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ABSTRACf 

The penneability of a rock fracture is controlled primarily by the geometry of its 

void space. One effect of void space geometry is to cause the fluid to follow a tortu

ous path in order to flow around the asperities, which are regions where the two faces 

of the fracture are in contact. In order to examine the tortuosity induced by the con

tact area, we consider an idealized fracture consisting of two parallel plates propped 

open by isolated asperities. Boundary-element calculations, analogue electrical con

ductivity measurements, and an effective medium approximation are used to study the 

penneability of fractures with circular, elliptical, and irregular asperity shapes. The 

penneability is seen to depend not only on the amount of contact area, but also on the 

shape of the asperities. . For circular or elliptical asperities, very accurate estimates are 

found by using the effective medium theory proposed by Maxwell. 
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INTRODUCfION 

In many geological fonnations with low matrix penneability, fluid flow takes 

place predominantly through fractures. Fracture-dominated flow, has become mcreas

ingly important in various problems of geotechnical interest, particularly those involv

ing underground waste isolation. In some cases flow takes place through a particular 

fracture or fault, while in other cases the flow is through a network of fractures. In 

either case, an understanding of the penneability of single fractures is required. 

The permeability of a naturally occurring rock fracture depends principally on the 

geometry of the void space. A typical fracture contains isolated asperity regions where , 
the two rock surfaces are in contact, surrounded by open regions where the two Su!

faces are separated by an aperture h that may vary from point to point. When fluid 

flows through such a fracture, it not only must flow around the contact areas, but also 

has a tendency to preferentially flow through the channels with the largest apertures, 

since hydraulic conductance is proportional to h3• In order to successfully model this 

process, both effects must be taken into account. In this paper, however, attention will 

be focused on the tortuosity induced by the contact regions. (The effect of roughness 

in the fracture walls, i.e., variations in the aperture, has been studied by Brown (1987), 

Pyrak-Nolte et al. (1988), and Zimmennan et al. (1991), among others). Here we con-

sider idealized fractures consisting of two parallel surfaces, with isolated regions of 

contact These contact areas have the effect of decreasing the penneability below the 

value that would pertain to unobstructed flow between parallel plates. Numerical and 

analytical methods are used to relate this decrease in permeability to the amount of 

contact area, and to. the geometrical structure of the contact areas. 

) 

FORMULATION OF PROBLEM 

The flow of a Newtonian fluid (such as water) through a fracture is governed by 

" 
the nonlinear Navier-Stokes equations. Exact solutions to these equations for specific 
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geometries are usually very difficult to obtain. The exact solution for flow between 

two parallel plates under a unifonn pressure gradient, however, is known (see Schlicht-

ing, 1968, p. 77). The velocity profile (across the fracture) for this flow is parabolic, 

with zero velocity at the upper and lower surfaces to satisfy the no-slip boundary con

dition. The total fluid flux Q (per unit depth in the fracture plane in the direction nor

mal to VP) is found by integrating the velocity across the thickness of the channel. 

This leads to the familiar cubic law Q = - h 3Vp 1121l, where VP is the pressure gra

dient, and Il is the viscosity of the fluid. In tenns of Darcy's law, which states that 

Q = -kh VP Ill, the. parallel plate geometry has a penneability k = h2/12. In SI units, 

for instance, VP has units of [Palm], h has units of [m], and Il has units of [Pa's]; the 

flux vector Q will therefore have units of [m2/s]. The total volumetric flux can be 

found by multiplying this value by the fracture depth nonnal to V P . 

For a fracture that is modeled as· two parallel plates propped open by discrete 

areas of contact (Fig. 1), the flow cannot be everywhere parallel to the overall pressure 

gradient, since the fluid must follow a tortuous path as it circumvents the obstacles. If 

the flow rates are suitably low, and if the ~perture h is small relative to the charac

teristic dimension a of the contact areas (Fig. 1), the flow can be well approximated 

by "Rele-Shaw" flow (Schlichting, 1968, p. 114). The precise constraint on the velo

city is that Re* = pUh 2/J..La « 1, where Re* is the reduced Reynolds number, and U 

is the mean velocity magnitude. In Rele-Shaw flow, the fluid still has a parabolic 

velocity profile, and the velocity vector It at each point is still parallel to the local 

pressure gradient, but the local pressure gradient is not necessarily equal to the overall 

macroscopic pressure gradient. The velocity profile for this type of flow is given by 

