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ABSTRACT OF THE THESIS

Distributed Economic Model Predictive

Control of a Catalytic Reactor:

Evaluation of Sequential and Iterative Architectures

by

Timothy Leif Anderson

Master of Science in Chemical Engineering

University of California, Los Angeles, 2014

Professor Panagiotis D. Christofides, Chair

In this work, the development and application of distributed economic model predic-

tive control (DEMPC) methodologies to a catalytic reactor is considered. Specifically, two

DEMPC methodologies are designed for sequential and iterative implementation, respec-

tively. The DEMPC architectures are evaluated on the basis of the closed-loop performance

and on-line computation time requirements compared to a centralized EMPC approach. For

the catalytic reactor considered, DEMPC proves to be a viable option as it is able to give

similar closed-loop performance while reducing the on-line computation time requirements

relative to a centralized EMPC strategy.
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Chapter 1

Introduction

Operating chemical processes in an economically-optimal manner while maintaining closed-

loop stability and satisfying the process constraints is an important issue within chemical

process control. To accomplish this objective, model predictive control (MPC) has proven to

be an attractive way in many industrial applications (e.g., [17]). MPC is a control methodol-

ogy that accounts for performance criterion by optimizing a cost function over a finite-time

prediction horizon subject to a process model (to predict the future behavior of the process),

process constraints (e.g., state and input constraints), and stability constraints. Tradition-

ally, the cost function used within MPC is a quadratic cost that is positive definite with

respect to an operating steady-state of a process.

Given that MPC is implemented in a receding horizon fashion (i.e., an optimization

problem is solved on-line at each sampling time to compute the control actions), signifi-

cant computation delay may result when computing control actions for process systems of

high dimension (i.e., many states and inputs) which may affect closed-loop stability and

performance. In the context of control of large-scale nonlinear chemical process networks,

an attractive alternative is to employ a distributed MPC (DMPC) architecture (e.g., [5]).

DMPC has the ability to control large-scale multiple-input multiple-output with input and

state constraints while remaining computationally feasible to implement on-line through a
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distributed implementation of the computations (i.e., the computation of control actions

is distributed to multiple processors). Numerous formulations, implementation strategies,

and theoretical results have been developed within the context of standard tracking DMPC

(e.g, [14, 13, 19]; see, also, the reviews of [18, 5] and the references therein for results on

DMPC).

To integrate process (dynamic) optimization and control, economic MPC (EMPC), which

optimizes a general cost function that represents the process economics instead of a quadratic

cost function, has been proposed as a control methodology that may help to enable future

manufacturing tasks like demand-driven process operations (e.g., [2, 10, 3, 9]; see, also,

the review [8] and the references therein). Recently, significant effort within the control

community has focused on (centralized) EMPC. Since EMPC may use a general (nonlin-

ear) economic cost function and may dictate a time-varying operation strategy, the on-line

computation required to solve EMPC may be significant especially for large-scale process

networks. Thus, distributed EMPC (DEMPC) may be one choice to significantly reduce

the on-line computational burden. To date, only a limited amount of work on DEMPC for

linear systems [11, 6, 15] and for nonlinear systems [4, 12] has been completed. While these

works on distributed EMPC (DEMPC) have shown some promising results on DEMPC, more

work in this direction is in order which may include the continued development of DEMPC

algorithms, rigorous theoretical stability analysis, and novel control loop decompositions

methodologies tailored for DEMPC.

In the present work, sequential and iterative distributed EMPC strategies are developed

and applied to a benchmark catalytic reactor where time-varying operation of the reac-

tor gives greater yield of the product compared to steady-state operation. A description

of the DEMPC implementation strategies is provided. Several closed-loop simulations are

performed to evaluate the approaches. Two key performance metrics are considered in the

evaluation: the closed-loop economic performance under the various DEMPC strategies and

the on-line computation time required to solve the EMPC optimization problems.
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An outline of the remainder of the paper is as follows: in the following section, the class

of systems that the catalytic reactor belongs to is given and a general formulation of EMPC

is provided. The subsequent section gives a description of the process. The final section

gives numerous closed-loop simulation results of the catalytic reactor under various DEMPC

schemes implemented according to centralized and distributed implementations.

