Title
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

Permalink
https://escholarship.org/uc/item/7n5568mq

Authors
Lees, JP
Poireau, V
Tisserand, V
et al.

Publication Date
2013-07-24

DOI
10.1016/j.nima.2013.04.029

License
CC BY 4.0

Peer reviewed
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e− collider

J.P. Leesa, V. Poireua, V. Tisseranda, E. Graugesb, A. Palanoab,c, G. Eigen d, B. Stugu d,
D.N. Brown e, L.T. Kerthe, Yu.G. Kolomensky e, G. Lynch e, H. Koch f, T. Schroeder f, DJ. Asgeirsson g,
C. Hearty g, T.S. Mattison g, J.A. McKenna g, R.Y. So g, A. Khan h, V.E. Blinov i, A.R. Buzykaev i,
V.P. Druzhinia, V.B. Golubev i, E.A. Kravchenoko, A.P. Onuchin i, S.I. Serednyakoy, Yu.I. Skopenki i,
E.P. Solodov i, K.Yu. Todyshevi, A.N. Yushkovi i, D. Kirkby j, A.J. Lankford j, M. Mandelkern j, B. De y,
J.W. Garyk k, O. Longk, G.M. Visutk k, C. Campagnik, M. Franco Sevillal, T.M. Hongl, D. Kirkbyj,
C. Mariangil, M. Fritscham, W. Gradlam, K. Griessinger am, A. Hafner am, E. Principe am, R.J. Barlow an,3, G.D. Lafferty an, E. Behn ao, R. Cenci ao,
B. Hamilton ao, A. Jawahery ao, D.A. Roberts ao, C. Dallapiccola ap, R. Cowan ao, D. Dujmic ao, G. Sciolla ao,
R. Cheaib ar, P.M. Patel ar,4, S.H. Robertson at, P. Biassoni at, A. Rossi at, R. Godang at,5, R. Kroeper at, J. Sommers at, X. Nguyen au, M. Simard au, P. Taras au, G. De Nardo ab,av, D. Monorchio ab,av, G. Onorato ab,av, C. Sciacca ab,av, M. Martinelli aw, G. Raven aw, C.P. Jessop ax,
J.M. LoSecco ax, K. Honscheid ay, R. Kass ay, J. Brau az, R. Frey az, N.B. Sinev az, D. Strom az, E. Torrence az,
E. Feltresi ab,ba, N. Gagliardi ab,ba, M. Margoni ab,ba, M. Morandin ab,ba, M. Posocco ab,ba, M. Rotondo ab,ba,
G. Simi ab,ba, F. Simonetto ab,ba, S. Akar bb, E. Ben-Haim bb, M. Bomben bb, G.R. Bonneau bb,
H. Briand bb, G. Calderini bb, J. Chauveau bb, O. Hamon bb, Ph. Leruste bb, G. Marchiori bb, J. Ocario bb,
S. Sitt bb, M. Biasini bb, E. Manoni bb, S. Pacetti bb, A. Rossi bb, C. Angelini bb, G. Batignani bb,
S. Bettarini ab,bb, M. Carpinelli ab,bb,6, G. Casarosa ab,bb, A. Cervelli ab,bb, F. Forti ab,bb, M.A. Giorgi ab,bb,
A. Lusiani ac,bb, B. Oberhof ad,bb, E. Paoloni ad,bb, A. Perez ad,bb, G. Rizzo ad,bb, J.J. Walsh ad,bb, D. Lopes Pegna be,
J. Olsen be, A.J.S. Smith be, F. Anulli af, F. Faccini af, F. Ferrarotto af, F. Ferroni af, M. Gaspero af,
L. Li Gioi af, M.A. Mazzoni af, G. Piredda af, C. Bünger bg, O. Grünberg bg, T. Hartmann bg, T. Leddig bg,
C. Voß bg, R. Waldis bg, T. Adye bh, E.O. Olaiya bh, F.F. Wilson bh, S. Emery bi, G. Hamel de Monchenault bi,
G. Vasseur bi, Ch. Yéche bi, D. Aston bj, D.J. Bard bj, J.F. Benitez bj, C. Cartaro bj, M.R. Convery bj, J. Dorfan bj,
G.P. Dubois–Felsmann bj, W. Dunwoodie bj, M. Ebert bj, R.C. Field bj, B.G. Fulsom bj, A.M. Gabareen bj,
M.T. Graham bj, C. Hast bj, W.R. Innes bj, M.H. Kelsey bj, P. Kim bj, M.L. Kocián bj, D.W.G.S. Leith bj, P. Lewis bj,
1. Introduction

