS in Fig. 2 of Ref. 7. The corresponding pathways for the isotopically substituted benzyl radicals, C_6H_5CD_2, C_6D_5CH_2, and C_6H_5^13CH_2 are contained in Figs. S1–S6 in the supplementary material. As in the case of the parent benzyl radical, these predicted C_6H_5CD_2, C_6D_5CH_2, and C_6H_5^13CH_2 pathways can be used to assign the major peaks of the experimental PIMS spectra in Figs. 8, 10, and 11 of Ref. 7.

A recent paper applied metadynamics to the pyrolysis of benzyl. These calculations suggested that both C_5H_5 and its isomer, (CH_2)_2C=C=CH, are intermediates in the high temperature pyrolysis of benzyl. The IE(C_6H_5) is measured to be 8.4 eV (see Table I) and the measured P(ECH/m/z 65) has its threshold at 8.4 ± 0.1 eV. The IE(HCC=C(CH_2)=CCH) is not measured but it is likely less than that of the allyl radical, 8.1 eV (see Table I). The P(ECH/m/z 65) resulting from the thermal cracking of the C_6H_5CH_2 radical indicates that there is little (or no) (CH_2)_2C=C=CH present in the pyrolysis of benzyl. It was also predicted by the metadynamics calculations that the initial C_6H_5CH_2 radicals could isomerize to a pair of isomeric, dimethylene-cyclopentenyl radicals. The spectroscopic probes of Ref. 7 could not confirm the presence of these two isomers.

There are small features at m/z 41, 51, 64, 77, and 78 present in the PIMS of C_6H_5CH_2 (Fig. 2 of Ref. 7) that cannot be rationalized by either pathways of Figs. 13 and 14. The peaks at m/z 77 and 78 are likely the phenyl radical (C_6H_5) and benzene. There is a theoretical calculation that predicts a channel for pyrolysis of fulvenallene to (C_6H_5C=C=CH). The singlet carbene (C_6H_5) is consistent with the peak at m/z 64.

There are small bands in the 118.2 nm PIMS spectra of C_6H_5CD_2 and C_6D_5CH_2 (Figs. 8 and 10 of Ref. 7) that suggest an interesting subtlety to the α methyl-phenyl radical in Fig. 14. Perhaps there is some equilibration of benzyl radicals with the α methyl-phenyl radicals? If so, then the C_6H_5CD_2 and C_6D_5CH_2 radicals will scramble: C_6H_5CD_2 + HC=CH → C_6H_5D + CHD. Application of the Benson fragmentation, methyl-phenyl, norbornadienyl pathways to the o-C_6H_5D + CHD radical leads to the formation of complex set of labeled (fulvenallenes, ethynl cyclopentadienes, and fulvenallenyl) radicals. Fragmentation of these radicals predicts formation of C_6H_5C=C=CH (m/z 89), C_6H_5D (cyclopentadienyl radical-d_1, m/z 66), o- C_6H_5D (o-benzene, m/z 77), HC=C+C=CH (m/z 63), and DC=C=C=CD (m/z 52). There are signals in Fig. 8 of Ref. 7 that are compatible with these radicals. A similar scrambling of benzyl radical-d_1 (C_6H_5CD_2 + HC=CH → C_6H_5D + CHD) leads to production of C_6H_5D + C=CH (m/z 92), C_6D_5H (m/z 69), o-C_6D_5H (m/z 79), and DC=C=C=CD (m/z 66). Weak features for all of these radicals are present in Fig. 10 of Ref. 7.

Examination of the isotopic spectra for pyrolysis of benzyl radical permits a rough estimation of the energetics of the three decomposition pathways for benzyl radical. It appears that two channels (Benson fragmentation and the bridgehead norbornadienyl radical) open at roughly the same rector temperature. The methyl-phenyl radical channel becomes active at slightly higher temperatures. The PIMS spectrum of C_6H_5CH_2 (Fig. 11 in Ref. 7) demonstrates that benzyl radical decomposition begins at 1300 K. The Benson fragmentation products (fulvenallene, m/z 91) and (fulvenallene, m/z 90) are both observed. The norbornadienyl pathway produces (cyclopentadienyl, m/z 66) while the methyl-phenyl radical channel generates (C_6H_5, m/z 16) and both species are also present. For the case of the C_6H_5CD_2 radical, Fig. 8 of Ref. 7, radical decomposition is underway at 1300 K and products of the Benson fragmentation (m/z 91, 92, and 90) are present as well as cyclopentadienyl-d_2 (m/z 67) resulting from the norbornadienyl channel. Products from the methyl-phenyl radical channel, CHD_2 (m/z 17) and o-C_6H_4 (m/z 76), appear at 1500 K. Decomposition of the C_6H_5CH_2 radical (Fig. 10 of Ref. 7) yields a similar result; radicals from the methyl-phenyl radical channel, CDH_2 (m/z 16) and o-C_6D_3 (m/z 80), are detected at 1500 K. At 1300 K evidence of the Benson fragmentation (m/z 94, 95, 93) and the norbornadienyl route (cyclopentadienyl radical-d_1, m/z 68) is evident. Qualitatively it appears that the Benson fragmentation and the norbornadienyl channels become activated at 1300 K while the methyl-phenyl radical pathway is present at 1500 K.

