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Distributed power and energy resources are now being used to meet the combined electric power, heat-
ing, and cooling demands of many buildings. The addition of on-site renewables and their accompanying
intermittency and non-coincidence requires even greater dynamic performance from the distributed
power and energy system. Load following generators, energy storage devices, and predictive energy man-
agement are increasingly important to achieve the simultaneous goals of increased efficiency, reduced
emissions, and sustainable economics. This paper presents two optimization strategies for the dispatch
of a multi-chiller cooling plant with cold-water thermal storage. The optimizations aim to reduce both
costs and emissions while considering real operational constraints of a plant. The UC Irvine campus
micro-grid operation between January 2009 and December 2013 serves as a case study for how improved
utilization of energy storage can buffer demand transients, reduce costs and improve plant efficiency. A
predictive control strategy which forecasts campus demands from weather predictions, optimizes the
plant dispatch, and applies feedback control to modify the plant dispatch in real-time is compared to
best-practices manual operation. The dispatch optimization and predictive control algorithms are shown
to reduce annual utility bill costs by 12.0%, net energy costs by 3.61%, and improve energy efficiency by
1.56%.

� 2014 Elsevier Ltd. All rights reserved.
Introduction effective management of energy storage devices to balance power
Increasing concerns regarding electricity costs, energy reliabil-
ity, and emissions are encouraging businesses and campuses to
consider self-generation and district heating/cooling. Deployment
of a combination of electric generators, energy storage devices, dis-
trict heating/cooling, and electrical circuit infrastructure to meet
the energy demands of several buildings comprises a micro-grid
[1]. Micro-grids are typically connected to a regional electric utility
network that provides supplemental electricity through a single
high voltage interconnection. Regional utilities rely upon the tem-
poral smoothing effect of aggregating thousands of dynamic con-
sumer demands. At the micro-grid scale, i.e. 250 kW–50 MW,
energy management similarly relies to some extent upon aggrega-
tion to temporally smooth demand, but primarily micro-grids must
remain highly responsive to demand variations arising from build-
ing energy demands and energy supply dynamics caused by on-site
renewable generators. High efficiency and low cost operation
requires a continuous optimization and dispatch of resources and
under all circumstances of dynamic load, dynamic generation,
renewable intermittency or other perturbations [2]. Thermal
energy storage (TES) technology, i.e. cold-water storage, ice, or mol-
ten salts, can assist to decouple demand from production. Use of
any storage technologies introduces a time horizon to the dispatch
optimization, which can be further complicated by physical and
operational constraints.

This study will evaluate the impact of cold-water storage on the
dispatch and control of a suite of non-uniform chillers, and the
ability to time-shift electric demand from on-peak rate periods.
Energy storage can substitute for additional ‘peaker’ generation
for avoiding peak demand charges caused by building dynamics
or intermittent renewable generation. High levels of renewable
power generation installed within environmentally motivated
communities will increasingly require smart grid technologies to
balance generation and reduce the burden placed on the regional
utility [3]. This study uses the campus of the University of Califor-
nia, Irvine, as a micro-grid, one which already has 1 MW of solar
power installed and that is scheduled to quadruple its solar instal-
lations to more than 4 MW in the next several years.

The cost and emission benefits of district heating/cooling stem
from utilization of larger and more efficient boilers/chillers,
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Nomenclature

COP coefficient of performance
GT gas turbine
kW kilowatt
MW megawatt

SCE Southern California Edison
ST steam turbine
TES thermal energy storage
UCI University of California, Irvine
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aggregation of multiple building loads to reduce the necessary
capacity and level load fluctuations, reduced maintenance of fewer
individual systems, and improve reliability through redundancy of
the co-located systems. Centralized infrastructure and time-of-use
energy costs have made thermal energy storage a cost-effective
solution for micro-grid applications. Large thermal reservoirs
introduce the capability to manage cooling dynamics for lower
emissions and energy costs [4]. District heating/cooling applica-
tions can save money by utilizing energy storage to shift on-peak
production to cheaper off-peak hours. In some climates electric
cooling loads comprise more than 50% of building mid-day energy
demand, enabling substantial reductions of on-peak demand
charges through demand shifting. Reduced on-peak energy use
and demand charges from cold-water storage in combination with
improved chiller efficiency due to cooler nighttime temperatures
provide for substantial savings in warm climate applications.

The University of California, Irvine campus has the capacity to
self-generate 90% of its annual electricity demand, and employs
district heating/cooling with cold-water storage. The campus bal-
ances its self-generation through interconnection with the local
utility, though it is capable of operating as an independent grid
throughout most of the year, and will soon have sufficient distrib-
uted generation capacity to provide black-start capability for the
primary co-generation plant. The campus interconnection with
the grid is changing from a minimum import threshold to an inad-
vertent export agreement allowing the University to self-generate
nearly 100% of its demand while it has the capacity to do so. The
campus plant, outlined in Fig. 1, includes seven co-located chillers,
of varying size and performance characteristics, a 13.5 MW gas tur-
bine, a 4.5 MW steam turbine generator, and a 175 MW h cold-
water storage tank.

The cold-water storage meets the daily cooling demand during
on-peak electric rate hours through the fall, winter and spring sea-
sons, but must be supplemented with daily chiller operation dur-
ing hotter summer days. Electricity production is supplemented
by more than 1 MW (peak) of stationary rooftop and concentrated
dual-axis tracking solar photovoltaic power generators, and
through interconnection with the regional electric utility, Southern
California Edison (SCE). This complex and integrated micro-grid
serves as the case-study for this analysis, though the optimization
techniques developed and demonstrated apply to any cooling plant
with multiple chilling units and cold-water storage. The con-
straints faced by the UC Irvine plant are similar to those of any chil-
ler plant; the chillers must operate near rated capacity for optimal
efficiency, excessive start-ups and shut-downs must be avoided,
and energy costs, including demand charges, are considerably
higher during peak demand hours.