The BABAR detector [1] operated at the PEP-II asymmetric-energy e^+e^- collider [2] and collected physics data from October 1999 until March 2008. Most of the data were collected at an e^+e^- center-of-mass (CM) energy \sqrt{s} corresponding to the mass of the $\Upsilon(4S)$ resonance [3]. This “on-resonance” $\Upsilon(4S)$ sample contains $(464.8 \pm 2.8) \times 10^6 \, \Upsilon(4S)$ events [4] and is used for the study of B-meson decays, CP violation, and $B^0\bar{B}$ mixing. Data samples collected at the $\Upsilon(3S)$ and $\Upsilon(2S)$ resonances in 2008 are used for bottomonium studies and for dedicated new-physics searches. For each $n(1S)$ resonance ($n=2,3,4$), an “off-resonance” sample was collected for studying continuum $e^+e^-\rightarrow q\bar{q}$ events, where q is a u, d, s, or c quark. The off-$\Upsilon(4S)$ sample has a CM energy about 40 MeV below the $\Upsilon(4S)$ peak mass, and the off-$\Upsilon(3S)$ and off-$\Upsilon(2S)$ samples are 30 MeV below the respective peaks. All on- and off-resonance samples are used for charm, τ, two-photon, and QCD physics analyses.

Measurements of production cross-sections and branching fractions often depend on knowledge of the time-integrated luminosity L of the collected data sample. In some cases, the uncertainty on L is one of the major sources of systematic uncertainty [5]. In addition, in Υ-resonance data analyses, background characteristics or the level of continuum background contamination are often determined from the off-resonance sample. This requires knowledge of the ratio of the integrated luminosities of the on-resonance and off-resonance samples.

In this article, we describe the final analysis of the integrated luminosity of the dataset collected by BABAR, incorporating the latest processing and reconstruction of the dataset, improved techniques, and reduced systematic uncertainties relative to previous measurements. The integrated luminosity is measured with Bhabha ($e^+e^-\rightarrow e^+e^-$) and dimuon ($e^+e^-\rightarrow \mu^+\mu^-$) events. These processes have large, well-known cross-sections and simple signatures that are easily identified, thus ensuring high signal-to-background ratios. We use diphoton ($e^+e^-\rightarrow \gamma\gamma$) events to estimate some systematic uncertainties and in the determination of the $\Upsilon(2S,3S)\rightarrow e^+e^-X$ background contamination. We do not use diphoton events to directly measure the integrated luminosity, due to the significant uncertainty on the cross-section for this process, as calculated by available Monte Carlo (MC) generators.

The analysis technique and results are presented here as a resource for future BABAR physics publications, as well as future integrated-luminosity measurements at other e^+e^- colliders.

2. Detector and dataset

The BABAR detector is described in detail in Ref. [1], and only a brief description is given here. Charged-particle trajectories are measured with a five-layer silicon vertex tracker and a 40-layer drift chamber (DCH) in a nearly uniform 1.5 T magnetic field. Charged hadron identification is provided by a Cherenkov detector,
and photons and electrons are detected in a CsI(Tl) electromagnetic calorimeter (EMC). Muons are identified with resistive plate chambers and limited streamer tubes inserted between the iron layers of the magnetic-field instrumented flux return (IFR).

A two-level trigger system, composed of a hardware ("level-1") stage and a subsequent software ("level-3") stage, is used to decide whether an event is recorded. Both trigger levels use information from the DCH and EMC and employ fast EMC-cluster and track-reconstruction algorithms. IFR information is also used in level 1. Events passing the level-1 and level-3 trigger selections are recorded. After additional prescaling (discussed below), events are processed by the offline reconstruction, where more sophisticated algorithms use information from all detector subsystems. After initial stages of the offline reconstruction, an event selection and classification stage referred to as the offline filter takes place. Classifications of the level-3 trigger and the offline filter are used to preselect events for subsequent data analysis.

The integrated luminosity and its uncertainties are determined separately for several data samples. The \(\gamma(4S) \) sample is divided into six runs, labeled Run 1 through Run 6. Each run corresponds to a data-taking period with typical shutdowns of no more than a few days or weeks. Shutdown periods between runs are typically several months long. For each run there is also an off-resonance sample, collected during short periods interleaved with on-resonance data-taking periods. The Run-7 sample contains the \(\gamma(3S) \) and \(\gamma(2S) \) data, as well as the corresponding off-resonance samples. Run 7 also includes a dataset collected at CM energies above the \(\gamma(4S) \) resonance, which is not included in this analysis. Table 1 lists the data-taking period and the resonance for each run.

To calculate cross-sections and detector efficiencies, we make use of simulated MC samples. The BRAHID [6] MC generator is used to simulate Bhabha events, and the KKMC [7] generator with the modifications described in Ref. [8] is used for dimuon events. We also use KKMC to study possible background from electron-positron pairs, which is not included in this analysis. We also use KKMC to study possible background from electron-positron pairs, which is not included in this analysis. We also use KKMC to study possible background from electron-positron pairs, which is not included in this analysis.

