Lawrence Berkeley National Laboratory
Recent Work

Title
152 ELECTRIC HEXADECAPOLE MOMENT IN Sm

Permalink
https://escholarship.org/uc/item/7pp2s814

Authors
Stephens, F.S.
Diamond, R.M.
Glendenning, N.K.
et al.

Publication Date
1970-03-01
ELECTRIC HEXADECAPOLE MOMENT IN ^{152}Sm

F. S. Stephens, R. M. Diamond, N. K. Glendenning
and J. de Boer

March 1970

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ELECTRIC HEXADECAPOLE MOMENT IN 152Sm

F. S. Stephens, R. M. Diamond, and N. K. Glendenning

Lawrence Radiation Laboratory
University of California
Berkeley, California 94720

and

J. de Boer

Rutgers University, New Brunswick, New Jersey 08903
and Universit"at M"unchen, M"unchen, Germany

March 1970

ABSTRACT

The Coulomb excitation of the 4^+ rotational state of a deformed nucleus can proceed by both double E2 and single E4 transitions. The excitation cross section also contains a term corresponding to the interference between the two. The Coulomb excitation of 152Sm with 4He projectiles has been carefully measured and the results were analyzed with a computer program including E4 terms. Best fits were obtained for $\langle 0^+ \| M(E4) \| 4^+ \rangle = +0.35 \pm 0.11 \text{ eb}^2$.

Coulomb excitation can be one of the most reliable methods for determining electric multipole matrix elements of nuclei. However, one must be careful to include all processes having effects comparable to the one being measured, and the analysis may become very complicated or even ambiguous. The present study of an E4 transition moment in 152Sm began as the evaluation of a correction to measurements of $B(E2; 2^+ \rightarrow 4^+)$). It became apparent that this particular correction was not very well known and could be rather large, especially when light projectiles were used so that double E2 excitation is weak. The accurate determination of the $B(E2; 2^+ \rightarrow 4^+)$ value from lifetime measurements made it possible
to combine that result with the Coulomb excitation measurements and determine
the E4 moment.

The experiment consisted of an accurate determination of the intensity of
the 4+ → 2+ gamma-ray transition in 152Sm relative to those of the 2+ → 0+ transi-
tions in 152Sm and 150Sm following Coulomb excitation with 4He ions. Targets of
both natural samarium and enriched 152Sm were measured at each bombarding energy.
This method provides accurately-known standard peaks (122 and 334 keV) for com-
parison at both higher and lower energies than the peak of interest (245 keV).
Gamma-ray spectra were simultaneously stored as singles events and as coincidences
with 4He ions backscattered through an angle of about 160 deg. These two types
of measurement are about equally sensitive to the effect of an E4 transition
moment, but differ markedly in their sensitivity to many other effects. Thus the
agreement of the singles and back-scatter results greatly reduces the probability
that an important effect has been overlooked.

An overall view of the possibilities for measuring E4 transition moments
using this method is contained in Fig. 1. We have used the following notation:
\[\langle 0^+|\mathcal{F}(E4)|4^+ \rangle = \int p r^4 Y_{40} d^3 r = \sqrt{B(E4; 0^+ \rightarrow 4^+)} \],
where \(\rho \) is the nuclear charge density. The effect of an E4 moment on the
cross section for populating the 4+ level of 152Sm in coincidence with back-
scattered 4He ions (\(d\sigma \)) is shown, normalized to the cross section with no E4
moment (\(d\sigma_0 \)). This behavior changes very little with projectile scattering angle,
so that the corresponding curve for the singles measurements differs by only a
few percent. The general shape of this curve is caused by the dominance of the
direct E4 transition, which depends quadratically on the moment. The weaker
interference term (linear) causes the asymmetry about zero. Also shown in Fig. 1
is the relationship of the E4 moment to the deformation parameter, β_4, which will be defined below. This curve has been constructed by adjusting β_2, for each value of β_4, so that the measured $B(E2;0^+ \rightarrow 2^+)$ value in 152Sm is reproduced. The asymmetry of this curve relative to zero is caused by the positive second-order contribution to the E4 moment from β_2. The asymmetries in these two curves make it unlikely that one can measure negative E4 moments by this technique, since reasonable values of β_4 (≈ -0.2) do not give rise to sufficiently large negative E4 moments to cause measurable deviations in the cross section. This situation renders improbable one of the two possibilities for the moment that would otherwise result from a given cross section measurement. Small positive values of β_4, however, should produce readily measurable effects in the cross section.