The interconnection agreement between UC Irvine and SCE dur-
ing the time of this study (2010–2013) sets a time-of-use rate sche-
dule for energy use and demand charges and also stipulates that
>1 MWe must be continuously imported by the campus. This min-
imum import constraint is common among micro-grids and largely
dictates the operating procedures associated with all of the cooling,
heating and power equipment. Electric demand fluctuations on the
order of 150 kW are seen in the high resolution campus demand
data, thus a considerable safety margin of 30% was applied to the
minimum purchase threshold. Both energy use charges, the elec-
tricity drawn (kW h), and demand charges, the peak load (kW),
are measured and billed on a monthly cycle. Daytime (on-peak)
electricity is charged at a higher rate than night-time (off-peak)
electricity use, and summer rates are substantially higher for both
energy use and peak demand charges. Nearly half of the utility cost
is associated with a departing load charge of 1.3 ¢/kW h of campus
generation.

Currently, the plant staffs three 8-h shifts of two operators to
manage the dispatch and operation of the GT, chiller plant, cold-
water thermal energy storage (TES) and district heating/cooling
loops. General guidelines regarding start-up sequence of the chill-
ers and the operators’ personal intuition and experience determine
the real-time dispatch of the electric chillers, the daily charge
capacity and charge/discharge schedule of the TES, and the set-
point for both electric generators. Analysis of historical data dem-
onstrated the substantial financial savings that accrue to UC Irvine
by shifting electric demand with the cold-water storage, but such
analyses also indicated that the cold-water storage was underuti-
lized. Optimization of the plant dispatch dynamics through linear-
ization and heuristics for plant operation could present an
opportunity for cost and emissions savings. This work develops
and applies techniques to improve the dispatch of the entire plant
using day-ahead weather forecasts, simplified dynamic models,
and historical use patterns. Real-time feedback of demand and
storage capacity is used in the development of a predictive control
strategy that automates the plant dispatch. Real-world testing is
underway using a man-in-the-middle approach, wherein the plant
operators have the optimized dispatch information available at
their disposal.

Dynamic dispatch of distributed resources is currently an inten-
sely studied problem due to the rapid increase of renewable gener-
ator deployment in some regions [5]. Means of energy storage such
as batteries [6], thermal storage [6], pumped hydro, or hydrogen
storage [7] have been proposed as partial solutions for managing
intermittency. Common strategies consider renewable power as a
negative load and dispatch alternatives accordingly to complement
the non-dispatchable renewable sources and loads [8]. Manage-
ment of distributed resources near the renewable power source
is seen as the most effective means of increasing renewable pene-
tration (i.e., the market penetration of renewable power systems)
[9]. Many approaches have been suggested including guiding heu-
ristics [10–12], multi-objective approaches like mixed-integer pro-
graming [13–15], fuzzy logic [16–18], and particle swarm
optimization [16,19,20], as well as hybrid system theory [21] and
model predictive control [22]. The economics [11,16–18] and emis-
sions [5,15] of distributed resources have been of particular inter-
est. Clean dispatchable generators such as fuel cells, micro-gas
turbines, and hybrid fuel cell gas turbine systems are capable of
load following or responding to renewable intermittency [23–
25]. These generators in tandem with modern resource manage-
ment and energy storage can convert a micro-grid into an efficient
and stable participant in the utility network.

Considering the well-recognized importance of energy storage
as a solution to renewable power intermittency, surprisingly few
authors investigate using energy storage as more than a buffer



Fig. 1. University of California, Irvine Micro-grid.
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against the intermittent power source [7]. The majority of optimi-
zation schemes focus solely on matching instantaneous demand
with optimal efficiency [10,11,15,16,18,19,21]. The large capacity
of thermal energy storage systems introduces the additional abil-
ity to shift energy demand from peak to non-peak demand hours.
This forms a more complex problem requiring system optimiza-
tion with future forecasting and potentially novel methods of
solution.

Here, we present a predictive control approach, which allows
for system level optimization over a time horizon and the capabil-
ity for on-line operation as a micro-grid dispatch strategy. This
technique is expected to increase the effective capacity of any stor-
age technologies in a micro-grid, increase the manageable renew-
able energy penetration and decrease reliance on the external
utility grid network. The next section will introduce the UC Irvine
micro-grid used in this case study. Section ‘Predictive dispatch
with feedback’ introduces and presents results for a heuristic dis-
patching methodology with predictive load forecasting. Section
‘Chiller dispatch optimization through linearization’ presents an
alternate dispatching method based upon linear optimization.
These approaches can also be applied to the design of future
micro-grid networks that are either energy neutral, completely
self-reliant or islanded with a combination of renewable power
sources, dispatchable generators and energy storage technologies.
Campus demand & plant description

The University of California, Irvine built a combined cooling
heating and power (CCHP) plant capable of meeting the electrical,
heating, and cooling demands of the main campus office buildings,
laboratory facilities, classroom buildings, and student residences.
The features of the Irvine campus are characteristic of a wide vari-
ety of universities, corporate campuses, military installations, or
other buildings with integrated infrastructure that comprises a
micro-grid. This representative campus micro-grid is analyzed
and several control strategies are applied in an effort to improve
efficiency, emissions and costs.

Gas turbine and steam turbine

A Solar Titan130 gas turbine provides the bulk of the campus
electrical power. The turbine operates between 9 and 14 MW
depending upon the demands of the campus and the chiller plant.
The operating range is constrained to between 9 and 14 MWe by
emissions limitations and the ability of the inlet guide vane con-
trols to reduce mass flow in order to maintain high firing temper-
atures and reasonable efficiency. Despite the inlet guide vanes
there is a substantial reduction in thermal efficiency from 33% at
nominal power to 26% at minimum power. An inlet air cooling sys-
tem eliminates dependence upon ambient temperature, but
increases the effective campus cooling load on hot days. The effi-
ciency, mass flow rate, and exhaust temperature are utilized to cal-
culate the heat available for capture and conversion to steam in the
heat recovery steam generator. The high pressure steam drives the
steam turbine and supplies the campus hot water. During emer-
gencies the turbine can respond to transients as fast as 1 MW/
min, though standard operation limits manipulation to a rate of
approximately 4 MW per hour. Dynamic modeling of the system
indicated quasi-steady operation under these slower 15-min tran-
sient conditions, and thus a simplified steady-state de-rate curve
was used for the efficiency and emission calculations in the current
work.

Electric chillers/cooling towers

The electric chillers produce cold water that is circulated
throughout the campus. Seven centrifugal electric chillers of
varying vintage, capacity, and efficiency and a single stream driven



Table 1
UCI chiller plant rated sizes and efficiencies.