For a particular data sample, the integrated luminosity is measured with Bhabha \([e^+e^- \rightarrow e^+e^-] \) and dimuon \([e^+e^- \rightarrow \mu^+\mu^-] \) events, which may include any number of radiated photons in the final state. For Run 7, \([e^+e^- \rightarrow \mu^+\mu^-] \) events are not used, due to significant uncertainty associated with the contribution of the \(\gamma \rightarrow \mu^+\mu^- \) background.

For a particular data sample, the integrated luminosity is measured from

\[
\mathcal{L} = \frac{N_{\text{cand}} - N_{\text{bkgd}}}{\sigma_{\text{vis}}},
\]

where \(N_{\text{cand}} \) is the number of selected signal candidate events, of which \(N_{\text{bkgd}} \) events are estimated to be background. The visible cross-section \(\sigma_{\text{vis}} \) is measured from

\[
\sigma_{\text{vis}} \equiv \int \frac{d\sigma}{d\Omega}(\Omega) \, d\Omega,
\]

where \(d\sigma/d\Omega \) is the theoretical differential cross-section and \(\varepsilon(\Omega) \) is the efficiency for reconstructing and selecting signal events for a given phase-space point \(\Omega \). The methods for obtaining each of these quantities are discussed below.

Table 1

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Run</th>
<th>Month/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma(4S))</td>
<td>Run 1</td>
<td>10/1999 – 10/2000</td>
</tr>
<tr>
<td>(\gamma(4S))</td>
<td>Run 2</td>
<td>02/2001 – 06/2002</td>
</tr>
<tr>
<td>(\gamma(4S))</td>
<td>Run 3</td>
<td>12/2002 – 06/2003</td>
</tr>
<tr>
<td>(\gamma(3S))</td>
<td>Run 4</td>
<td>09/2003 – 07/2004</td>
</tr>
<tr>
<td>(\gamma(2S))</td>
<td>Run 5</td>
<td>04/2005 – 08/2006</td>
</tr>
<tr>
<td>(\gamma(2S))</td>
<td>Run 6</td>
<td>01/2007 – 09/2007</td>
</tr>
<tr>
<td>(\gamma(2S))</td>
<td>Run 7</td>
<td>12/2007 – 02/2008</td>
</tr>
<tr>
<td>(\gamma(2S))</td>
<td>Run 7</td>
<td>02/2008 – 03/2008</td>
</tr>
</tbody>
</table>

3. Analysis method

For Runs 1–6, the integrated luminosity is measured with Bhabha \([e^+e^- \rightarrow e^+e^-] \) and dimuon \([e^+e^- \rightarrow \mu^+\mu^-] \) events, which may include any number of radiated photons in the final state. For Run 7, \([e^+e^- \rightarrow \mu^+\mu^-] \) events are not used, due to significant uncertainty associated with the contribution of the \(\gamma \rightarrow \mu^+\mu^- \) background.

For a particular data sample, the integrated luminosity is measured from

\[
\mathcal{L} = \frac{N_{\text{cand}} - N_{\text{bkgd}}}{\sigma_{\text{vis}}},
\]

where \(N_{\text{cand}} \) is the number of selected signal candidate events, of which \(N_{\text{bkgd}} \) events are estimated to be background. The visible cross-section \(\sigma_{\text{vis}} \) is measured from

\[
\sigma_{\text{vis}} \equiv \int \frac{d\sigma}{d\Omega}(\Omega) \, d\Omega,
\]

where \(d\sigma/d\Omega \) is the theoretical differential cross-section and \(\varepsilon(\Omega) \) is the efficiency for reconstructing and selecting signal events for a given phase-space point \(\Omega \). The methods for obtaining each of these quantities are discussed below.

3.1. Event selection

The event-selection criteria are designed to yield samples of high-purity Bhabha and dimuon events, with two high-momentum charged-particle tracks in the central part of the detector and relatively little energy taken up by radiated photons. We have chosen the selection criteria so that systematic uncertainties arising from data-MC differences of event distributions are kept to a minimum. Electron vs. muon identification relies on comparison of the track momentum with the corresponding energy deposited in the EMC. Event selection is performed in two steps: preselection, which takes place at the level-3 trigger and during offline reconstruction, and is described in Section 3.1.1; and final event selection, which is described in Section 3.1.2.

As a basic requirement for tracks at both selection steps, the point of closest approach of the track to the incoming PEP-II beam is required to be less than 1.5 cm in the radial direction \(r \) and less than 10 cm in the beam direction \(z \).