In principle it is possible to use the experimental results of the micro-reactor from this paper and Ref. 7 to put some bounds on the pyrolysis kinetics of the benzyl radical. As summarized in Figs. 13 and 14, there are at least three thermal decomposition pathways for the C_6H_5CH_2 radical. These are represented by Eqs. (6)–(8).

\[
\begin{align*}
C_6H_5CH_2 \rightarrow C_6H_5-\text{CH}_2 + H \rightarrow C_6H_5-\text{C}^*\text{CH} + H, \\
C_6H_5CH_2 \rightarrow [C_6H_5CH_2] + CH_2 + C_6H_5, \\
C_6H_5CH_2 \rightarrow \text{bridgehead norbornadienyl radical} \\
\rightarrow H^*\text{CH} + C_6H_5.
\end{align*}
\]

If the residence time in the micro-reactor is roughly 0.1 ms, then reactions with a rate of less than 10^5 s^{-1} will not be observed while reactions with rates greater that 10^5 s^{-1} will appear to be complete. The effective transit time (i.e., residence in the “sweet spot”) is even shorter, which puts a lower limit on the rate coefficients of the processes that can be observed. If kinetic modeling can provide a set of pre-exponential factors for Eqs. (6)–(8) or other reactions, then the residence time and the reactor temperature will put a bound on the heights of the barriers that this experiment can detect. Such estimates will require detailed computational fluid dynamics modeling of the SiC micro-reactor to find realistic residence times as well as the gas pressures and temperatures. This is an intriguing notion but is beyond the scope of this paper.

The decomposition of benzyl radical with its three distinct pyrolysis pathways (shown in Figs. 13 and 14) is...
complicated. Nevertheless, the proposed mechanisms offer a set of predictions for the thermal cracking of more complex aromatic compounds that are included in surrogate fuel mixtures. Aviation fuels are composed of mixtures of a very large number of chemical components. The detailed numerical simulation of real combustion fuels is currently too difficult to apply to any fuel that is not a pure component or a mixture of only a few species. One way to circumvent this problem is to study surrogate fuels. Such surrogate fuels should be comprised of a handful of components but be capable of emulating the gas phase combustion characteristics of the real fuel of interest. The advantage, of course, is that the resulting reaction mechanism will be a much more manageable size. A surrogate fuel for aviation diesels has been proposed that is a mixture of ten compounds. This mixture includes 6 alkanes (n-decane, n-dodecane, iso-octane, iso-cetane, methyl cyclohexane, and n-buty1 cyclohexane) and 4 aromatic species (toluene, n-propyl benzene, 1,3,5-trimethyl benzene, and 1-methyl naphthalene). Three of these species (C6H5—CH3, C6H7(CH3)3, and C8H9—CH2CH2H3) would be predicted to pyrolyze to benzyl radicals. The decomposition pathways for C6H5CH3 in Figs. 13 and 14 will be relevant to these surrogates.

ACKNOWLEDGMENTS

It could be possible for the α methyl-phenyl radical, α CH3—CH3, to form the α methylbenzene, α CH3—CH3—H by atom loss. However a scan of the P(E) (m/e 90) identifies m/90 as fulvenallene, C22H9=CH2H. There is no evidence for the presence of α CH3—CH3H.

81T. Shimanouchi, Tables of Vibrational Frequencies, Consolidated Vol. I, NSRDS-NBS Vol. 39, p. 1972. The IR active modes of acetylene in an Ar matrix are slightly shifted from their gas-phase values. For the case of HC≡CH the Ar matrix frequencies are $\sigma_u \nu_3 = 3302$ cm$^{-1}$ and 3288 cm$^{-1}$ (splitting by the Darling-Dennison resonance is 14 cm$^{-1}$ in the cryogenic matrix) and the $\pi_u \nu_5$ is 736.8 cm$^{-1}$. For DC≡CD the matrix frequencies are $\sigma_u \nu_3 = 2442$ cm$^{-1}$ and $\pi_u \nu_5$ is 736.8 cm$^{-1}$. The symmetry is broken in acetylene-d$_1$, HC≡CD. The matrix frequencies are $\sigma^+ \nu_1 = 3340$ cm$^{-1}$, $\sigma^+ \nu_2 = 1854$ cm$^{-1}$, $\sigma^+ \nu_3 = 2586$ cm$^{-1}$, $\pi \nu_4 = 518$ cm$^{-1}$, and $\pi \nu_5 = 683$ cm$^{-1}$.