-VP' 
It= --z(z-h) 21l· , (1) 
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where z is the transverse coordinate measured from the bottom wall,' and V P is the 

local pressure. gradient. . This local pressure gradient is not always equal 1n magnitude 

or direction to the overall pressure gradient, which can be denoted by V P. When 

integrated over the thickness of the fracture, from z = 0 to z = h, this profile yiel~s a 

local version of the cubic law, . 

j h 

Q = - J u(z )dz = - h3VP 112Jl , 
o 

(2) 

in which the pressure gradient is allowed to vary fro~ point to point in the plane of 

the fracture. 

The steady-state pressure field P (x ~y) is found by solving the two-dimensional 

Laplace equation in the region of the x-y plane exterior to the obstacles, i.e., 

(3) 

This condition (3) follows from applying the law of conservation of mass· to eqn. (2), 

in the form div Q = O. Since there can be no flow into or out of the obstacles, the 

pressure field must satisfyaP Ian =0 along the obstacle boundaries, where n is me as-
. . 

ured along the outward unit normal vector. The external boundaries of the flow field 

are typically either no-flow or constant~pressure boundaries (Fig. 2). 

While the obstacles are correctly treated as being impermeable.in the Hele-Shaw 
. . . 

approximation, it is not possible to impose the no-slip boundary condition along these 

surfaces. A well-posed boundary-value problem for Laplace's equation that leads to a 

unique solution requires only one boundary condition at each point of the boundary 

(Bers et al., 1964). The condition ap Ian =0 seems seems to be mandatory, since it 
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reflects the fact that fluid cannot enter or leave the obstructions. Violating this condi

tion would destroy the essential geometric features of the flow field. If we also 

attempted to impose a condition corresponding to the fact that the tangential velocity 

must vanish along the boundary, this would create an overdetermined system which 

would in general have no solution. "Hence we must forego this additional condition, 

which would be written as ap tat = 0, where t is the direction tangential to the obsta

cle boundary, even though it is physically correct. The full Navier-Stokes equations, 

on the other hand, do allow imposition of both the no-flow and two no-slip boundary 

conditions (in the two tangential directions along each solid boundary surface). Since 

the Navier-Stokes equations consist of three coupled second-order equations. for the 

three velocity components, they are in effect sixth-order, and require the specification 

of more boundary conditions. A similar inability to satisfy the no-slip condition arises 

when averaging the Navier-Stokes equations over a representative elementary volume 

. (REV), yielding a Laplace equation for the macroscopic pressure, which is then inter

preted as an average pressure over the REV (Bear, 1988). Although our analysis leads 

t~ the same mathematical equation, V2p = 0, in the present case p. represents the local 

value of the pressure, and no averaging process is implied. 

Since the solutions to the Rele-Shaw equations do not satisfy the no~slip boun

dary conditions on the sides of the obstacles, they will only be approximations to the 

(physically exact) Navier-Stokes solutions. Based on his method of reducing. the 

Navier-Stokes equations to the Rele-Shaw equations, Stokes conjectured (see Lee and 

Fung, 1969) that the relative error of the Rele-Shaw approximations would be on the 

order of h/a. This assertion has been verified by Lee and Fung (1969) for the prob

lem of flow between two parallel plates that are propped open by a single cylindrical 

post of radius a. They used the full Navier-Stokes equations, and computed a 

second-order correction to the Rele-Shaw solution. Their second-order correction to 

the relationship between flowrate and pressure drop was in fact proportional to h/a, as 
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Stokes had conjectured. Errors of this magnitude should be negligible for many appU

cations to real fractures. For example, typical average apertures of fractures in crystal

line rock are on the order of 10-100 J.1m,. while asperity sizes (in the fracture plane) 

are usually on the order of millimeters (Pyrak-Nolte et al., 1987). The other assump

tion of the Rele-Shaw model, that of a small reduced Reynolds number, will also be 
I 

satisfied in many cases of interest. For example, if we consider water with 

J.1= 0.001 Pa's flowing in a fracture with h = 100J.1m and a = lOmm, then the criterion 

Re*< 0.1 implies that the pressure gradient should not exceed lOS Palm, or ·about 1 

bar/m (5 psi/ft). While naturally occurring pressure gradients are usually not this large, 

this criterion could be violated in situations of forced flow, such as hydraulic fracturing 

processes. 