3.1.1. Preselection

Tracks used for the level-3 Bhabha event selection must have laboratory-frame polar-angle values between 0.9 rad and 2.5 rad. Most Bhabha events are selected by finding two oppositely charged tracks with CM momenta above 2.0 GeV/c, where at least one of the tracks is associated with an EMC cluster with CM energy of at least 2.5 GeV. The CM momenta, polar angles, and azimuthal angles of the two tracks are required to satisfy

\[
p_1 + p_2 > 7 \text{ GeV/c}, \quad |\theta_1 + \theta_2| < 0.5 \text{ rad}, \quad |\phi_1 - \phi_2| < 0.3 \text{ rad}.
\]

To maintain high efficiency, the level-3 Bhabha selection also accepts events with a single track, provided there is an EMC energy deposition in the expected location, opposite the track in the CM frame. In this case, the requirements on the track momentum, the cluster energy, and the polar and azimuthal angles of the track and cluster are

\[
p_{\text{track}} + E_{\text{cluster}} > 6 \text{ GeV}, \quad |\theta_{\text{track}} + \theta_{\text{cluster}}| < 0.2 \text{ rad}, \quad |\phi_{\text{track}} + \phi_{\text{cluster}}| < 0.3 \text{ rad},
\]

where these quantities are evaluated in the CM frame.

Bhabha events are recorded not only for luminosity determination, but also for EMC calibration. The Bhabha cross-section increases steeply with decreasing \(e^+e^- \) scattering angle. Therefore, a large fraction of events in regions of high cross-section is discarded in order to reduce the rate of events handled by the data-acquisition system without significant detrimental impact on calibration. This is achieved by assigning each trigger-selected Bhabha event to one of seven bins according to \(\cos \theta_{\text{max}} \), the larger of the laboratory-frame polar angles of the two leptons. For each bin \(i \), only one of every \(N_i \) events is logged, where the "prescale factor" \(N_i \) increases with \(\cos \theta_{\text{max}} \). This results in a sawtooth distribution of \(\cos \theta_{\text{max}} \) that is nonetheless more uniform than the original distribution and more suitable for calibration purposes. The prescale factor applied to each saved event is later used to recreate the initial \(|\cos \theta| \) spectrum for use in the luminosity determination.
Dimuon events are passed by the level-3 trigger based on a very loose criterion of a single track with transverse momentum $p_T > 4 \text{ GeV}/c$ or two tracks, each having $p_T > 0.25 \text{ GeV}/c$. This loose selection is possible due to the fact that the $e^+e^-\rightarrow\mu^+\mu^-$ cross-section is much lower than the $e^+e^-\rightarrow e^+e^-$ cross-section. At the offline-filter stage, dimuon event selection requires two oppositely charged tracks. The CM momenta of the higher-momentum and lower-momentum tracks must satisfy $p_1 > 4 \text{ GeV}/c$ and $p_2 > 2 \text{ GeV}/c$, respectively; the sum of the CM polar angles of the tracks is required to satisfy $2.8 < \theta_1 + \theta_2 < 3.5 \text{ rad}$; and the sum of the CM energies of the EMC clusters associated with the two tracks must be less than 2 GeV.

The diphoton level-3 trigger selection requires two EMC clusters. During Run 1 data collection, the CM energy of each cluster was required to be at least $0.35 \sqrt{s}$ of the PEP-II CM energy \sqrt{s}. For Runs 2–7, the requirement was decreased to $0.3 \sqrt{s}$. The sums of the polar and azimuthal angles of the clusters must satisfy $|\cos \theta_1| < 0.7$ and $|\phi_1 - \phi_2 - \pi| < \alpha_0$ in the CM frame, where $\alpha_0 = 0.5 \text{ rad}$ for Run 1 and 0.1 rad for Runs 2–7. The trigger is rejected if the event has a track with $p_T > 0.25 \text{ GeV}/c$.

To facilitate offline checks of simulated trigger efficiency, a heavily prescaled, unbiased sample of all events satisfying the level-1 trigger is logged. For corresponding checks of the offline-filter stage, a prescaled sample of all logged events is kept regardless of whether any offline-filter selection is satisfied. The use of these “bypass” samples is discussed in Section 3.3.

3.1.2. Final selection

The Bhabha and dimuon event selections for the luminosity analysis impose additional, tighter final-selection criteria, relying on event properties obtained with the offline reconstruction.

For Bhabha candidates, the CM polar angles of the tracks are required to satisfy $|\cos \theta | < 0.70 \text{ rad}$ for one track and...
\[\text{Events/(0.4 degrees)} \]

\[\text{Events/(0.16)} \]

\[\text{Events/(0.016)} \]

\[\begin{align*}
\text{(E/p)}_H & \leq 1.4 \\
\text{(E/p)}_L & \leq 1.2 \\
\end{align*} \]