1.1 Class of Nonlinear Systems

The class of nonlinear systems considered are described by the following system of first-order

ordinary differential equations:

ẋ(t) = f(x(t), u1(t), . . . , um(t), w(t)) (1.1)

where x ∈ Rnx denotes the state vector, ui ∈ Rnui for i = 1, . . . , m denotes the ith

manipulated (control) input vector, w ∈ Rnw denotes the disturbance vector. The (full)

input vector has been divided into m input vectors given that m distributed controllers will

be designed to control each of them input vectors. The input vectors are bounded in a convex

set denoted as Ui := {ui ∈ Rnui | uij,min ≤ uij ≤ uij,max, j = 1, . . . ,mi} for i = 1, . . . , m

where uij,min and uij,max denote the minimum and maximum bound on the jth element of

the ith input vector, respectively. Additionally, the disturbance vector is assumed to be

bounded: w ∈ W := {w ∈ Rl | |w| ≤ θ} where θ > 0 bounds the norm of the disturbance

vector. The vector field of the system of Eq. 1.1 is assumed to be a locally Lipschitz vector

function of its arguments, and the origin of the unforced system is the equilibrium point of

Eq. 1.1 (i.e., f(0, 0, . . . , 0, 0) = 0). A state measurement of the system of Eq. 1.1 is assumed

to be available synchronously at sampling instances denoted as tk := t0 + k∆ where t0 is the

initial time, k ∈ I≥0 and ∆ > 0 is the sampling period.
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1.2 Economic Model Predictive Control

In a centralized approach, one can design an EMPC system that computes control actions

for all m input vectors. EMPC, implemented in a centralized approach for the system of

Eq. 1.1, is formulated as follows:

maximize
u1,...,um∈S(∆)

∫ N∆

0

le(x̃(τ), u1(τ), . . . , um(τ)) dτ (1.2a)

subject to ˙̃x(τ) = f(x̃(τ), u1(τ), . . . , um(τ), 0) (1.2b)

x̃(0) = x(tk) (1.2c)

ui(τ) ∈ Ui, i = 1, . . . ,m

∀ τ ∈ [0, N∆) (1.2d)

∫ N∆

0

g(x̃(τ), u(τ)) dτ ≤ 0 (1.2e)

where the notation S(∆) denotes the family of piecewise constant functions with period

∆, x̃(τ) denotes the predicted state trajectory under the piecewise constant input profiles,

u1(τ), . . . , um(τ), which are the decision variable of the dynamic optimization problem, ∆

is the sampling period of the EMPC, and N ∈ I≥0 is the prediction horizon (i.e., number

of sampling periods in the prediction horizon). To distinguish between real-time and the

prediction time of the EMPC, t denotes the real (continuous) time, tk denotes the discrete

sampling instances where state feedback is obtained, and τ ∈ [0, N∆) denotes the predicted

time in the controller.

The stage cost le(x, u1, . . . , um) of the EMPC is one of the design/tuning elements of

the EMPC. It is chosen to reflect the process economics and need not be a quadratic stage

cost like that typically used with standard tracking MPC. The stage cost of the EMPC is

referred to as the economic cost function. The computed input profile optimizes the eco-
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nomic cost (1.2a) over the prediction horizon while accounting for the following constraints.

The constraint (1.2b) is the dynamic model of the process initialized with a state measure-

ment (1.2c) received at sampling instance tk. The nominal dynamic model predicts the future

behavior of the process under any input trajectories u1(τ), . . . , um(τ) for τ ∈ [0, N∆) and

allows for the EMPC to compute the optimal input trajectories. The optimal input trajec-

tories are denoted: u∗
1(τ |tk), . . . , u∗

m(τ |tk) for τ ∈ [0, N∆). The bounds on the inputs are

given by the constraints of (1.2d). Lastly, the constraint (1.2e) represents economics-based

constraints which are typically integral constraints (e.g., the time-averaged amount of raw

material that may be fed to the process is fixed and this constraint may be imposed directly

in the EMPC).