We have bombarded thin ($\approx 2 \text{ mg/cm}^2$) self-supporting metallic targets of Sm with 10 to 14 MeV 4He beams from the Lawrence Radiation Laboratory HILAC. This target thickness ensures that less than 2% of the recoiling nuclei escaped from the target. The beam energy was determined by comparison with a 212Po alpha source. 4 Gamma-ray spectra were measured with a Ge(Li) detector whose relative counting efficiency was determined to an estimated accuracy of 2% using a 177Lu source. 5 The total conversion coefficients for the transitions were obtained from the tables of Hager and Selzer 6 and should result in uncertainties no greater than 1% in $l + a_T$. The spectra were recorded at a gamma-ray angle of 55 deg relative to the beam direction. The singles measurements were not very sensitive to this angle, but the back-scatter coincidence data were. In the latter case we measured the intensity of the 122 keV transition at 45 and 90 deg relative to the beam direction, and obtained an angular distribution attenuation coefficient,
of 0.93, on the assumption that the relationship between G_2 and G_4 is that given by a magnetic dipole interaction. Since the value of G_2 was near unity for this line, and since the other three transitions of interest have much shorter lifetimes, we assumed no attenuation of the angular distributions in those cases. Finite solid angle corrections were made using the tables of Black and Gruhle. A small empirically-determined correction was made for the accidental simultaneous arrival in the detector of two 122 keV photons, simulating one of 244 keV. There is also a correction of about 2% in the intensity of the 122-keV line in the natural samarium targets due to photons from ^{147}Sm. A typical gamma-ray spectrum in coincidence with back-scattered projectiles is shown in Fig. 2.

In calculating the intensity of the 245-keV line, we used a computer program which took account of $E2$, $E3$, and $E4$ excitations. We included the rotational states up to 8^+ in ^{152}Sm, using the $B(E2)$ values given in Diamond et al. The first two of these are: $B(E2; 2^+ \rightarrow 0^+) = 0.686 \pm 0.014 \, \text{e}^2\text{b}^2$, and $B(E2; 4^+ \rightarrow 2^+) = 1.009 \pm 0.033 \, \text{e}^2\text{b}^2$. However, because double $E2$ excitation of the 4^+ level is weak with ^4He projectiles, the decay to the 4^+ level from higher levels excited by a single step can be important. The largest contributions of this kind stem from the collective vibrational levels. There is also a small effect on the calculated cross sections of the 4^+ level due to the addition of the vibrational levels. We included in the calculations four vibrational states, whose properties are summarized in Table 1. An uncertainty of 25% in the feeding from each vibrational state was assumed. Each $B(E\lambda)$ value and branching ratio has been measured. The higher rotational states also feed the 4^+ state, but very weakly. We have also shown in Table 1 all the contributions to the calculated singles (σ_0) and back-scatter ($d\sigma_0$) cross sections of
the 4^+ state at 10.38 MeV 4He energy. An important feature is that the effect of the vibrational states relative to the direct population (and E^4 contributions) is three times smaller in the back-scatter spectra than it is in the singles spectra. The omission of other important states of this type should therefore show up as a discrepancy between the singles and coincidence data.