\[\text{Fig. 2. Distributions of the CM acolinearity angle } \alpha \text{, and the higher (lower) laboratory-frame energy-to-momentum ratio } \frac{E}{p} \text{ for } e^+e^- \rightarrow e^+e^- \text{ candidates in a fraction of the data (Run 4; solid histograms) and for simulated } e^+e^- \rightarrow e^+e^- \text{ events (dashed histograms). The simulation histograms are normalized to the area of the data histograms. The distributions are shown with linear (left) and log (right) vertical scale. In each } E/p \text{ plot (log-scale a plot), the vertical line shows the minimum (maximum) value for events that are retained. When plotting each variable, the selection criteria on all other variables are applied.} \]

\[\cos \theta < 0.65 \text{ rad for the other track. We require } P_1 > 0.75 \text{ and } P_2 > 0.50, \text{ where the scaled momentum } P_i = 2p_i/\sqrt{s} \text{ is } \text{is} \text{twice the ratio of the CM momentum } p_i \text{ of track } i \text{ to the PEP-II CM energy } \sqrt{s}, \text{ and the index } i = 1 \text{ (} i = 2 \text{)} \text{ denotes the track with the higher } \text{(lower) CM momentum. The acolinearity angle } \alpha \text{, defined as } 180^\circ - \text{min} \text{us the CM angle between the two tracks, is required to satisfy } \alpha < 30^\circ. \text{ We attempt to geometrically associate each track with an EMC cluster and calculate the ratio of the cluster energy to the track momentum in the laboratory frame. Denoting the higher (lower) ratio with } \frac{E}{p}_H = \frac{E}{p}_L \text{, we require } \frac{E}{p}_H > 0.7 \text{ and } \frac{E}{p}_L > 0.4. \text{ If only one track is associated with a cluster, it must satisfy } \frac{E}{p} > 0.7. \text{ Events with no track-cluster association are rejected.} \]

\[\text{For dimuon candidates, we require } |\cos \theta| < 0.70 \text{ rad for one track and } |\cos \theta| < 0.65 \text{ rad for the other track, } P_1 > 0.85, \text{ and } P_2 > 0.75, \text{ and } \alpha < 20^\circ. \text{ At least one track must have an associated EMC cluster with CM energy less than 0.5 GeV. If a cluster is associated to the second track, its CM energy is required to be less} \]

Diphoton candidates are selected by requiring events with two EMC clusters with energies \(E_1, E_2 \) satisfying \(2E_1/\sqrt{s} > 0.85 \) and \(2E_2/\sqrt{s} > 0.75. \) The CM polar angles of the clusters must satisfy \(|\cos \theta| < 0.7 \text{ rad for one cluster and } |\cos \theta| < 0.65 \text{ rad for the other, and the acolinearity angle must be smaller than } 10^\circ. \text{ If there are tracks in the event, the track with the largest CM momentum must satisfy } P_1 < 0.5. \]

Hadronic events \((e^+e^- \rightarrow \text{hadrons}) \) are used in the estimation of the \(\gamma \rightarrow e^+e^- \) background. We select such events by requiring at least three tracks and a primary vertex location consistent with the known beamspot. The total energy of tracks and clusters must be greater than 0.3\(\sqrt{s}, \) and the ratio of the second to the zeroth Fox-Wolfram moments [13] is required to be smaller than 0.95. The distance between the primary production vertex of the tracks in the event and the time-averaged beamspot position must be less than 0.5 cm in \(r \) and less than 6 cm in \(z. \)

Figs. 1–4 show examples of the Bhabha and dimuon selection-variable distributions for data and simulation. Although in some
cases there are visible differences between the distributions in data and in simulation, the loose selection criteria ensure that these differences have negligible impact on the knowledge of the signal efficiency.

3.2. Background estimation

3.2.1. Background sources common to all runs

The efficiency for $e^+e^-\rightarrow\tau^+\tau^-$ events to pass the dimuon selection is determined using MC. We find the fraction of such events in the selected $e^+e^-\rightarrow\mu^+\mu^-$ candidate sample to be $(0.0816 \pm 0.0033)\%$. The fraction of Bhabha events in the dimuon sample is determined in the same way, and is found to be $(0.02 \pm 0.01)\%$. In both cases, the uncertainties are due to MC statistics, and are much larger than those expected due to uncertainties on the efficiency or the cross-sections of the various modes.

To estimate the background due to cosmic rays or beam-gas interactions, we select dimuon candidates where the point of closest approach of the tracks to the beamline is between 10 cm and 30 cm of the interaction point in z, and that satisfy all other requirements. From this sample, the level of contamination of cosmic events in the dimuon sample is determined to be $(1.8 \pm 0.7) \times 10^{-5}$, which we take to be negligible.

The background level in the Bhabha sample is much smaller than the values listed above for the dimuon sample, since the visible cross-section for $e^+e^-\rightarrow\mu^+\mu^-$ is an order of magnitude larger than for $e^+e^-\rightarrow\mu^+\mu^-$. Therefore, the background in the Bhabha channel is neglected.