METHODS OF ANAL YSIS 

Various methods can be used to find solutions to the Laplace equation in two 

dimensions, among wh~ch are many numerical, analytical and analogue techniques. 

We use a boundary element method as a general tool to study flow around asperities, 

and to find ~e effective fracture conductivity. Analogue measurements are used to 

validate the code for simple geometries, such as circular asperities. Finally, analytical 

methods are used to develop expressions for the effective conductivity of a fracture 
I 

with randomly distributed asperities of elliptical planfonn. 

Boundary-element analysis 

The boundary-value problem described above can be solved for general obstacle 

shapes using any of the numerical schemes that have been constructed to treat 

Laplace's equation. We use a boundary-element met~od to solve Laplace's equation 

in square regions containing contact areas of various shapes (Fig. 2). Fixed pressures 

are maintained on two opposing edges of the region, while the other two sides are 
;' 
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taken to' be no-flow boundaries. The boundary-element methOd pas certain advantages 

. over finite-differences or finite-elements for this type of problem, since it requires 

discretization only of the boundaries of the problem, instead of the entire flow region. 

Briefly described, the boundary-element methOd utilizes "point-source" type solutions 

to the partial differential equation, and superimposes them to satisfy the boundary con

ditions in some average or approximate sense. Details of the methOd, and some com

puter programs, can be found in Brebbia (1978). The code used here, FLOW, is 

described in detail by Chen (1990). The boundary-element calculations yield the pres- . 

sure distribution throughout the flow region. The local flowrate can be found from 

eqn. (2), after which the total flux through the region is found by integrating the nor

mal component of the flowrate vector across one of the constant-pressure boundaries. 

In the calculations, it is convenient to normalize the problem by setting h = 1 and 

~= 1, in which case the effective permeability k* is found by dividing the flowrate 

magnitude IQI by the overall pressure gradient VP. 

Analogue measurements 

Since the fluid flow is assumed to be described by Laplace's equation, with the 

contact areas serving as impermeable boundaries, this problem is analogous to the flow 

of electrical current in a thin sheet with holes punched in it (cf., Bear, 1988; Tobo

chnik et aI., 1989). Since the holes obstruct the flow of electrical current, they are 

analogous to the asperity obstacles. . Experiments were therefore carried out on such 

sheets to measure the overall electrical conductivity (which is the analogue of the frac

ture permeability), in order to validate the numerical cOde. For these experiments, a 

thin sheet of conductive paper is cut into a square, and a strip of metallic paint is 

applied to two opposing edges. Since the conductivity of the paint is much higher 

than that of the paper, these edges will be lines of constant potential. Holes which 

have the desired shapes, sizes and locations are cut out of the sheet, and the overall 

conductance is measured with an ohm-meter. Since resistance measurements can be 
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made very accurately, this method is limited only by the precision with which the 

holes can be cut. We used a razor-knife to cut the holes, after outlining the shapes 

with a pencil. This method is very precise for circular holes, or other holes with sim

ple, smooth shapes. Precision was difficult to maintain when cutting shapes such as 

thin ellipses, for example. 

Effective-medium theory 

The problem outlined above is a typical one in the field of effective properties of 

heterogeneous media. The, unobstructed areas between the obstacles are regions with 

some known permeability,ko , while the obstacles are regions of zero permeability. 

The aim of an effective medium theory is to determine an effective macroscopiC per

meability k* that can be used, in conjunction with Darcy's law, to model flow through 

the fracture on length scales large enough to encompass many asperities. Since this 

problem is governed by Laplace's equation, the method introduced by Maxwell to 

predict the electrical' conductivity of a three-dimensional conductor permeated ,with 

infinitely-conductive spheres (see Carslaw and Jaeger, 1959, p. 425) can be used. ,This 

method was used by Zimmerman (1989) to model the thermal conductivity of fluid

saturated rocks, assuming the pores to be oblate spheroids, and produced reasonably 

. accurate results. In the terminology of the present problem, Maxwell's method con-. 