Chiller 1 2 3 4 5 6 7 8

Size (Tons) 900 900 1000 2600 2800 2800 3250 3250
Size (kWe) 600 651 606 – 2525 2140 1905 1905
COP 5.27 4.86 5.8 1.55 3.9 4.6 6.0 6.0
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centrifugal chiller comprise the UCI cooling plant. The coefficient of
performance (COP) at rated power, shown in Table 1, ranges from
3.5 to 6. The older units, 1–3, use older refrigerants which are being
phased out, and will thus only operate when necessary, while chill-
ers 5–8 use the approved refrigerant R123. Chiller 4 is a steam dri-
ven chiller that operates primarily in the summer when sufficient
extra steam is available from the co-gen system. During the period
in which the data was acquired for plant operation (2011–2013)
the steam chiller was out of service, so that comparisons of the pre-
dictive control scheme to manual plant operation forced no use of
the steam chiller. There is evidence in the most recent data col-
lected supporting additional energy savings from using the steam
chiller during summer months.

The effective chiller plant COP is a combination of the individual
chillers in operation, and the parasitic draw of the cooling tower
fans and pumps. The parasitic load of the cooling towers depends
upon the chilled water production, ambient temperature, the num-
ber of towers in operation and the condenser water return temper-
ature. Currently there is no control strategy in place to ensure the
condenser water return temperature is maintained at the design
set-point of 28 �C. This is an area for future improvement and opti-
mization of the chilled water portion of the plant. The cooling
tower load is only measured at a pair of transformers, and thus
only a simple correlation with chilled water production could be
justified from the available campus plant data. The measured cool-
ing tower parasitic was 0.075 kW per ton of refrigeration. As an
example this parasitic load reduces the effective COP of chillers 7
& 8 from 6.0 to 5.32.

During electric chiller start-up the inrush current can be as
much as 4000 Amps, corresponding to �2 MW. Under an inadver-
tent export agreement this start-up current can be met by the grid,
but with a minimum import constraint a 2 MW buffer must be ini-
tiated before chillers can be restarted. During a chiller re-start the
condenser and evaporator take 5–10 min to reach operational tem-
perature. During this transient chilled water production is substan-
tially reduced. The in-rush current and thermal transients are
significant enough to discourage starting multiple chillers simulta-
neously or starting chillers during peak hours. Forethought must
be given to how much chilling capacity is necessary to meet chill-
ing demands for the duration of the peak electric rate period. If the
chiller starts are always constrained to off-peak hours this tran-
sient behavior has a negligible impact on total operating costs or
emissions, and can be neglected. Operator experience with mainte-
nance and reliability of the chillers and the combined efficiency of
the chillers and cooling towers has led to operating heuristics that
constrain individual chiller operation at or near full load capacity
while attempting to minimize chiller start/stop events. These
insights into plant operation are integrated into both optimization
approaches developed herein as constraints in the frequency and
time-of-day of chiller re-starts and a constraint to dispatch the
chillers only at full load. Therefore the chiller plant can be simpli-
fied to a sequence of fixed size units with fixed coefficients of per-
formance as detailed in Table 1.

Three cooling towers are independently dispatched with con-
tinuously variable fan speeds for high efficiency. A unique cold-
water recirculation loop ensures chiller inlet temperatures do not
exceed 11 �C despite the campus return flow ranging from 11 to
18 �C. Rated chiller capacity and efficiency is achieved with a
6.67 �C (12�F) temperature differential. Cold water recirculation
ensures a continuous 6.67 �C (12�F) temperature differential for
highest chiller efficiency and an output of 4 �C for cooling the cam-
pus or charging the TES tank.
Cold-water storage tank

The 175 MW h thermal energy storage (TES) tank is used to
shift cooling demand from daytime to nighttime. The TES reduces
peak daytime demand and increases the base load demand during
nighttime hours. The TES stores hot water on top of cold water
with a steep thermocline between them. Limited mixing occurs,
partially accounting for round trip energy storage efficiency calcu-
lated to be 94.7% from the 4 years of data analyzed. This energy
storage inefficiency is accounted for as a reduction of the thermal
energy sent to the tank during charging. This approach provided
the closest correlation with measured data. The cold-water portion
of the tank is maintained at 4 �C by the chiller plant. The hot por-
tion of the tank varies according to the campus return temperature
that fills it, typically in the range of 12–18 �C. A set of mass flow
and energy balance equations that account for losses to the envi-
ronment are used to determine the charge of the cold-water tank
[26]. The height of the thermocline (0–33 m) and the temperature
of the hot and cold regions are measured and supplied for feed-
back calculations.

The design uses the cold-water TES to de-couple the campus
water flow rate from the chiller plant flow rate, such that the oper-
ating chillers remain at or near full capacity while running and so
that chiller operating times need not correspond to times of cam-
pus cooling demand. The combined chiller/cooling tower/cold-
water storage plant has three operating modes; TES charging, TES
supplementing and TES discharging. During off-peak hours the
cold-water production exceeds campus demand and charges the
TES. During on-peak hours the TES discharges by either supple-
menting chiller production or meeting the entire campus cold-
water demand.
Campus demand

Data collected from January 2009 until December 2013 with 15-
min and 10 s resolution has been analyzed to evaluate and improve
upon the current plant operation. The interaction between electric
generators, electric chillers, cold-water storage, and the electric
grid are explored to improve robustness, reliability, and efficiency
without installation of additional plant hardware. The goal is to
reduce operational costs by optimal application of thermal energy
storage for shifting cooling demand to off-peak hours.

Measurements of campus generation, electrical imports, and
chiller operation have been processed to determine the campus
building’s electric load. Measurements of the hot and cold water
flow rates and temperatures supplied to the campus have been
used to determine the campus heating and cooling loads. Measure-
ments of ambient temperature have been aggregated to produce a
single typical daily temperature profile for each month. A 2-D sur-
face was then fit to the calculated campus demands as a function of
ambient temperature and time of day. Separate surfaces were gen-
erated for weekdays and weekends/holidays due to the drastically
different campus behavior. Fig. 2 presents an example of the result-
ing electric demand profile for an August weekday. Table 2
describes the calculated r2 of these surface fits that were then used
in the prediction of campus demand. Note the high correlation of
cooling demand with temperature and the relatively low correla-
tion of electricity and heating, particularly during the summer
months, May–September.



Fig. 2. Surface fit of UC Irvine Campus August Weekday Electric Demand.