3.2.2. Υ background in run 7

The on-resonance Run-7 sample contains non-negligible contributions from the decays $\Upsilon(2S)\rightarrow e^+e^-$, $\Upsilon(3S)\rightarrow e^+e^-$ and,
to a smaller extent, from cascade decays such as \(\Upsilon(2S) \rightarrow \pi^+ \pi^- \Upsilon(1S) \rightarrow \pi^+ \pi^- e^+ e^- \) or \(\Upsilon(2S) \rightarrow \gamma \Upsilon(1S) \rightarrow \gamma e^+ e^- \). This type of background, which we label as \(\Upsilon \rightarrow e^+ e^- X \), is negligible in the \(\Upsilon(4S) \) samples of Runs 1–6. We determine the number of Run-7 \(\Upsilon \rightarrow e^+ e^- X \) events from

\[
N_{\Upsilon \rightarrow e^+ e^-} = N_{\Upsilon} B_{\text{vis}}(\Upsilon \rightarrow e^+ e^- X),
\]

where \(N_{\Upsilon} \) is the number of \(e^+ e^- \rightarrow \Upsilon \) events produced, and the visible branching fraction

\[
B_{\text{vis}}(\Upsilon \rightarrow e^+ e^- X) = \frac{B_i(\Upsilon \rightarrow e^+ e^- X) \epsilon_i(\Upsilon \rightarrow e^+ e^- X)}{\sum_i B_i(\Upsilon \rightarrow e^+ e^- X) \epsilon_i(\Upsilon \rightarrow e^+ e^- X)}
\]

accounts for the branching fraction \(B_i(\Upsilon \rightarrow e^+ e^- X) \) and reconstruction efficiency \(\epsilon_i(\Upsilon \rightarrow e^+ e^- X) \) of each process (indicated by the index \(i \)) that contributes to this background. We obtain \(B_{\text{vis}}(\Upsilon \rightarrow e^+ e^- X) \) from simulated events, generated with branching fractions \(B_i(\Upsilon \rightarrow e^+ e^- X) \) based on the measurements compiled in the Review of Particle Physics [3]. Since \(B(\Upsilon(3S) \rightarrow e^+ e^-) \) has not been measured, we take its value to be identical to \(B(\Upsilon(3S) \rightarrow \mu^+ \mu^-) \), relying on lepton universality in electromagnetic interactions. Since the spread in \(\sqrt{s} \) (about 5 MeV) is much larger than the widths of the \(\Upsilon(2S) \) and \(\Upsilon(3S) \) resonances, we ignore interference between \(\Upsilon \rightarrow e^+ e^- \) decays and Bhabha scattering when estimating the \(\Upsilon \rightarrow e^+ e^- \) background. Interference is further suppressed by the different polar-angle distributions of the two processes.

To determine the number of \(\Upsilon \) mesons produced in the \(\Upsilon(2S) \) or \(\Upsilon(3S) \) on-resonance sample, we count the number of on-resonance hadronic events and subtract the number of off-resonance events scaled by the ratios of luminosities and cross-sections between the on- and off-resonance samples. The luminosity ratio is determined...
from diphoton events. The number of \(\Upsilon \) mesons is [4]

\[
N_{\Upsilon} = \left(N_{\text{had}} - N_{\text{off}} \frac{N_{\text{eff}}}{N_{\text{eff}}^\text{had}} \right) \frac{1}{\epsilon_{\text{had}}},
\]

(5)

where \(N_{\text{had}} \) \((N_{\text{off}}^\text{had})\) is the number of events satisfying the e+e- \(\to \) hadrons selection criteria in the on-resonance (off-resonance) sample, \(N_{\text{eff}} \) \((N_{\text{eff}}^\text{had})\) is the number of events satisfying the e+e- \(\to \) \(\Upsilon \) selection criteria in the on-resonance (off-resonance) sample, \(\epsilon_{\text{had}} \) is the reconstruction efficiency for the on-resonance hadronic events, and \(\kappa \) is a correction factor accounting for the small s-dependence of the visible cross-sections of the continuum hadronic and \(\Upsilon \gamma \) events.

Using Eq. (3), we determine that \(\Upsilon \to e^+e^-X \) background constitutes \((1.4 \pm 0.1)\% \) of the events passing the e+e- \(\to e^+e^- \) selection in the on-resonance \(\Upsilon(2S) \) sample and \((0.9 \pm 0.1)\% \) in the \(\Upsilon(3S) \) sample. The uncertainties are dominated by the uncertainties on the \(\Upsilon \to e^+e^-X \) branching fractions. The uncertainty on \(N_{\Upsilon} \) is 0.9\%, dominated by the determination of \(\epsilon_{\text{had}} \), and has a negligible effect on the \(N_{\Upsilon} \to e^+e^-X \) uncertainty.

