Title
DYSPROSIUM-154, A LONG-LIVED ALPHA EMITTER

Permalink
https://escholarship.org/uc/item/7n12m4ws

Author
Macfarlane, Ronald D.

Publication Date
1960-08-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California

Contract No. W-7405-eng-48

DYSPROSIUM-154, A LONG-LIVED ALPHA EMITTER

Ronald D. Macfarlane

August, 1960
DYSPROSIUM-154, A LONG-LIVED ALPHA EMITTER

Ronald D. Macfarlane
Lawrence Radiation Laboratory
University of California, Berkeley, California
August, 1960

ABSTRACT
Gadolinium oxide, enriched in Gd154, was bombarded with 48-Mev alpha particles to form dysprosium isotopes. Alpha pulse-analysis of the chemically separated dysprosium resulted in the observation of a new weak alpha activity of 2.85 ± 0.05 Mev energy. This activity was assigned to Dy154 on the basis of a rough excitation function and consideration of alpha-decay systematics of the neighboring dysprosium isotopes.

The alpha half life was calculated as approximately 1×10^6 years by estimating the amount of Dy154 produced and comparing it with the alpha-count rate.

A lower limit of 10 years for the beta-decay half life was established on the basis of the absence of the prominent gamma radiation of Tb154 in the photon spectrum.
DYSPROSIUM-154, A LONG-LIVED ALPHA EMITTER

Ronald D. Macfarlane
Lawrence Radiation Laboratory
University of California, Berkeley, California
August, 1960

INTRODUCTION

The observation of alpha activity in the rare earth elements is the result of an enhancement of alpha-decay energy due to the decrease in neutron binding energy of nuclides containing between 84 and 88 neutrons.

In 1953, Rasmussen et al. reported results on alpha emitters of europium, gadolinium, terbium, and dysprosium. The dysprosium alpha emitters were later studied in greater detail by Toth and Rasmussen, who identified the alpha activities of Dy150, Dy151, Dy152, Dy153, and Dy154. The alpha activity attributed to Dy154 decayed with a half life of 13 hours and possessed an alpha energy of 3.35 Mev. From the observed alpha-counting rate, it appeared that the alpha-to-beta branching ratio was indeed very small. However, no evidence for a beta decay branch was observed: neither a 13-hour decay component in the gamma spectrum nor the appearance of the daughter, Tb154, in the gamma spectrum. Toth postulated that this alpha activity was due to an isomer of Dy154 and that the ground state actually was long-lived.

The purpose of this investigation was to test, in part, this hypothesis by searching for a long-lived alpha-emitting Dy154.

EXPERIMENTAL DETAILS

Two samples of 3 mg each of gadolinium oxide, enriched in Gd154 to 33%, were irradiated in a stacked-foil arrangement with 30 microampere-hours of alpha particles in the Berkeley 60-inch cyclotron. The first sample was bombarded at 48 Mev, and the second sample at 37 Mev.

Separation of dysprosium from the target material was accomplished by a cation-exchange method described elsewhere. The eluting agent was 0.4 M alpha-hydroxy isobutyric acid buffered to a pH of 3.95.

After the rare earth separation, the dysprosium fraction was evaporated to dryness and the residue dissolved in concentrated hydrochloric acid. The
solution was then passed through a Dowex-1 X10 anion-exchange column in order to remove some of the inert material which had passed through the cation-exchange column (mostly iron). The eluate was then taken to dryness and treated with aqua regia to remove most of the organic material present.

Finally, the residue was taken up in a couple of drops of concentrated nitric acid and transferred to a 1-inch-diameter platinum disc. The disc was heated to dryness and ignited to red heat. This procedure resulted in the formation of an essentially weightless deposit suitable for alpha pulse-analysis.

Alpha spectra were obtained by using a Frisch-grid argon-methane flow-type ion chamber. Electronic amplification was provided by a Berkeley "ball and chain" preamplifier and a "Miemar" main amplifier. The spectrum was displayed on a 100-channel pulse-height analyser.

Energy calibration was provided by Sm147 (2.23 Mev) and Gd148 (3.16 Mev).