EMPC, like standard tracking MPC, is implemented in a receding horizon fashion. At a

sampling instance tk, the controller receives the current state measurement x(tk), computes

the optimal input trajectories u∗
1(τ |tk), . . . , um(τ |tk) for τ ∈ [0, N∆) (which corresponds

from tk to tk+N), and implements the control action computed for the first sampling period

in the prediction horizon on the process: ui(t) = u∗
i (0|tk) for t ∈ [tk, tk+1). The process is

repeated at the next sampling period by rolling the horizon one sampling period.

5



Chapter 2

Catalytic Reactor Example

In this work, a catalytic reactor example is considered to evaluate various DEMPC im-

plementation strategies. A non-isothermal continuous stirred tank reactor (CSTR) where

ethylene is catalytically converted to ethylene oxide is considered. Besides the oxidation

reaction, two combustion reactions occur that consume ethylene and ethylene oxide. The

three reactions are given by:

C2H4 +
1

2
O2

r1→ C2H4O (R1)

C2H4 + 3O2
r2→ 2CO2 + 2H2O (R2)

C2H4O+
5

2
O2

r3→ 2CO2 + 2H2O (R3)

The reactor has a cooling jacket to remove the heat generated by the three exothermic

reactions. The catalytic reactor has three manipulated inputs: the volumetric flow rate

of the reactor feed, the ethylene concentration in the reactor feed, and the coolant jacket

temperature.

The gaseous mixture contained in the reactor is assumed to be an ideal gas. By employing

other standard modeling assumptions, a dynamic model can be developed for the catalytic

6



reactor, and the resulting dynamic model has four states: the reactor gas mixture density,

the reactor ethylene concentration, the reactor ethylene oxide concentration, and the reactor

temperature. The states are denoted as x1, x2, x3, and x4, respectively, and the inputs are

denoted u1, u2, and u3, respectively (dimensionless variable form is used for all variables).

The complete model can be found in [16] which uses the nonlinear Arrhenius reaction rate

laws of [1]. The admissible input values are given by the following sets:

u1 ∈ U1 := [0.0704, 0.7042] ,

u2 ∈ U2 := [0.2465, 2.4648] ,

u3 ∈ U3 := [0.6, 1.1] .

The metric that assesses the performance of the catalytic reactor is the average yield of

ethylene oxide which is given by:

Y (tf ) =

∫ tf

0

u1(t)x4(t)x3(t) dt∫ tf

0

u1(t)u2(t) dt

(2.1)

where tf is the length of operation of the catalytic reactor (t = 0 is taken to be the initial

time of operation). The average molar flow rate of ethylene that may be fed to the reactor

is fixed owing to practical considerations:

1

tf

∫ tf

0

u1(t)u2(t) dt = 0.175 . (2.2)

To maximize the yield with EMPC, the economic cost used is:

le(x, u) = u1x4x3 (2.3)
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which only consists of the numerator of the yield (2.1) given that the denominator is fixed by

the constraint (2.2). The following steady-state is within the range of operation of interest,

satisfies constraint (2.2), and is open-loop asymptotically stable:

xT
s = [0.998 0.424 0.032 1.002] (2.4)

with a corresponding steady-state input:

uT
s = [0.35 0.5 1.0] (2.5)

(i.e., stability is not an issue within the range of operation of interest and the objective of

applying EMPC is used to optimize the average yield).
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Chapter 3

Evaluation of DEMPC Methods to

the Catalytic Reactor

Several implementation strategies (centralized and distributed) are applied to the catalytic

reactor. Studying the benefits of applying EMPC to the catalytic reactor has already been

considered. In [7], improved average yield of ethylene oxide resulted by applying EMPC to

the process compared to operating the reactor at steady-state as well as operating the reactor

with an open-loop optimal periodic switching of the inputs u1 and u2 considered in [16]. The

closed-loop simulations below were programmed using C++ on a desktop computer with an

Ubuntu Linux operating system and an Intel R⃝ CoreTM i7 3.4 GHz processor. To recursively

solve the catalytic reactor dynamic model, the explicit Euler method was used. A step size

of 0.00001 was used to simulate the closed-loop dynamics of the reactor, while a step size

of 0.005 was used to solve the model within the EMPC optimization problem; both led to

stable numerical integration.