sists of calculating the decrease in flow due to a single obstacle. of known size and 

shape, averaging this effect over all shapes and orientations of the obstacles, and then 

equating the resulting decrease in flow to that which would be caused by a. single cir

cular "obstruction" which has some effective permeability k*. Walsh (1981) applied 

this method to 'a fracture with "randomly" located circular obstructions; here wee 
\, 

extend this method to cases where the obstacles are elliptical in shape, with random 

orientations. 
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RESULTS 

Circular obstructions 

In general, the effective fracture penneability will depend on both the shape of 

the obstructions, and their lOCation and orientation. The simplest case to consider is 

that of circular obstructions, for which the issue of orientation is not relevant. Walsh 
f 

(1981) used Maxwell's effective medium approach, along with the solutions for the 

potential fields surrounding circular inc1usions(Carslaw and Jaeger 1959, p. 426), to 

derive the following expression for the effective penneability of such a system: 

k* l-c (4) -=--
ko l+c' 

where c is the fractional contact area of the fracture. Walsh interpreted this result as 

applying to "randomly located" obstructions. However, the Maxwell fonnalism cannot 

account for correlations in, the locations of the asperities. Furthennore, any deviation 

from randomness would introduce a higher-order effect that will not be important at 

the low values of c found in naturally occurring fractures, which are usually less than 

0.25 (Tsang and Witherspoon, 1981). For example, the numerical calculations of 

Tzadka and Schulgasser (1983) for the related problem of the transverse thermal con

ductivity of a material containing highly-conducting cylindrical fibers show that corre-

lations between the locations of the inclusions do not become important until c reaches 

about 0.50. Hence, for 0 < c < 0.25, Walsh's result should apply equally well to ran

dom or ordered arrays of obstacles, as long as the ordered arrays lead to isotropic per

meability tensors. 

Boundary-element calculations were carried out for fractures with circular 

obstructions arranged in square arrays (see Fig. 3), for values of c ranging, from 0 to 

0.25. When the obstructions are arranged in a periodic array, the calculations need 
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only be carried out in a "unit cell" formed by the imaginary grid of intersecting no

flow and constant pressure lines. A fr~cture in which the circular obstructions are 

arranged in a square (or an hexagonal) grid will exhibit an isotropic; two-dimensional 

permeability tensor (Nye, 1985, p. 23), despite the fact that the details of the velocity 

field will vary with direction. This seeming discrepancy is related to the fact that the 
. \ 

velocity field isa local property, whereas the permeability is an integrated property. 

Hence a single calculation of the effective. permeability in any convenient direction 

will in fact yield the permeability in all directions. With these facts in mind, we note 

that (see Fig. 3) the boundary-element calculations for the square array agreed very 

closely with the predictions of the Maxwell-Walsh expression. As an additional check 

on the accuracy of the boundary-element calculations, analogue electrical conductivity 

measurements were also carried out. The measured conductivities (see Fig. 3) were in 

close agreement with both the Maxwell-Walsh predictions and the boundary-element 

calculations. 

Elliptical obstructions 

, Since the Maxwell effective medium theory works very well for circular obstruc

tions, it seems reasonable to extend it to more general shapes. One shape that is often 

used in modeling various physical properties of rocks is the ellipse (cf., Seeburger and 

Nur, 1984), which has been used to model the shapes of both pores and grains in sedi

mentary rocks. In our problem we use the ellipse to model the planform of t4e frac

ture asperities. Although it might be thought that the ellipse, as well as the circle, are 

both too idealized to represent real asperities, the ellipse has the advantage that by 

varying the aspect ratio, one can achieve different values of the perimeter-to-area ratio. 

The basic problem that must be solved in order to apply this approach to elliptical 

obstructions is Laplace's equation in the region exterior to an ellipse, with a uniform 

potential gradient at infinity, and no flow across the boundary of the ellipse. Since the 
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ellipse has an arbitrary angular orientation with respect to the imposed potential gra

dient, the effect on the flow must be averaged over all (equally likely) orientations. 

The perturbation in the flow field far from the obstacle is then equated to the perturba

tion that would be caused by an equivalent circular obstacle with some finite conduc

tivity k*, which leads to an equation for k* in terms of the number density and aspect 

ratio of the obstacles. This basic boundary-value problem is a special case of the more 

general problem solved by Obdam and Veling (1987), in which the elliptical obstacle 

has a finite conductivity. The details of the utilization of their solution for the compu

tation of the effective permeability of a fracture containing a random distribution of -

elliptical asperities are described in Appendix A. The resulting expression for the 

effective permeability is similar in form to eqn. (4) for circular obstructions, but Viith 

the percentage contact area c multiplied by a factor that depends on the shape of the 

ellipse: 

k* I-f3c 
1 + f3c ' 

where (5) -= 

and the aspect ratio of the ellipse, a, is defined as the ratio of the minor to major axis. 