Table 2
Goodness of fit for historical data as a function of time-of-day, temperature, and
weekday/weekend.

Month Weekday Weekend

Electric Cooling Heating Electric Cooling Heating

January 0.44 0.87 0.73 0.33 0.81 0.50
February 0.61 0.82 0.63 0.57 0.85 0.61
March 0.45 0.80 0.51 0.26 0.81 0.33
April 0.55 0.61 0.40 0.48 0.70 0.44
May 0.39 0.89 0.27 0.33 0.89 0.21
June 0.40 0.84 0.35 0.44 0.81 0.28
July 0.53 0.84 0.38 0.32 0.79 0.23
August 0.58 0.86 0.56 0.42 0.86 0.43
September 0.39 0.85 0.38 0.28 0.71 0.37
October 0.51 0.81 0.51 0.48 0.82 0.42
November 0.50 0.83 0.50 0.43 0.74 0.49
December 0.41 0.64 0.53 0.32 0.81 0.47

Fig. 3. UC Irvine Heating, Cooling, and Electrical Demands as seen by the Central
Plant.

Fig. 4. Impact of self-generation and cold-water storage on electrical imports.
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Fig. 3 summarizes the UC Irvine campus demands for a week in
July, 2010. The demand for cooling clearly increases throughout
the week corresponding to warmer weather. The electrical profile
has two relatively flat weekend days followed by 5 weekday load
profiles that also increase slightly with the warmer weather
towards the end of the week. The heating demand is significantly
more erratic with large morning peaks due to warming of buildings
and a significant heat demand for cleaning of laboratory animal
cages. The solar generation exhibits highly regular behavior during
the long sunny summer days. Interviews with the plant operators
have provided additional insights into the current dispatch strat-
egy. Specific plant peculiarities observed in the data and explained
by interviews with plant operators offer opportunities for improve-
ments and motivate additional constraints that are specific to the
campus plant configuration. These include turning down the steam
turbine in the morning to ensure sufficient heat is available for the
campus, or leaving additional chillers on as buffer against days
with less than the expected cooling sea breeze. In addition, a gen-
eral goal of minimizing the number of component (e.g., chiller)
start-up and shut-down events is employed.

As it is currently operated the campus micro-grid is normally,
but not always, an asset to the utility network. Fig. 4 illustrates
how the combination of energy shifting from the TES and load fol-
lowing with the GT can lower and level campus electrical demand
from the utility (SCE). The gas turbine follows the electrical
demands of the campus except for the hottest days when campus
demand is high and the TES system is insufficient to meet the
entire on-peak cooling demand. On these days some chillers are
operated during peak hours to supplement the TES chilling pro-
vided, adding to the daytime electric load. The combination of
increased campus demand and daytime chiller operation can
increase demand on the electric utility 3–5 fold and results in sig-
nificant costs due to the tariff structure. Notice the high electric
imports on July 13–16 shown in Fig. 4, reaching up to almost
9 MW of import on July 16 near noon. Overall, while the UCI cen-
tral plant substantially reduces the overall energy use and cost to
the university, manual operation and lack of a central control strat-
egy limit the cost and emission-saving potential.

Predictive dispatch with feedback

The first of the two optimization strategies presented is a heu-
ristic approach that aims to mimic the manual operators’ practices.



Fig. 5. Automated chiller dispatch with cold-water storage demand shifting.
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This section will first detail how the plant is dispatched for a
known campus demand. Then the known demand will be replaced
with a forecasted demand based upon historical data and weather
forecasts. Finally a feed-back controller is added using the mea-
sured thermal storage capacity as a proxy for the error in the fore-
cast. This strategy will be shown to improve upon the manual
operator decisions due to the accuracy of prediction for campus
demand, generator efficiency, and chiller dispatch.

The chiller plant dispatch focuses on two operating regimes:
peak (daytime) and off-peak (nighttime). Cost savings result from
utilizing the energy storage tank to shift chiller operation from
peak to off-peak. Additionally, off-peak hours coincide with cooler
ambient temperatures which produce colder water in the cooling
towers. The colder water improves the heat transfer in the con-
densers, sub-cooling the refrigerant and improving the chiller plant
efficiency. A chiller plant comprised of seven chillers of varying
size and efficiency presents a problem with complex (and non-
unique) solutions for meeting the total cooling demand. This com-
plexity was eliminated by assuming a particular sequencing for the
chillers to be brought on-line. The sequence, 7-8-5-6-1-2-3, corre-
sponds to the manual sequencing as indicated by the plant opera-
tors. This sequence is the reverse order of the age of the chillers.
Due to maintenance issues during most of the study period the
steam chiller, chiller 4, is omitted from this sequence. Meeting
campus demand is considered the first priority and reliability
trumps the small improvement in efficiency that a different
sequence might provide. The drawback to this particular sequence
is that the first chillers to be started in the sequence are large. A
mixed-integer optimization approach could potentially handle
the complexity of multiple chillers of varying sizes and efficiencies,
but may provide a solution that is at odds with practical consider-
ations such as balancing the hours of use between chillers of differ-
ent ages or avoiding excessive start-ups and shut-downs. This
heuristic strategy considers plant operator knowledge and will
generate dispatch scenarios that incorporate plant peculiarities,
practical constraints and knowledge of the operators.

Chiller and thermal storage dispatch

The multi-step dispatch strategy first determines the peak and
off-peak chiller plant load. It then dispatches the appropriate chill-
ers during each period. The on-peak chiller demand is the sum of
the total predicted cooling demand that occurs during on-peak
hours less the capacity of the thermal storage tank. If, on a cool
day, total on-peak demand is less than the thermal storage capac-
ity, the on-peak cooling demand is zero and the tank would be
charged sufficiently to meet the on-peak demand without chiller
support. The tank charging occurs during the previous off-peak
period and is completed before peak hours begin, 10 AM. The off-
peak cooling is determined as the sum of the off-peak campus
demand and the off-peak tank charging demand. Eqs. (1)–(3) out-
line this first step in the dispatch algorithm for shifting cooling
demand to off-peak hours.