A number of other effects which might influence the calculated cross-sections of the 2^+ or 4^+ states in 152Sm were considered, among which were: 1) excitation of the giant dipole states; 2) the presence of an appreciable E^6 transition moment; and 3) static E^2 and E^4 moments. None of these give rise to corrections of appreciable size. In the calculations, rigid-rotor values for $B(E^4;2^+ \rightarrow 4^+)$ were used. If this were zero instead, then our measured value for $(0^+|\langle E^4 \rangle|4^+)$ would be increased by about 10%. For 150Sm we used a $B(E^2;2^+ \rightarrow 0^+)$ value2 of 0.278 ± 0.010 e2b2 and a static moment (prolate) of half the rigid-rotor value. A variation of the static moment from zero to the full rigid-rotor value introduces a change no greater than about 1% in the cross sections for the 2^+ state. In all cases the agreement between the $2^+ \rightarrow 0^+$ transitions in 152Sm and 150Sm was satisfactory. An effect that has not yet been evaluated is the possibility of quantal corrections to the semi-classical calculations used. These would be expected to lower the calculated cross sections12 (increase our E^4 moment) and could be as large as a few percent.

In Fig. 3 we have plotted the ratio of the observed cross section (σ) to those calculated including all feedings (σ_0), against the bombarding energy. The error bars on the data points do not include any of the systematic uncertainties involved in the analysis. The dashed and solid lines show the values for the backscatter and singles data, respectively, corresponding to an E^4 moment of
(The other possible solution, -0.7 \, \text{eb}^2, seems improbable.) +0.35 \, \text{eb}^2. This is the best fit to the data below 11 \, \text{MeV}, and would not be changed appreciably if we included the 11.1 \, \text{MeV} data and/or all the data from the enriched ^{152}Sm target. The results from the natural samarium target are high at 14 and 12.2 \, \text{MeV}, and possibly at 11.1 \, \text{MeV} also. While we do not fully understand this, it is clear that interference from nuclear inelastic scattering will affect the backscatter results in this direction at sufficiently high energies (almost certainly at 14 \, \text{MeV}). Furthermore, at 14 \, \text{MeV} the singles results from the natural samarium target were not evaluated due to the appearance of a shoulder on the 245 \, \text{keV} peak. This shoulder might also be affecting the results from this target at somewhat lower bombarding energies, although no complexity could be detected. Due to the unambiguous consistency of all types of results below 11 \, \text{MeV}, we have chosen to evaluate the E_4 moment from these data.

The largest single source of uncertainty in the result is due to the $B(E2; ^4_+ \rightarrow 2^+)$ value which is known to an accuracy of \pm 3.3%. This is true largely because it affects both the singles and back-scatter results in the same way. The uncertainties in the $B(E2; ^2_+ \rightarrow 0^+)$ values are less important here because there are two independent quantities (^{150}Sm and ^{152}Sm). The feeding corrections from the vibrational states cause a large uncertainty in the singles results (3.8%), but only a relatively small one (1.4%) in the back-scatter results. Conversely the angular distributions cause much larger uncertainties in the back-scatter results (2.9%) than in the singles (0.5%). In both cases the uncertainties due to the peak-area determinations are smaller than \pm 2%, as are those from other individual sources. The best value for the E_4 moment, with the known uncertainties taken into account is $+0.35 \pm 0.11 \, \text{eb}^2$. This error limit does not include the possibility of omitted corrections. We cannot set a real upper limit
on these, but it is reassuring that the two types of experiments, whose sensitivity to the various corrections is generally different, yield consistent results. The present experiments have also given information on ^{154}Sm, but a more accurate value for $B(E2; 4^+ \rightarrow 2^+)$ is needed before a meaningful analysis is possible.