For circular obstructions, a = 1, and f3 = 1, and so expression (5) reduces to Walsh's 

expression, eqn. (4). 

The factor f3 defined in eqn. (5) is always greater than unity, and monotonically 

increases as the ellipse becomes more elongated. Since (1- f3c )/( 1 + f3c) is less than 

(1- c )/(1 + c) for all 0 < c < 1 when f3 > 1, as can be shown by cross-multiplying and 
, 

expanding out the terms, the k* /ko curves for elliptical obstructions will always lie 

below Walsh's curve. This is consistent with the fact that Walsh's expression coin-

cides with the upper bound on k* /ko that was derived by McCoy (1982) using varia-

tional principles. The predictions of the effective medium theory for a=0.2 are shown 
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in Fig. 4, where they are compared to boundary-element calculations. The elliptical 

obstacles were generated by centering th~m on alternate squares in a square array 

(such as the black squares on a Checkerboard) and then assigning to each ellipse a nin

domly chosen angular orientation (see Fig. 4). Grids encompassing varying number of 

square cells were used, and it was found that grids of 30 x30 cells were sufficient to 

eliminate the significance of edge effects. Over the range of contact areas shown in 

the figure, 0 < c < 0.05, the estimates of the effective medium theory are very accurate. 

Higher contact areas could have been achieved by placing asperities in each cell, rather' 

than in every other cell. With ellipses of aspect ratio 0.2, the obstacles would begin to , 

overlap each other when c reached about 0.15. However, since higher contact area 

concentrations require a much larger number of computational nodes, we did not use 

values of c greater than 0.05. 

Due to the laborious and painstaking procedure required to cut out the elliptical 

. holes in the conductive sheet, only one analogue measurement was made for the ellipt

ical case. The one conductivity value measured was in fairly close agreement (see Fig. 

4) with the predictions of eqn. (5). 

Irregular obstructions 

The shapes of asperity obstructions found in real rock fractures are of course 

.,more irregular than circles or ellipses. We have therefore also used our boundary

element code to study flow around irregularly shaped obstacles such as those shown in 

the inset of Fig. 5. These patterns are generated by breaking up a square flow region 

into a 30 x 30 rectangular grid, and assigning each grid block to be either an obstruc-
, 

tion zone or a flow zone. This assignment process, which is described in detail by 

Coakley (1989) and Chen (1990), is discussed briefly in Appendix B. Examples of 

such simulations, using the value 0.75 for the, correlation parameter A. (defined in 

Appendix B), are shown in Fig. 5. The computed permeabilities all lie below Walsh's 

curve, as indeed they must, since eqn. (4) is an upper' bound with respect to all 
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possible obstruction geometries that generate isotropic permeability tensors. 

In order to draw general conclusions from results such as those shown in Fig. 5~ 

it would be useful to have some way to quantify the obstruction geometry. One possi

bility, which would make use of the previously-discussed analy~cal expressions for a 

fracture with elliptical obstructions, would be to assign to each fracture geometry a 

suitably chosen "equivalent aspect ratio". lit analogy with the Carman-Kozeny equa

tion (Scheidegger, 1974) for the permeability of three-dimensional porous media, for 

example, an aspect ratio could be chosen based on the total area and total perimeter of 

the actual asperities. As a test of this conjecture, consider the geometry shown in the 

inset of Fig. 5. Using a length scale in which each small square is of unit length, this 

geometry has 21 obstacles with average area of 8.57, and average perimeter of 14.0. 

If we "replace" these obstacles by 21 ellipses, each of area 8.57, the aspect ratio 

would have to be 0.258 in order to maintain the same average obstacle perimeter. 

With this value of a used for all values of c in the suite of data shown in Fig. 5, the 

normalized permeabilities predicted by eqn. (5) are shown by the solid line. The 

agreement between these predictions and the numerically computed values is fairly 

good, suggesting that the conductivity of a fracture with an irregular contact-area 

geometry can be modeled by eqn. (5), with the aspect ratio chosen so as to give the 

.correct values for the average perimeter and average area of the individual obstacles. 