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>Isotopic abundance of target gadolinium.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>152</td>
</tr>
<tr>
<td>Enriched Gd154</td>
<td>0.32</td>
</tr>
<tr>
<td>Natural Gd</td>
<td>0.20</td>
</tr>
</tbody>
</table>

RESULTS

1. Alpha-Decay Properties

Fig. 1 shows the alpha spectrum of the dysprosium fraction from the 48-Mev bombardment taken 3 days after the end of the bombardment. A weak alpha group of 2.85 Mev energy with an intensity of ~ 0.07 count per minute was observed. This activity was not observed in the sample from the 37-Mev bombardment.
Fig. 1. Alpha Particle Spectrum of 154Dy. Counting time: 4269 minutes.
Assuming that the alpha activity was due to Dy154, produced by an $(\alpha,4n)$ reaction on Gd154, the total number of atoms of Dy154 produced was calculated by using an estimate of 1 barn for the cross section. From these data, the alpha half life of Dy154 was determined to be 1×10^6 years, uncertain by a factor of 3.

2. Search for Beta-Decay Branch

The alpha spectrum was recorded at different intervals over a period of 10 months. As shown in Fig. 2, no decrease in the alpha-particle counting rate was observed.

Next, the gamma spectrum was studied 10 months after bombardment in order to see whether the beta-decay daughter, 19-hour Tb154, was present. It is characterized by a strong 123-kev gamma radiation. The only peaks present, however, were those due to Gd153, arising initially from Dy153. The absence of the 123-kev gamma radiation of Tb154, was used to establish a lower limit for the beta half life of 10 years. (It was estimated that the 123-kev gamma was present in at least 20% abundance in the electron-capture decay of Tb154.)

3. Mass Assignment

The assignment of the 2.85-Mev alpha activity to Dy154 was based on the following argument. That the activity was observed at a bombarding energy of 48 Mev and not at 37 Mev indicates that the activity was produced by an $(\alpha,4n)$ but not an $(\alpha,3n)$ reaction (very little $(\alpha,4n)$ product is formed at 37 Mev in the rare earth region). Of all the gadolinium isotopes present in the target material (see Table I) only Dy152, Dy154, and Dy160 could be formed by an $(\alpha,4n)$ and not an $(\alpha,3n)$ reaction. Dy160 was eliminated because it is a naturally occurring isotope with a very long alpha half life. Dy152 was also eliminated because its alpha-decay properties have already been characterized and are different from those observed in this work. This left Dy154 as the only other possibility.

From the trend of the alpha-decay energies of the other dysprosium isotopes, it appeared reasonable that Dy154 should have the observed alpha-particle energy (see Fig. 3).
Fig. 2. Counting Rate of Decay Curve of Dy154 Alpha Activity.
Fig. 3. Variation of Alpha Decay Energy with Mass Number for the Dysprosium Isotopes.
DISCUSSION

The discovery of long-lived Dy154 provides an answer to the puzzling result of Toth, who was unable to observe the growth of Tb154 in samples known to contain Dy154. It also relieves somewhat what appears to be an abnormally large difference in alpha-decay energy between Dy154 and Dy156 compared with what has been observed from mass data for Gd152 - Gd154 and Sm150 - Sm152.\(^{11}\) (An upper limit of 2.0 Mev for the alpha-decay energy of Dy156 has been established on the basis of the negative results obtained by Riezler and Kauw for natural dysprosium.\(^{12}\))

The origin of the 13-hour alpha emitter reported by Toth and Rasmussen is still a puzzle. Preliminary results confirm the apparent existence of this alpha activity, but there is some indication that it is not due to Dy154.\(^{13}\) Further work is in progress on this problem.

ACKNOWLEDGMENTS

The assistance of the crew of the 60-inch cyclotron and the health chemistry group is gratefully acknowledged.

This work was performed under the auspices of the United States Atomic Energy Commission.
REFERENCES

6. Designed and fabricated at the Lawrence Radiation Laboratory, University of California, Berkeley 4, California.
7. Manufactured by Pacific Electric-Nuclear Co., Culver City, California.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.