Coolingon-peak ¼
X

on-peak

Campus DemandCooling-TEScapacity ð1Þ

TEScharge ¼ min
X

off -peak

ðCampus DemandCoolingÞjTEScapacity

( )
ð2Þ

Coolingoff -peak ¼
X

off -peak

ðCampus DemandCoolingÞ þ TEScharge ð3Þ

The average off-peak chiller load is this total cooling demand
divided by the duration of the off-peak period. The number of chill-
ers operated during the off-peak period, n, is the minimum number
of chillers in the specified start sequence such that the sum of the
chiller capacities is greater than the average load. This ensures suf-
ficient charging of the TES tank will occur prior to the start of the
peak period. Since the chillers are constrained to operation at or
near full-load, the final chiller in the sequence is operated for only
a portion of the off-peak period to ensure that the TES tank is not
overcharged. All other chillers initially dispatched are operated for
the duration of the off-peak period. This second step of the chiller
dispatch is described in Eqs. (4)–(6).

Avg Load ¼
Coolingoff -peak

Hours of off -peak
ð4Þ

Xn

i¼0

Chiller Sizei > Avg Load ð5Þ

tshut-down ¼

Xn

i¼0

Chiller Sizei � Avg Load

Chiller Sizen

0
BBB@

1
CCCA� Hoursoff -peak ð6Þ

If the total cooling demand is greater than the cold-water stor-
age capacity, the tank would be completely filled during off-peak
hours, with the remaining on-peak demand being met in a similar
fashion by the minimum number of chillers during the peak (TES
supplemental mode). These chillers would remain on at the begin-
ning of the on-peak demand period and would operate until the
stored cooling could meet all of the remaining on-peak demand.
The dispatch of chillers during on-peak hours is found by repeat-
edly solving Eqs. (4)–(6) using the on-peak cooling of Eq. (1) in
Eq. (4), and the on-peak hours in Eq. (6). This strategy completely
avoids chiller re-starts during peak hours and the associated prob-
lems; in-rush currents, wasted start-up energy, energy and
demand charges. This approach also maximizes the continuous
operation of each chiller (meeting the minimization of start-ups
and shut-downs goal).

This initial automated dispatch strategy results in high peak
demands and periods of non-compliance with the utility intercon-
nect agreement. Figs. 5 and 6 illustrate the cooling demand shift
and the resulting projected electric demand at this stage of the dis-
patch automation. Fig. 5 shows the campus cooling demand for the
5 weekdays in the same July 2010 period. Fig. 5 also shows the
impact of shifting daytime cooling demand using the cold-water
storage, and shows the chiller cooling generation dispatch neces-
sary to meet the shifted cooling demand.

This initial automated dispatch of the cold-water storage has
filled most of the nighttime dip in electricity demand, but results
in a rather large morning peak demand as shown in Fig. 6. These
results indicate that the automated chiller dispatch must be
further improved to avoid excessive demand charges caused by



Fig. 6. Campus electric demand profile with forecasted electric chiller load profile
for the initial automated dispatch routine.
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this early morning spike in demand. The next portion of the auto-
mated dispatch algorithm reduces peak demand by shaving load
that is predicted to occur during peak events. For typical daily
demand profiles this step shifts morning loads of 7–10 AM to the
previous evening between 10 PM and 1 AM by changing the sched-
uled charging of the cold-water storage.

An initial threshold is set below the peak demand and used to
calculate the Reserve Capacity as per Eq. (7). The algorithm then
determines the electric load of the next available chiller/s that
could be met by the Reserve Capacity. An iterative solution strat-
egy shifts cold water generation from periods of negative Reserve
Capacity, hours 7–10, to the prior period with greatest positive
Reserve Capacity, hours 0–2. The process is repeated with an ever
lower threshold until the tank or chiller plant capacity is reached.
Cold-water generation can only be shifted if the initial dispatch
indicated that at least one chiller was on-line during the peak
demand event of the day. Fig. 7 illustrates the calculation of
Reserve Capacity for a single day, and the re-dispatch of cold water
production to previous off-peak hours. With a reasonably accurate
forecast of the campus demand profile, this multi-step dispatch
method can closely approximate an optimized chiller plant dis-
patch strategy.

Reserve Capacity ¼ ThersholdþMaxGeneration� Demand ð7Þ
Gas and steam turbine dispatch

After the chillers and thermal storage is dispatched, the
expected electric load of the chiller plant is added to the campus
electric load. The expected contribution of the solar generation
and the minimum electricity purchase constraint are then sub-
Fig. 7. Results of the automated dispatch algorithm with demand peak shaving for
one 24 h period.
tracted from this net electric demand. The resulting electric load
would ideally be supplied by the campus co-gen plant if sufficient
capacity exists. The gas turbine is constrained to operation
between 9 and 14 MW, and cannot ramp faster than 4 MW per
hour. An initial guess of the gas turbine set point estimates the heat
supplied to the heat recovery/steam generator which converts on
average 68% of the exhaust energy into high pressure steam. The
steam first supplies the campus heating load and any remaining
steam drives the steam turbine. The steam turbine is constrained
to operate above 750 kW to avoid the risk of an electrical trip if
the campus were to suddenly draw additional steam for heating.
The gas turbine power setting is adjusted until the sum of the
gas turbine and steam turbine generation equals the desired co-
gen production.

Load forecasting & feedback

During the initial chiller and thermal storage scheduling suffi-
ciently accurate demand forecasts using information about recent
generation levels, historical demand data, and weather predictions
can substitute for precise knowledge of the actual campus demand.
However, forecasted demand introduces an additional error that
must be accounted for. Feedback of the actual cold-water storage
tank charge level can capture both the error in plant efficiency esti-
mates and the error in campus demand estimates. The scheduled
plant dispatch and actual campus demands are applied to the sim-
ulated plant. The balance of electricity is met by the grid and the
balance of cooling is met by the thermal storage. Though rarely
implemented a duct burner is available to meet any campus heat-
ing not met by the heat recovery unit. This method has been imple-
mented in a convenient graphical user interface developed in
Matlab�.