Use of this rule-of-thumb for other asperity geometries generated by the algorithm 

described in Appendix B (see Chen, 1990 for additional examples) leads to the same 

reasonably close agreement between computed and predicted permeabilities as shown 

in Fig. 5. 

CONCLUSIONS 

Numerical, analogue and analytical methods have been used to investigate the 

effect of contact area geometry on the permeability of a fracture. To isolate the effect 
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of contact area, the fracture aperture has been assumed constant in the regions between 

the asperities. For obstacles that are circular in the plane of the fracture, eqn. (4) 

derived by Walsh (1981) using the Maxwell effective medium approximation was 

fouhd to be very accurate for contact areas up to at least 25%. The Maxwell-Walsh 

approach was extended to randomly oriented obstacles of elliptical shape (eqn .. (5», 

with the results verified numerically for a=O.2, C :::;0.05. Fractures with more irregu

lar contact area geometries were also studied using the boundary-element method. 

Such fractllres had permeabilities that were lower, by as much as 30%, than would be 

predicted. by Walsh's expression, but which could be fit fairly well by the effective 

medium approximation if an equivalent aspect ratio is used. This equivalent aspect. 

ratio can be chosen by imagining the actual asperities to be replaced by an equal 

number of ellipses with the same total area and the same total perimeter. 
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APPENDIX A 

In this appendix, we present the derivation of eqn. (5) for the effective penneabil;., 

ity of a fracture that is partially obstructed by randomly-oriented and randomly-located 

elliptical asperities. We use the method originally devised by Maxwell to find the 

effective conductivity of a three-dimensional body containing a dispersion of 

infinitely-conductive spheres. Since this method entails the calculation of the perturba

tive effect that a single obstruction has on the flo~ field, but does not consider the 

interactive effects of pairs (or triples, etc.) of obstructions, it is generally considered to 

be rigorously correct only to first order in the -inclusion concentration. However, evi-

dence from further analysis of the three-dimensional spherical inclusion problem 

(Zuzovsky and Brenner, 1977) implies that this method is actually correct up to at 

least second order, with a range of accuracy extending to inclusion concentrations of at 

least 0.25. 

Consider now an elliptical obstacle, with semi-major and semi-minor axes a and 

a.a, placed in a uniform flow field, with the direction of the free-stream velocity vector 

(of magnitude Qo) oriented at an angle B to the major axis of the ellipse . (Fig. AI). 

Let the coordinate axes of a complex plane z =x+ iy be centered on the ellipse, and 

aligned so that the free-stream velocity is in the x direction. (This complex variable z 

should not be confused with the Cartesian coordinate z that is perpendicular to the 

x-y plane, as in Fig. 1). Obdam and Veling (1987) found the complex velocity 

potential in the general case where there is an arbitrary ratio of the permeability inside 

the obstacle to the permeability outside of the obstacle. The solution to our problem is 

found by setting this ratio equal to zero, in which case the complex velocity potential 

exterior to the ellipse is given by 

(AI) 
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where ~=zeiO. Note that Obdam and Veling (1987) aligned their coordinate axes with 

the ellipse; since we wan~ to consider a distribution of ellipses randomly oriented with 
, , 

respect to a fixed macroscopic flow field, we find it convenient to align the axes with 

the free-stream velocity vector. This requires rotating their coordinate system by an 

I s:· I' iO ang e u, l.e., ettlng z -7 ze . 

At distances far from the ellipse, the denominator in the term on the right side' of 

eqn. (AI) reduces to 2~, and the velocity potential takes the form 

(A2) 

The complex velocity vector Qx + iQy is 'related to the potential Q by 

, Qx - iQy = - Q'(z), so that we find, for large Iz I, 

[ 
a 2(1 + a) (ac, Oso-iSinO)eioj Qx + iQy == Q~ 1 - --'-----"-"--~:-----'--

2-2 ' ' , z' 
(A3) 

where z denotes the complex conjugate x -iy. Using the polar representation for z on 
<-

the right side, we have z =re i9, and z2=r2e- i29, so 

, (A4) 

Now imagine that there are N ellipses, each with the same aspect ratio a, but with a , 

random distribution of orientation angles O. Neglecting the (higher-order) effect of 

flow-field perturbations due to pairs, triples, etc., of nearby obstacles, the total velocity 

" 



" 
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field far from the obstacles is given by 