Regarding the implementation details of the EMPC systems below, a sampling period of

∆ = 1.0 was used. The optimization problems were solved using the interior point solver

Ipopt ([20]). To account for real-time computation considerations, the solver was forced to

terminate after 100 iterations and/or after 100 seconds of computation time and the tolerance
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of the solver was set to 10−5. To satisfy the constraint on the amount of ethylene that may

be fed to the reactor, this constraint was enforced over operating windows of length tp = 47,

that is the average molar flow rate of ethylene must be equal to 0.175 at the end of each

operating window. A shrinking horizon approach was used within EMPC: at the beginning

of the jth operating window, the prediction horizon was set to Nk := tp/∆ and the horizon

was decreased by one at every subsequent sampling period (Nk = Nk−1 − 1 at the sampling

instance tk). At the beginning of the (j+1)th operating window, the prediction horizon was

reset to tp/∆.

3.1 Centralized EMPC

For this computational study, a centralized EMPC strategy was considered to compare the

two distributed implementation strategies and an EMPC of the form (3.1) was formulated

for the catalytic reactor. The centralized EMPC formulation is given by:

maximize
u1,u2,u3∈S(∆)

∫ Nk∆

0

u1(τ)x̃4(τ)x̃3(τ) dτ (3.1a)

subject to ˙̃x(τ) = f(x̃(τ), u1(τ), u2(τ), u3(τ)) (3.1b)

ui(τ) ∈ Ui for i = 1, 2, 3,

∀ τ ∈ [0, Nk∆) (3.1c)

1

tp

∫ Nk∆

0

u1(τ)u2(τ) dτ

= 0.175− 1

tp

∫ tk

t0+jtp

u∗
1(t)u

∗
2(t) dt (3.1d)

where u∗
1(t) and u∗

2(t) denote the optimal control actions applied to the reactor from the

beginning of the current operating window to the current sampling time.
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Figure 3.1: Closed-loop state trajectories of the catalytic reactor under centralized EMPC.
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Figure 3.2: Input trajectories computed by the centralized EMPC.
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Figs. 3.1-3.2 depict the closed-loop state and input trajectories under the centralized

EMPC scheme over ten operating windows. Similar to the results of [7], the EMPC dis-

tributes the ethylene in a non-uniform fashion with respect to time to optimize the yield of

ethylene oxide. The average yield of ethylene oxide of the reactor under centralized EMPC

is 10.22%. On the other hand, the average yield of ethylene oxide of the reactor over the

same length of operation under constant steady-state input values is 6.38%, and the average

yield under EMPC is 60% better than that of steady-state operation.

3.2 Sequential DEMPC

A sequential implementation strategy computes the control actions for the process by com-

puting a series of distributed controllers in succession. The first controller computes an input

trajectory for the first input trajectory (i.e., u1 of system (1.1)). The input trajectory u1(t) is

sent to the next controller to solve for the input trajectory u2(t). The input trajectory u3(t)

is computed by the third controller after the input trajectories u1(t) and u2(t) are received

from the previous controllers. The process is repeated until control actions for all m input

vectors have been computed.

For this process example which has three inputs, a reasonable choice of input grouping

can be made as a consequence of the integral input constraint (2.2) (i.e., u1 and u2 should

be computed by the same EMPC, while it is worth investigating if the input u3 can be

placed on another EMPC system). This input pairing will be used in all of the DEMPC

schemes below and the resulting EMPC system that computes control actions for u1 and u2

is denoted as EMPC-1, and the other EMPC that computes control actions for u3 is denoted

as EMPC-2. The formulations of each EMPC system follows from the centralized EMPC

formulation (3.1) and are omitted due to space constraints.
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EMPC-1

EMPC-2

Processu
∗
1
(τ |tk), u

∗
2
(τ |tk)

u
∗
1
(0|tk), u

∗
2
(0|tk)

u
∗
3
(0|tk)

x(tk)

Figure 3.3: A block diagram of the sequential DEMPC 1-2 scheme for the catalytic reactor.