In the dimuon channel, \(\Upsilon \to \mu^+\mu^- \) events constitute \((21.9 \pm 2.2)\% \) of the selected e+e- \(\to \mu^+\mu^- \) candidate events for the \(\Upsilon(2S) \) sample and \((14.3 \pm 1.4)\% \) for the \(\Upsilon(3S) \) sample. Due to the large uncertainty introduced by this background, dimuon events are not used for Run 7, as mentioned above.

3.3. Visible cross-sections

The visible cross-sections \(\sigma_{\text{vis}} \) (see Eq. (2)) for Bhabha and dimuon events are initially obtained from the MC simulation for each run period and CM energy[7]. We then correct the values of \(\sigma_{\text{vis}} \) for small data-MC efficiency differences, determined as follows.

We determine the inefficiency of the trigger and offline-filter selection from the fraction of events that fail this selection but satisfy the final selection requirements, using event samples that are allowed to bypass the level-3 trigger and offline filter. From the inefficiency difference between data and MC, we apply run-by-run corrections to \(\sigma_{\text{vis}} \) of up to 0.3\%.

The track-reconstruction inefficiency is measured from the fraction of Bhabha events in which only one track is found. To minimize the non-Bhabha events in this sample, one of the tracks must satisfy tight selection criteria: 0.95 < \(P < 1.05 \), 0.9 < \(E/p \) < 1.1, and |cos \(\theta \)| < 0.70 rad. A second track is not found in 0.2\% of these events. The identification of these one-track events as e+e- \(\to e^+e^- \) is justified by the observation that the highest-energy EMC cluster, other than the cluster associated with the track, has CM acollinearity with respect to the track of no more than about 10° (some acollinearity is expected, since the missed track bends in the magnetic field), and that the ratio between the energy of this cluster to the track momentum peaks at 1. From the data-MC inefficiency difference, we apply run-dependent corrections to \(\sigma_{\text{vis}} \) in the range 0.14%-0.27\%.

Table 2 shows the corrected visible cross-sections for the different PEP-II CM energies. For Runs 1–6, we observe a run-to-run variation of \(\pm 0.21\% \) (\(\pm 0.7\% \)) in the value of \(\sigma_{\text{vis}} \) for the Bhabha (dimuon) channel.

4. Systematic uncertainties

Table 3 summarizes the systematic uncertainties, which are described in detail below.

For the selection criteria used in this analysis, we find that the cross-section reported by BH/ WIDE is consistent with that of the BABAYAGA [14] generator to within the statistical uncertainty of the comparison, 0.06\%. We add this uncertainty in quadrature to the BABAYAGA theoretical uncertainty of 0.20% [14] to obtain the total uncertainty of 0.21\%. The uncertainty on the dimuon cross-sections is taken to be 0.44\%, based on Ref. [8].

From the data-MC comparisons described in Section 3.3, we estimate an uncertainty of 0.13\% (0.20\%) for the track-reconstruction efficiency for Runs 1–6 (Run 7), corresponding to
approximately half the largest correction within these data samples. An uncertainty of 0.1% is estimated for the trigger and offline-filter efficiency correction by rounding up the largest of the run-dependent statistical uncertainties of this correction. To account for differences between the distributions of data and MC events in the variables used for event selection, we vary the selection requirements over wide ranges throughout the tails of each variable. For each selection variable, the largest resulting change in \(L \) is taken to be the associated uncertainty. The uncertainties for the different selection variables are added in quadrature for each run, with resulting uncertainties ranging between 0.5% and 0.7% for \(e^+e^- \rightarrow e^+e^- \) and between 0.24% and 0.28% for \(e^+e^- \rightarrow \mu^+\mu^- \).

The luminosity and systematic uncertainties are evaluated for the entire period of data collection for each particular run. Use of subsamples within a run may introduce time-dependent variations in efficiency that are not accounted for in the analysis. In particular, off-resonance data are collected at relatively rare intervals, and could therefore be subject to such time-dependent effects. Therefore, we estimate an additional systematic uncertainty for the off-resonance luminosity, accounting for tracking-related and EMC-related time variation studied using the on-resonance samples. The on-resonance data sample for each run is divided into at least ten subsamples with luminosities of about 1–2 fb\(^{-1} \) each. In each subsample \(i \), we calculate the ratio \(x_i = \frac{L_i^{\text{eff}}}{L_i^{\text{off}}} \) of the luminosity values obtained with Bhabha and dimuon events. We use the spread in the \(x_i \) values, after subtraction of the estimated statistical component of the spread, to estimate the off-resonance luminosity uncertainty associated with the time variation of any EMC-related effects. Similarly, we use the spread of the ratios \(L_i^{\text{eff}}/L_i^{\text{on}} \) of the luminosity values obtained with Bhabha and diphoton events to estimate the uncertainty due to the time variation of tracking-related effects. Finally, these two uncertainties are added in quadrature. As an illustration, the values of \(L_i^{\text{eff}}/L_i^{\text{off}} \) for the different subsamples of Run 4 are shown in Fig. 5.