(AS) 

where the brackets denote an average taken over all possible orientations, from 

0= -x/2 to 0 = +x/2. Note that e is measured with respect to the fixed coordinate sys

,tern, and does not vary with the orientation of the elliptical obstacle. The bracketed 

average in eqn. (AS) can be evaluated as follows: 

«acoso - i sino)e i 0> = « acoso - i sino)( coso + i sino» 

7tl2 7tl2 

= l. J (acos2o+ sin2o)d 0 - i (1- a)l. f (sin&oso)d 0 
x -7tl2 X 7tI2 

1+a =--
2 

(A6) 

• 

The far.;.field velocity vector is therefore given by 

(A7) 
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The solution of Obdam and Veling (1987) can also be used to find the velocity 

field that would exist around a drcular obstacle .of radius A and permeability k* that 

perturbs a uniform flow field in a medium with permeability ko ' This solution is 

found by putting a= 1 and kin Ik°ut = k* Iko in their general solution, yielding 

. .[ (ko-k*)A 2 i29] 
Qx + zQy = Qo 1- 2 e . 

(ko +k*)r 
(A8) 

If the ensemble of N obstacles can be replaced by an equivalent homogeneous region 

with permeability k* , then the· two velocity fields given by eqns. (A 7) and (A8) must 

be equal, implying that 

k -k* 
° 

k +k* 
° 

(1 +a)2 
= 4a c (A9) 

where c =N1ta 2ahtA 2 is the area fraction of the elliptical obstacles. When solved for 

the ratio k* Iko ~ eqn. (A9) yields eqn. (5). 

As partial checks on the correctness of these calculations, first note that for circu

lar inclusions, a= 1, andeqn. (A9) reduces to Walsh's expression, eqn. (4). In the 

. other limiting case of small aspect ratio, eqn. (A9) agrees to first order in c with the 

first-order calculations of Tobochnik et al. (1989), who found k* Iko = 1,- c 12a. 
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APPENDIX B 

In this appendix we describe briefly the procedure. used to generate irregular obs-

tacle patterns, such as shown in the insert of Fig. 5. A more detailed discussion of 

this procedure is given by Coakley (1989). First, we break up a square region that 

represents a fracture plane into a grid of, say, 30 x 30 squares. These squares can be 

labeled with the indices {i,j},' reading left to right, starting in the upper left. comer, as 

would be done in labeling the elements of a matrix. Next, each square is assigned an 

independent, log-normally distributed random variable, X ij . We then convolute Xij 

with a moving-average filter, Hid, to get a spatially-correlated, log-normally distributed 

random variable, Yij , as follows: 

D D 

Yij = L L X (i-k)(j-r!lld . (Bl) 
k=~DI=-D 

The filter weights Hid are radially-symmetric, and decay exponentially according to 

(B2) 

and Hid =0 for "h 2 +12 >D, where D is a parameter that determines the spatial size of 

the filter, and' A is a damping factor which determines the rate at which the filter 

weights decay to zero. The variable Yij can be thought of as the aperture, h, of a 

rough-walled fracture. Finally, we chose a clipping level Yo' and designate all squares 

with Yij ~ Yo to be open void areas, which are assigned an aperture of h. All squares 

with Yij < Yo are designated to be closed contact regions. The clipping level Yo can 

be varied until the desired contact area percentage is achieved. This algorithm was 

used in a larger study in which the mechanical closure of rough-walled fractures was 
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also modeled numerically; for these purposes the apertures would not be clipped off 

above Yij =Yo ' 

This procedure generates a simulated fracture plane that contains irregularly-

. shaped islands of asperity contact. If we had not convoluted the variables Xij with the 

filter weights H kJ., the clipping procedure would have led, in general, to a very large 

number of" small contact areas, many of which were only one square in size. The con

volution process introduces spatial correlation into the random aperture field. In our 

simulations, the filter radius D was always chosen to be 7.5, while the damping factor 

A was varied from 0.25 to 3.0. Since the exponentially-decreasing filter weights H kl 

decay to 0 as k and I increase,. the use of a finite cutoff value D in eqn. (B2) is 

merely a numerical convenience that has little effect on the results. Larger values of A. 

lead to contact islands that are more dispersed, whereas smaller values of A lead to. 