If we assume the nucleus to be a rigid, uniformly-charged rotor with a sharp surface defined by:

$$R = R_0 (1 + \beta_2 Y_{20} + \beta_4 Y_{40}),$$

we can evaluate β_2 and β_4 from the measured E2 and E4 transition moments. Taking the charge radius to be $R_0 = 1.2 \text{ A}^{1/3}$, we find $\beta_2 = (+) 0.254$ and $\beta_4 = +0.058 \pm 0.032$ in ^{152}Sm. The sign of β_2 has been assumed to be positive in this analysis. These values of β_λ depend on the radius used and change roughly as $R_0^{-\lambda}$. The inclusion of still higher moments would probably affect the deduced deformation parameters slightly. It is interesting to try to compare this shape of the charge field with the shape of the nuclear field measured by Hendrie et al.13 who found $\beta_2 = +0.246$ and $\beta_4 = +0.048$ for the above value of R_0. These appear to be quite similar, but it is not really clear that this is the proper way to compare these two sets of results. The present value of β_4 is also in reasonable accord with theoretical estimates3 of nuclear shapes.

We believe the present work shows that it is possible to find experimental conditions where E4 transition moments can be reliably determined in Coulomb-excitation measurements. This is true in spite of the fact that many different processes contribute to the observed cross sections and must be taken into account for accurate evaluations. Conversely the presently measured E4 moment produces sizeable effects that must be included in the precise determination of other matrix elements from Coulomb-excitation studies on ^{152}Sm.
ACKNOWLEDGMENTS

We are indebted to Prof. K. Alder for helpful comments, and to Drs. J.R. Leigh, K. H. Maier, K. Nakai, J. L. Quebert, and D. Ward for their help and numerous discussions. We also thank Mr. T. Gee for preparing the targets, and the operating crew of the HILAC for their cooperation.

FOOTNOTES AND REFERENCES

* Work performed under the auspices of the U. S. Atomic Energy Commission.

FIGURE CAPTIONS

Fig. 1. Relationship between the E4 moment and a) the normalized cross section (backscatter) for populating the 4+ state of 152 Sm with 10.4 MeV 4He ions, and b) the deformation parameter, β_4, using a radius of $R_0 = 1.2 A^{1/3} f$. (see text).

Fig. 2. Gamma-ray spectrum in coincidence with 10.4 MeV 4He projectiles backscattered from a natural samarium target. Accidental coincidences have been subtracted.

Fig. 3. The measured cross sections for populating the 4+ level of 152 Sm normalized to the appropriate calculated value with no E4 moment, plotted against the bombarding energy. The solid points are for enriched 152 Sm targets and the open ones for natural samarium targets. The triangles and circles are backscatter and singles results, respectively. The dashed and solid lines are the calculated results for back-scatter coincidences and singles, respectively, with $\langle 0^+ | I_s(E4) | 4^+ \rangle = 0.35$ eb^2.
Table 1. Calculated Population of the 4^+ State

<table>
<thead>
<tr>
<th>Level I^π</th>
<th>K</th>
<th>E(MeV)</th>
<th>$e^2\beta^2\lambda$</th>
<th>$f(4^+)^a$</th>
<th>$f(4^+)\sigma_{IK}$</th>
<th>$f(4^+)\delta\sigma_{IK}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^+</td>
<td>0(β)</td>
<td>0.811</td>
<td>0.023</td>
<td>0.21</td>
<td>57</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>2(γ)</td>
<td>1.087</td>
<td>0.083</td>
<td>0.013</td>
<td>5</td>
<td>0.3</td>
</tr>
<tr>
<td>3^-</td>
<td>0</td>
<td>1.042</td>
<td>0.14</td>
<td>0.30</td>
<td>29</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.578</td>
<td>0.078</td>
<td>0.73</td>
<td>9</td>
<td>0.5</td>
</tr>
<tr>
<td>6^+</td>
<td>0</td>
<td>0.7067</td>
<td>0.73</td>
<td></td>
<td>0.6</td>
<td>0.14</td>
</tr>
<tr>
<td>4^+</td>
<td>0</td>
<td>0.3665</td>
<td>0.73</td>
<td></td>
<td>328</td>
<td>53.4</td>
</tr>
</tbody>
</table>

$\sigma_0(d\sigma_0)\mu$b

aFraction of the decay which goes to the 4^+ level.

bOnly multiple E2 excitation is considered here. The $B(E2)$ values used are given in the text.
Fig. 2
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.