The first step to each 24 h dispatch is a forecast of the ambient
temperature for the next 24 h. This is done by averaging the mea-
sured ambient temperature from the previous 24 h and a historical
daily temperature profile for each month. The standard deviation
of the measured temperature from the historical average monthly
profile of dry-bulb temperature is 2.6 �C. Combining the historical
profile with the previous day’s measured weather reduces the error
of prediction by more than half. To avoid a discontinuity at t = 0 an
exponential decay lasting 4 h was applied to smooth the transition
from the last measured temperature to the forecasted profile. This
ambient temperature prediction was then used to project the cam-
pus electric, cooling, and heating loads using the previously devel-
oped 2-D surfaces. These campus load projections were found to
very well estimate the future campus demand. The generators,
chillers, and thermal storage are subsequently scheduled to meet
these predicted load profiles. Over the course of the next 24 h of
simulated plant operation feedback from the measured capacity
of the cold-water storage tank captures modeling and forecasting
error, and is reincorporated into the chiller dispatch optimization
at the end of each 15-min measurement interval. If the tank
charged faster than expected then either the forecasted load was
to high or efficiency was greater than expected, and the next
scheduled chiller shut-down is accelerated to avoid over-charging
the cold-water TES.

Predictive control results

Fig. 8 presents the predicted and actual load profiles for a single
day along with the chiller dispatch strategy and water storage pro-
file. Dashed lines are predicted values, and solid lines are the mea-
sured data. On this particular day the weather forecast over-
predicted the load in the mid-day (11 AM–6 PM). Initially the tank
discharges slower than anticipated. Slightly after 3 PM the control
algorithm is confident that enough cooling capacity is left in the



Fig. 8. Cooling demand and dispatch with cold-water storage for a single day
(dashed lines represent predicted values, solid lines from real-time operation).
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TES tank to meet the remainder of the on-peak hours without sup-
plementary cooling from the electric chillers. At 3:30 PM the con-
troller informs the operator that the last remaining chiller should
be taken offline in the next 15 min. This corresponds to a shut-
down time 2.5 h prior to the initial scheduled dispatch. During
the remaining six hours of on-peak operation the TES tank empties
at a faster rate than initially forecasted, but the algorithm correctly
estimated that sufficient capacity remained to meet the campus
demand without fully discharging the TES tank. The remaining
charge in the TES tank is carried into the next day and is accounted
for during the initial dispatch of chillers used to recharge the tank.
This example also illustrates a slight over-charging of the TES tank
occurring at 10 AM. This slight overcharging is acceptable as the
tank can be cooled below its nominal 4 �C with minimal impact
on the effective COP of the chiller plant.

The predictive dispatch strategy met the dynamic electric, heat-
ing, and cooling demands of the campus without exceeding the
generation or cold-water storage capacity and while limiting chil-
ler re-starts to once per day. Over the four years of study, the pre-
dictive dispatch resulted in a 22.8% reduction in electric purchases
(kW h), a 1.56% reduction in net electric use (kW h), varying reduc-
tions in monthly peak energy demand (kW), slightly increased gas
purchases, and a 3.61% reduction in net campus energy costs when
compared to the current manual plant dispatch. The savings corre-
sponded to a reduction in average cost of electricity from 6.52 ¢/
kW h to 6.38 ¢/kW h. The average cost of electricity purchased
from the utility increases from an average of 16.1 ¢/kW h to
18.3 ¢/kW h as the energy charges are reduced more than the
demand charges. These costs do not include any campus plant
finance or operations and maintenance costs. A summary of the
financial savings is presented in Table 3. Winter months yield
potential electricity purchase savings of $14,000–22,000 (6–10%),
Table 3
Electricity and fuel cost for UC Irvine central plant.

Electric utility ($1000’s) % Saved Electric + G

January 202.71 8.1 688.31
February 189.07 7.6 635.10
March 201.88 9.4 678.85
April 196.65 10.1 657.33
May 221.15 6.3 704.24
June 231.46 5.3 688.22
July 242.82 17.7 723.14
August 243.36 16.6 732.31
September 228.41 28.4 696.95
October 231.85 5.7 722.08
November 196.36 10.1 657.31
December 187.03 9.6 653.14

Annual total 2572.73 12.0 8236.98
while summer months range from $50,000 to 90,000 (16–28%).
The costs presented in Table 3 correspond to the projected electric
utility and total charges if a predictive control strategy were imple-
mented between 2010 and 2013. Also included is the total electric
use of the campus and plant during this period. The reduction in
net annual electric use (1.56%) and CO2 emissions (726 Tons) stems
from more efficient operation of the gas turbine and chillers,
mainly by operating at night when both systems are more efficient.
The emission reductions increase to 1675 tons if you consider off-
setting the combustion based grid emissions at 400 g kW�1 h�1

instead of the renewable mix emission factor of 230 g kW�1 h�1.
Fig. 9 illustrates the annual variation in energy costs for UC

Irvine. The predictive dispatch method is able to make greater uti-
lization of the thermal storage capacity, and therefore results in
greater savings in the summer when the size of the thermal storage
becomes a constraint on plant operation. In the winter months the
thermal storage capacity is more than sufficient to offset all of the
on-peak cooling, and thus the manual operator dispatch matches
very closely with the predictive dispatch. The operators have
learned how to improve their summer performance during the per-
iod of this study. The projected electric utility savings have
decreased from a maximum of 14% in 2010 to 9% in 2013. Another
important way to mark this improvement in plant operation is
through the percent of self-generated power. While the predictive
control strategy suggests the campus plant could meet 89.1 ± .4%
for each of the four years studied, the actual plant operation has
increased its self-generation from 85% in 2010 to 87% in 2013.

Impact of on-site solar generation

During the period of study the UC Irvine campus installed
800 kW of solar photovoltaics. An additional 110 kW serves the
student recreation center, which was not included in the dataset,
and short-term plans call for expansion to 4 MW. The preceding
predictive control strategy was repeated with 0, 1, 2 and 4 MW
of installed solar capacity to evaluate the cost and emissions
impact of these installations. Table 4 and Fig. 10 present a sum-
mary of the cost and emission benefits to the UC Irvine campus.
The current annual emissions for the campus (including the co-
gen plant and grid electricity) are 68,700 tons of CO2. The co-gen
plant, which only intermittently uses the steam for co-generation,
averages 510 g kW�1 h�1 of electricity generated. The existing solar
installation reduces emissions by 0.7% while supplying 1.4% of
annual electricity consumption.