fewer but larger. islands of contact. Since the permeability of a fracture modeled by 

the Hele-Shaw, equations (which are valid as long as the typical diameter of an island 

a is much larger than the aperture h) should not depend on the size of the contact 

islands, but only on their planfonn, the value of A turns out to have little influence on 

the resulting permeabilities, provided that it is not so large that all correlation· dies off 

within a distance less than one unit square. The results presented in Fig. 5 were for 

the case of A.=0.75; results for other values of A can be found.in Chen (1990). 
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FIGURE CAPTIONS 

Fig. 1. Side view of a rock fracture (top); idealized fracture With parallel walls and iso

lated asperities (middle and bottom). The aperture is h, and the characteristic 

asperity dimension is a. 

Fig. 2. Schematic diagram of the basic computational problem, showing two asperities, 

the no-flow and constant-pressure boundaries, and the discrete nodal points used 

in the boundary-element calculations. 

Fig. 3. Normalized permeability of a fractu~e with circular asperities. Asperity 

geometry (for e =0.15) is shown in the inset. Calculations and measurements 

were performed on a unit cell consisting of one circular obstacle centered within 

a square region. 

Fig. 4. Normalized penneability of a fracture with elliptical asperities of aspect ratio 

0.2. Asperity geometry (one quadrant; for e =0.05) is shown in the inset. Calcu

lations were carried out on a 30 x 30 grid, containing 450 ellipses. To illustrate 

the sensitivity of the effective medium theory (eqn. (5» to the aspect ratio, curves 

are shown for a = 0.1, 0.2, and 0.3. 

Fig. 5. Normalized permeability of a fracture with irregular asperities, generated by the 

algorithm described in Appendix B. Example of asperity geometry used in simu

lations (fore = 0.20, on a 30 x 30 grid) is shown in the inset. Equivalent aspect 

ratio of 0.258 corresponds to an ellipse having the same average area 'and average 

perimeter as do the irregular asperities. 

Fig. A 1. Elliptical obstacle of aspect ratio a, with its major axis oriented at an angle 0 

to the free stream velocity of magnitudeQo . 
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z 

a 

Top View 

Fig. 1. Side view of a rock fracture (top); idealized fracture with parallel walls and iso

lated asperities (middle and bottom). The aperture is h ,and. the characteristic 

asperity dimension is a. 

/ 



- 25 -

No Flow---t t----No Flow 

Fig. 2. Schematic diagram of the basic computatIonal problem, showing two asperities, 

the no-flow and constant-pressure boundaries, and the discrete nodal points used 

in the boundary-element calculations. 
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Fig. 3. Nonnalized penneability of a fracture with circular asperities. Asperity 

geometry (for c =0.15) is shown in the inset. Calculations and measurements 

were perfonned on a unit cell consisting of one circular obstacle centered within 

a square region. 
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Fig. 4. Normalized permeability of a fracture with elliptical asperities of aspect ratio 

0.2. Asperity geometry (one quadrant; for c =0.05) is shown in the inset. Calcu

lations were carried out on a 30 x 30 grid, containing 450 ellipses. To illustrate 

the sensitivity of the eff~ctive medium theory (eqn. (5» to the aspect ratio, curves 

are shown for a.=0~1, 0.2, and 0.3. 



- 28 -

1.0 

0 BOUNDARY-ELEMENT METHOD 

0 
0.9 EMT.~SPECLRATIO ..=. 1.00 

~ 
EMT. ASPECT RATIO = 0.258 ~ 

~ 

>=' "'-
r- 0.8 " --1 " m , 
« " w 
2 0.7 " a::: " w 

" a... 
0 " w " N 

0.6 " --1 

" « "'-2 
a::: " 0 
Z 

0.5 

O.4~------~------~------~------T--------,--~--~ 
0.00 0.05 0.10 0.15 0.20 0.25 0.30 

CONTACT AREA, c 

Fig. 5. Normalized permeability ofa fracture with irregular asperities, generated by the 

algorithm described in Appendix B. Example of asperity geometry used in simu

lations (for c = 0.20, on a 30 x 30 grid) is shown in the inset. Equivalent aspect 

ratio of 0.258 corresponds to an ellipse having the same average area and average 

perimeter as do the irregular asperities. 
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Fig. AI. Elliptical obstacle of aspect ratio a, with its major axis oriented at an angle 8 

to the free stream velocity of magnitude Qo ' 
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