3.2.1 Sequential DEMPC 1-2

The first configuration considered, which is referred to as the sequential DEMPC 1-2, first

computes EMPC-1 for the optimal input trajectories u∗
1(τ |tk) and u∗

2(τ |tk) for τ ∈ [0, Nk∆).

Then, EMPC-2 computes the input trajectory u∗
3(τ |tk) after receiving u∗

1(τ |tk) and u∗
2(τ |tk)

from EMPC-2. Since the input trajectory u3(τ) has not been determined when EMPC-1 is

computed, it is set to be the resulting input trajectory under a PI controller implemented

in a sample-and-hold fashion over the prediction horizon (other methods for the assumed

profile of u3(t) within EMPC-1 could be considered). The optimal input trajectories u∗
1(τ |tk)

and u∗
2(τ |tk) are used in EMPC-2 to predict the behavior of the reactor over the prediction

horizon (i.e., the optimization problem of EMPC-2 is similar to (3.1) except the decision

variable is u3 only, u1(τ) and u2(τ) are set to the values computed by EMPC-1, and there

is no integral input constraint (3.1d)). A block diagram of the resulting control architecture

and the communication between EMPC-1 and EMPC-2 is given in Fig. 3.3.

Figs. 3.4-3.5 show the closed-loop state and input trajectories under the sequential

DEMPC 1-2, respectively, and the trajectories are similar to those under the centralized

EMPC (Figs. 3.1-3.2). For this closed-loop simulation, the average yield was 10.20% (recall,

the average yield under centralized EMPC was 10.22%). The difference between the average

yield under the centralized EMPC and under the sequential DEMPC 1-2 is small and likely

numerically insignificant given the solver parameters used. Some differences in the state

13
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Figure 3.4: Closed-loop state trajectories of the catalytic reactor under the sequential
DEMPC 1-2.
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Figure 3.5: Input trajectories computed by the sequential DEMPC 1-2.
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Figure 3.6: Closed-loop state trajectories of the catalytic reactor under the sequential
DEMPC 2-1.
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Figure 3.7: Input trajectories of computed by the sequential DEMPC 2-1.

trajectories are observed from Fig. 3.1 and Fig. 3.4 (e.g., x1(t) and x4(t)). It is important

to note that given the nonlinear nature of the process considered, there is no guarantee,

in general, that the centralized EMPC and sequential EMPC scheme will lead to the same

optimal input trajectories.

3.2.2 Sequential DEMPC 2-1

Another sequential implementation of EMPC-1 and EMPC-2 may be considered by revers-

ing the execution of EMPC-1 and EMPC-2. In this case, EMPC-2 computes its optimal

15
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Figure 3.8: A block diagram of the iterative DEMPC scheme for the catalytic reactor.

input trajectory u∗
3(τ |tk) first. The sequential DEMPC approach is referred to as sequen-

tial DEMPC 2-1. To solve EMPC-2, the trajectories u1(τ) and u2(τ) are set to the input

trajectories resulting from two PI controllers implemented in sample-and-hold fashion. The

block diagram describing this DEMPC architecture is similar to that of Fig. 3.3 with com-

munication between EMPC-1 and EMPC-2 in the opposite direction. Figs. 3.6-3.7 are the

closed-loop state and input trajectories under the sequential DEMPC 2-1 approach. Com-

pared to the other trajectories more noticeable differences are observed.

3.3 Iterative DEMPC

Instead of sequential computation of the distributed EMPC schemes, parallel computation

may be employed. Given the control actions are computed without the knowledge of the

control actions computed by the other distributed EMPC schemes, an iterative approach may

be used to (ideally) compute control actions closer to the centralized solution. It is important

to note that given the nonlinearity and non-convexity of the optimization problems, it is

difficult, in general, to guarantee that an iterative DEMPC strategy will converge to the

centralized solution (even after infinite iterations). Moreover, there is no guarantee that

the input solution computed at each iteration improves upon the closed-loop performance

over the previous iterate. An iterative DEMPC scheme is designed for the catalytic reactor

and a block diagram of the iterative DEMPC control architecture is given in Fig. 3.8. The