This difference highlights a key issue: solar installations on
micro-grids may not reduce emissions as much as expected when
the plant and campus dynamics are not considered. When campus
demand exceeds generating capacity, the on-site solar generation
reduces imported electricity and imported emissions. This occurs
as ($1000’s) % Saved Electricity use (MW h) % Saved

0.59 10.40 1.93
0.20 9.60 1.43
0.60 10.47 1.72
0.85 10.23 2.33
0.81 11.21 2.95
1.41 10.62 2.23
6.12 11.60 1.10
8.89 12.12 �0.62

14.93 11.38 1.00
1.79 11.75 0.07
1.93 10.10 2.72
1.57 9.61 2.34

3.61 129.09 1.56



Fig. 9. Annual variation in UC Irvine Energy costs and comparison to predictive dispatch.

Table 4
Cost and emission impact of UC Irvine solar installations.

Solar capacity Projected annual savings ($1,000’s) Projected CO2 emission savings (Tons) Projected CO2 emission savings (g kW�1 h�1)

1 MW 19.6 455 230
2 MW 32.9 884 225
4 MW 45.5 1689 210

Fig. 10. Monthly value of solar generation to UC Irvine campus.
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primarily in the summer and results in the highest value for each
solar kW h generated, see Fig. 10. The remainder of the year the
solar generation offsets power from the co-gen plant, causing the
GT to be operated at lower power, and thus lower efficiency. With
an electric demand of 10 MW, the current solar generation, 1 MW,
will reduce demand on the generator by 10% while increasing the
g kW�1 h�1 from the co-gen plant by 6.2%, resulting in a net 4.5%
reduction in CO2 generation. Thus when the solar power would
be expected to offset 510 g kW�1 h�1 it is actually offsetting only
230 g kW�1 h�1. In California this offset emission factor is equal
to the grid emission factor, but elsewhere solar power may have
a considerably larger emissions impact when installed on the grid
side of the fence.

Table 4 further highlights this key finding, illustrating that as
the solar installation capacity increases the impact on emissions
is diminished. It should be noted that although the co-gen plant
emissions, 510 g kW�1 h�1, are higher than the average California
grid emissions, the net campus emissions are lower than they
would otherwise be without the campus co-gen plant due to the
CHP integration offsetting the need for boilers. Fig. 10 also shows
a substantial reduction in the economic value of solar generation
as the installation size increases; there is little additional energy
cost savings beyond 2 MW of installation. It should be noted that
this analysis considers only the current campus demand and plant
capacity. Future campus growth and plant upgrades may certainly
realize a similar financial benefit from a 4 MW installation as is
seen from the present 1 MW installation.
Chiller dispatch optimization through linearization

The predictive dispatch strategy improved upon the manual
operator dispatch, but fell short of providing a true optimized solu-
tion. For example, the peak-shaving portion of the dispatch did not
consider the variable efficiency of the chillers as a function of
either ambient temperature or partial-loading. Additionally, the
UC Irvine campus is shifting to a direct access agreement where
the electricity will be charged based upon spot prices instead of
fixed rates. A formal optimization approach can incorporate and
address a variety of such features. Often, the result is a nonlinear
optimization problem, relying on mixed integer nonlinear pro-
gramming [27,28]. Such techniques are not only computationally
difficult, they might produce impractical solutions (e.g., one with
numerous turn-downs and start-ups for the chillers) unless a full
set of transient dynamic models are incorporated; a task that is
exceedingly difficult. Incorporating penalties for chiller re-starts
into the cost function of a mixed-integer program introduces addi-
tional tunable parameters and optimizes a fictitious cost that may
be dominated by these extra terms.

Here, we introduce an alternative approach that relies on linear/
convex optimization, which includes the influence of temperature
and partial flow rate on performance and uses constraints to min-
imize the number of shut-downs and start-ups, while ensuring
that the chillers operate at peak efficiency. For brevity, the pro-
posed approach is introduced and its benefits are shown through
an example that is simpler than the chiller plant discussed above
so that the key features of the optimization are not obscured by
some of the physical details of the plant. The proposed optimiza-
tion directly considers ambient temperatures and humidity, cam-
pus cooling demand, linear approximations of the temperature
dependence of the chiller coefficients of performance, and the
cold-water storage introduced in the previous sections, as well as
the variable electric rate or spot prices. Initially, the forecasted
temperatures are assumed to be perfectly accurate, and the fore-
casted demand nearly so.
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Cost function

The cold water plant efficiency, expressed as a COP, is the ratio
of refrigeration produced to electrical consumption. The baseline
net electrical cost can be described as the sum of the energy con-
sumed for chilling multiplied by the time-of-use electrical rate
for each billing segment, typically 15 min as follows

cost ¼
Xsteps

i¼1

Q c;iðxiÞ � Cenergy;i

COPiðxi � TiÞ
ð8Þ

where Qc is the cooling provided in kW, Cenergy is the time-varying
cost of energy in $/kW h, and COP is the composite chiller and cool-
ing tower coefficient of performance as a function of flow rate, xi in
gal/s, and wet-bulb temperature, Ti. The optimization decision var-
iable is the chilling energy provided by the chiller system during
each billing interval. Given the fixed temperature difference across
the chillers, the instantaneous chilling power is proportional to the
mass flow of water through the chillers, xi. The optimization mini-
mizes Eq. (8) subject to the chiller operation and cold-water storage
tank constraints.

The specified cost function is not convex in x, and the con-
straints are non-trivial. A practical solution must be constrained
to minimize start-ups to avoid system wear and demand spikes.
The optimization is simplified when the operating space of the
chiller plant is constrained to full-load chiller operation only. In
addition to this simplification, excessive start-ups must be
avoided, or else the costs and transient response considered will
add to the non-linearity of this non-convex problem.

Linearization

Between 97% and 103% of rated capacity, the chiller efficiency
varies less than 1.5%. The current linearization and optimization
assumes constant COP, corresponding to the rated capacity of the
chiller/cooling tower system, and develops an optimization strat-
egy that ensures full utilization of the storage capacity. A second
order polynomial closely approximates peak COP as a function of
wet bulb temperature only. With this approximation Eq. (8) can
be simplified to the following linear form where fi represents the
known price of electricity for each interval, divided by the known
chiller performance coefficient at each interval given the fore-
casted wet-bulb temperature. The fixed temperature differential
across the chiller makes the chilling energy directly proportional
to the chiller water flow. The proportionality constant is repre-
sented by Kchill and has units of kJ/gal.

cost ¼ Kchill

Xsteps

i¼1

f i � xi ð9Þ

Constraining excessive re-starts and chiller de-rate

Beyond the obvious capacity (TES and chiller) constraints, linear
constraints will address minimizing re-starts and enforcing full or
near-full capacity operation of the chillers at all times. Small varia-
tions in temperature subtly change the chiller system efficiency and
thus the cost of producing cold water during fixed price periods for
electricity. This temperature dependence, if unaltered, dramatically
affects the optimal chiller dispatch causing multiple undesirable
shut-downs and re-starts. Imposing a no-start window during such
periods can avoid unwarranted dispatch of chillers with a slight
cooling of the weather. Limiting chiller starts to off-peak (i.e., even-
ing and early morning) hours typically reduces the number of daily
starts for an individual chiller to once per day, which is desirable
and consistent with the plant operator guidelines.