The uncertainties on the background subtraction, described in Section 3.2, are propagated to the final uncertainty on \(L \). For Run 7, we estimate an additional uncertainty of 0.2% on the signal reconstruction efficiency, arising from the uncertainty on the laboratory-to-CM boost associated with changing the PEP-II energy from the \(\Upsilon(4S) \) to the \(\Upsilon(3S) \) and \(\Upsilon(2S) \).

Systematic uncertainties from the different sources are added in quadrature, separately for each channel \((e^+e^- \rightarrow e^+e^- \rightarrow \mu^+\mu^-, \) run, and on/off-resonance data-taking period. When combining results in Section 5, we take into account the following correlations between systematic uncertainties. The uncertainties on the track-reconstruction efficiency and on the trigger and offline-filter efficiency are positively correlated between the two channels. Uncertainties in the theoretical cross-section, background subtraction, trigger and offline-filter efficiencies, and selection-criteria variation are positively correlated for the different runs, as well as for the on-resonance and off-resonance periods.

5. Results

Table 4 lists the integrated luminosity results for the on- and off-resonance samples for each run. The results for Runs 1–6 are averaged over the \(\mu^+\mu^- \) and \(e^+e^- \) channels, accounting for correlated uncertainties. The results obtained with the two modes are compatible and have similar overall uncertainties, with the \(\mu^+\mu^- \) uncertainties being somewhat smaller. (As noted in Section 3, the Run-7 luminosity is obtained with \(e^+e^- \) events only.) The ratios between the on-resonance and off-resonance integrated luminosities are also given. Table 5 shows a run-by-run breakdown of the results for the \(\Upsilon(4S) \) periods.

Acknowledgments

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di

Table 4

<table>
<thead>
<tr>
<th>Resonance</th>
<th>(L_{\text{on}}) (fb(^{-1}))</th>
<th>(L_{\text{off}}) (fb(^{-1}))</th>
<th>(L_{\text{on}}/L_{\text{off}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Upsilon(4S))</td>
<td>424.18 ± 0.04 ± 1.82 (0.43)</td>
<td>43.92 ± 0.01 ± 0.19 (0.43)</td>
<td>9.658 ± 0.003 ± 0.007 (0.08)</td>
</tr>
<tr>
<td>(\Upsilon(3S))</td>
<td>27.96 ± 0.03 ± 0.16 (0.58)</td>
<td>2.623 ± 0.008 ± 0.017 (0.72)</td>
<td>10.66 ± 0.03 ± 0.03 (0.40)</td>
</tr>
<tr>
<td>(\Upsilon(2S))</td>
<td>13.60 ± 0.02 ± 0.09 (0.68)</td>
<td>1.419 ± 0.006 ± 0.011 (0.88)</td>
<td>9.58 ± 0.04 ± 0.04 (0.59)</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Run</th>
<th>(L_{\text{on}}) (fb(^{-1}))</th>
<th>(L_{\text{off}}) (fb(^{-1}))</th>
<th>(L_{\text{on}}/L_{\text{off}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.37 ± 0.01 ± 0.09 (0.44)</td>
<td>2.564 ± 0.002 ± 0.014 (0.55)</td>
<td>7.946 ± 0.006 ± 0.027 (0.35)</td>
</tr>
<tr>
<td>2</td>
<td>61.32 ± 0.01 ± 0.26 (0.42)</td>
<td>6.686 ± 0.004 ± 0.034 (0.44)</td>
<td>9.298 ± 0.006 ± 0.023 (0.27)</td>
</tr>
<tr>
<td>3</td>
<td>32.26 ± 0.01 ± 0.13 (0.40)</td>
<td>2.443 ± 0.003 ± 0.012 (0.51)</td>
<td>13.123 ± 0.015 ± 0.037 (0.30)</td>
</tr>
<tr>
<td>4</td>
<td>99.58 ± 0.02 ± 0.41 (0.41)</td>
<td>10.016 ± 0.007 ± 0.043 (0.43)</td>
<td>9.943 ± 0.007 ± 0.012 (0.14)</td>
</tr>
<tr>
<td>5</td>
<td>132.33 ± 0.02 ± 0.59 (0.45)</td>
<td>14.278 ± 0.008 ± 0.066 (0.47)</td>
<td>9.268 ± 0.005 ± 0.012 (0.14)</td>
</tr>
<tr>
<td>6</td>
<td>78.31 ± 0.02 ± 0.35 (0.45)</td>
<td>7.752 ± 0.006 ± 0.036 (0.47)</td>
<td>10.102 ± 0.008 ± 0.013 (0.15)</td>
</tr>
</tbody>
</table>
Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (USA).

References