16
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Figure 3.9: Closed-loop state trajectories of the catalytic reactor under the iterative DEMPC
(1 iteration).
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Figure 3.10: Input trajectories of computed by the iterative DEMPC (1 iteration).

computed input trajectories at each iteration of the iterative DEMPC is denoted as u∗,c
i (τ |tk),

i = 1, 2, 3 where c is the iteration number. Both EMPC-1 and EMPC-2 were initialized

with the sample-and-hold input solution computed from the same PI controllers used in

the sequential DEMPC schemes. The control action applied to the reactor is denoted as

u∗,f
i (tk|tk) for i = 1, 2, 3 where f is the number of iterations of the iterative DEMPC

scheme (f is a design parameter of the scheme).

For this example, no closed-loop performance benefit was observed after iterating more

than once through the iterative DEMPC scheme. In fact, using the previous iterate solution
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Table 3.1: Summary of the closed-loop average yield and average computation time under
various EMPC implementation strategies.

Strategy Yield (%) Comp. time (s)

Sequential DEMPC 1-2 10.20 1.039
Sequential DEMPC 2-1 9.92 2.969
Iterative DEMPC 10.05 0.832
Centralized EMPC 10.22 4.244

to compute the next iterative gave worse closed-loop performance than applying the first

computed iteration to the process. One method considered to compensate for this problem

was to use the best computed input solution over all iterations to compute the next iteration.

However, minimal closed-loop performance benefit was observed with this method as well.

Thus, f = 1 for this case given that using more than one iteration did not improve the closed-

loop performance and the resulting trajectories are given in Figs. 3.9-3.10. The trajectories

have similar characteristics as the centralized case.

3.4 Evaluation of DEMPC Approaches

The average yield and average computation time required to solve the optimization problem

at each sampling period over the entire simulation were considered for all the cases consid-

ered. The sequential DEMPC computation time is computed as the sum of the computa-

tion time of EMPC-1 and EMPC-2 at each sampling time because the sequential DEMPC

schemes are computed sequentially. The iterative DEMPC is computed as the maximum

computation time of any one EMPC at each sampling time (recall only one iteration was

used). The average yield and average computation time for all the cases is given in Ta-

ble 3.1. The centralized EMPC, sequential DEMPC 1-2, and iterative DEMPC schemes all

gave similar closed-loop performance. The sequential DEMPC 1-2 and iterative DEMPC

result in approximately a 70% reduction in computation time over the centralized EMPC.

The sequential DEMPC 2-1 scheme not only had the worst performance of all the strategies
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considered (albeit still better than steady-state operation), but also, approached the amount

of time to solve the optimization problems as the centralized case, thereby implying a strong

dependence of closed-loop performance on controller calculation sequence.

The overall need for DEMPC for this example may be debatable given its size. However,

the example and implementation strategy illustrate a key point within the context of DEMPC

in addition to the points regarding closed-loop performance and on-line computation time.

Specifically, the inclusion of integral constraint in EMPC may be an important consideration

for input selection in DEMPC. From the sequential DEMPC results, the computed u3(τ)

profile is impacted by the assumed input profiles u1(τ) and u2(τ) (Fig. 3.7), while u1(τ)

and u2(τ) are not affected as much by the assumed profile u3(τ) (Fig. 3.5) compared to

the centralized EMPC case (Fig. 3.2). This behavior may be due to the enforcement of the

integral input constraint, and for this example, there may only be one method to distribute

a fixed amount of ethylene to the reactor that maximizes the yield that is independent of

u3(τ).
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Chapter 4

Conclusion

Sequential and iterative DEMPC methodologies were formulated and applied to a catalytic

reactor example. For the catalytic reactor, the DEMPC was able to yield comparable closed-

loop performance while reducing the on-line computation burden required to solve the EMPC

optimization problems at each sampling period. This could allow EMPC to be used on

processes where centralized control is not feasible due to the solve time. Future work on

DEMPC will include systematic loop decomposition for DEMPC on the basis of the process

economics as well as formulating an iterative DEMPC scheme with guaranteed closed-loop

stability.
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