The ’no increase’ constraint establishes an interval during which
the chilled water flow, xi, only decreases or remains constant, this
is best applied to peak and mid-peak price periods. In the off-peak
period the reverse can be used, that is, during the off-peak period
chilled water flow remains constant or increases. These inequali-
ties (shown in Eq. (4)) constrain the optimization so that sufficient
chillers are started prior to the on-peak period and that the night-
time cold-water production is more evenly distributed.

Xi P xiþ1 i 2 no-increase interval
Xiþ1 P xi i 2 no-decrease interval

ð10Þ

Fig. 11 shows how the constraints of Eq. (10) affect the solution
of the optimization problem, as the duration of the no-increase
interval (shaded areas) is increased. The constraint balances the
dispatch solution to avoid drastic spikes. In Fig. 11, the lower right
figure shows the extreme case of implementing a no-increase con-
straint throughout the 24 h. In practice, of course, a combination of
no-decrease (typically off-peak periods) and no-increase (peak and
mid-peak periods) constraints are used to allow use of chillers after
the electricity tariff is reduced.

Constraining each of the chiller’s operation to at or near-full
capacity requires working band constraints that limit the dispatch
of each chiller to a finite range, Qmin ! Q max. The span of the work-
ing bands increase as additional chillers come online. With multi-
ple chillers each de-rating within their respective working band, a
wider range of flows is achievable. Constraining the optimization
solution to these working bands ensures that each chiller operates
at or near full capacity. Fig. 12 illustrates the working bands for a
few levels of de-rate limits. Working bands are imposed with the
constraints of Eq. (11).

Xi P ni Q min lower bound

Xi 6 ni Q max upper bound
ð11Þ

These constraints introduce an additional decision variable, the
number of operating chillers, ni. An iterative algorithm determines
an adequate number of chillers for each dispatch interval. The ini-
tial value of operating chillers at each time interval is set to the
band above the initial value of optimal dispatch solution without
working-band constraints. If the maximum capacity of the cold-
water storage capabilities is then violated, the initial value is
reduced by one. Then the optimization is repeated for the subse-
quent time intervals, adding the working-band constraint one step
(or multiple steps) at a time. This iterative technique is flexible to
both temperature perturbations and changes in initial conditions.
Results of the linearization technique

Constraining the dispatch optimization with no-increase/no-
decrease intervals prevented chiller re-starts and smoothed the
chiller plant dispatch. The addition of working band constraints
guarantees that the chillers operate at or near rated capacity. After
a solution was obtained with the linearization, the resulting sche-
dule was used as the initial guess to a nonlinear optimization
approach (i.e. pattern search algorithm) with the full non-linear
maps for COP. The results showed slight improvements, at the cost
of unanticipated (and undesirable) start and/or shut down of a
chiller. The difference between the two approached was about
0.7% for 95% working bands. As the range of de-rating for the chill-
ers increase, the difference can grow as the unaccounted reduction
of COP for operation in 80% or 85% rated capacity is captured by the
nonlinear search (e.g., 1.9% difference for 90% working band, 4.7%
difference for 80% working band). The narrow working-bands
ensured operation near rated capacity and rated coefficient of per-
formance for each individual chiller.



Fig. 11. Effects of the ‘no-increase’ constraints as applied to different intervals (indicated by shaded area).

Fig. 12. Working bands of each chiller corresponding to different threshold limits of operation as a percentage of maximum capacity.
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Summary and conclusions

The UC Irvine campus is representative of many business,
industrial, and educational campuses across the country that could
benefit from self-generation, district heating/cooling, and thermal
energy storage. The access to operation protocol, plant operators,
and operation data enabled a detailed analysis of the plant perfor-
mance with real-world considerations such as equipment mainte-
nance and insights into campus behavior and applications that
substantially affect plant operations and the load distribution.
Analysis of the cold-water storage facility demonstrated that a pre-
dictive control strategy can realize substantial savings when com-
pared to even best-practices manual operation. The combination of
predictive scheduling and feedback control demonstrated potential
annual electric utility bill cost savings of 12.0%, total campus
energy cost savings of 3.61%, and net energy efficiency improve-
ments of 1.56%. Emissions of CO2 can be simultaneously reduced
by 726 tons (1.1%); equivalent to an additional 2 MW of solar
capacity.

Employing weather forecasts to predict future load profiles
from historical data can provide adequate estimates for use in
scheduling the dispatch of micro-grid resources, but feedback
and real-time dispatch modification is necessary for effective man-
agement of energy storage resources. The greatest savings were
seen during summer months due to the higher electrical rates,
additional demand charges, and size constrained energy storage.
The emissions reduction of solar generation on a micro-grid is
highly dependent upon the campus dynamics and plant efficiency
during turndown and may be considerably less than expected.
There is a noticeable diminishing return on both annual energy
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costs and emissions reduction as the solar penetration on the
micro-grid is increased.

Any predictive control strategy can be further improved with
optimization, such as the linearization approach demonstrated
for a chiller plant with multiple chillers and a cold-water storage
tank. Working-band and no-increase/decrease constraints effec-
tively capture real-world considerations of chiller plant efficiency
and start-up limitations. Standard moving (though shrinking) hori-
zon techniques handle any imperfect cooling demand with only
one or two updates at key points (e.g., 10 a.m. and 3 p.m.). Non-
uniform chiller sizes are easily addressed by adjusting the working
bands and varying COPs are accommodated by turning the prob-
lem into a piece-wise linear problem (instead of linear). The tech-
niques applied and results found in this analysis are applicable to a
broad spectrum of co-located buildings generators and storage sys-
tems amenable to district heating/cooling.
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