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Abstract
The purpose of this study is to investigate how the mitochondrial membrane potential affects
sperm motility using laser tweezers and a non-ratiometric fluorescent probe, DiOC6(3). A
1064 nm Nd:YVO4 continuous wave laser was used to trap motile sperm at a power of 450 mW
in the trap spot. Using customized tracking software, the curvilinear velocity (VCL) and the
escape force from the laser tweezers were measured. Human (Homo sapiens), dog (Canis lupis
familiaris) and drill (Mandrillus leucophaeus) sperm were treated with DiOC6(3) to measure
the membrane potential in the mitochondria-rich sperm midpieces. Sperm from all three species
exhibited an increase in fluorescence when treated with the DiOC6(3). When a cyanide
inhibitor (CCCP) of aerobic respiration was applied, sperm of all three species exhibited a
reduction in fluorescence to pre-dye levels. With respect to VCL and escape force, the CCCP
had no effect on dog or human sperm, suggesting a major reliance upon anaerobic respiration
(glycolysis) for ATP in these two species. Based on the preliminary study on drill sperm, CCCP
caused a drop in the VCL, suggesting potential reliance on both glycolysis and aerobic
respiration for motility. The results demonstrate that optical trapping in combination with
DiOC6(3) is an effective way to study sperm motility and energetics.

Keywords: sperm motility, sperm energetics, optical tweezers, non-ratiometric fluorescent dye

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Sperm motility is a valuable marker of sperm quality and a
good indicator of the potential for the sperm to eventually
fertilize an egg. The ability to evaluate sperm motility is
critical for human in vitro fertilization (IVF), and when trying
to improve the reproduction of rare and endangered species.
Successful insemination requires high quality sperm. In
addition, the ability to quantify and analyze sperm motility is
crucial when developing cryopreservation techniques, which
are widely used in in vitro fertilization and reproductive
biology research (Wolf and Patton 1989, Mahutte and Arici
2003).

The basic sperm structure consists of a head, midpiece
and tail. The head has very little cytoplasm and minimal

organelles (Schmidt-Rhaesa 2007), favoring a dense amount of
genetic material and the acrosome. The acrosome, which tends
to be either at the tip or wrapped around the head, contains
enzymes to help the sperm penetrate the egg. The midpiece
sits below the head and is the site of mitochondrial aerobic
respiration and supplies ATP for motility and other functions.
The size of the midpiece and amount of mitochondria varies
greatly between different species, reflecting different needs
with regard to fertilization (Favard and Andre 1970). The tail,
or flagellum, provides the propulsion for movement.

Curvilinear velocity (VCL) is a well-established parame-
ter for comparison of sperm motility between or within species.
It is generally measured in large populations using computer-
assisted sperm analysis (CASA). In addition to VCL, laser
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trapping has been used to measure the actual swimming force
of human sperm (Tadir et al 1989) as well as sperm from other
vertebrate species (Nascimento et al 2006). The ideal optical
tweezer wavelengths for sperm trapping fall between 800 and
1064 nm (Konig et al 1996). Using laser tweezers, Patrizio
found that the swimming force of sperm dramatically increases
upon addition of pentoxifylline (Patrizio et al 2000), while
Nascimento studied sperm competition based on mating type
(polygamous versus monogamous) in several primate species,
including human (Nascimento et al 2008a). In addition,
the contribution of anaerobic (glycolysis) versus aerobic
(oxidative phosphorylation) respiration has been studied using
a ratiometric membrane potential dye DiOC2(3) (Nascimento
et al 2008b).

DiOC6(3), on the other hand, is a non-ratiometric
carbocyanine dye that has the potential to be used to investigate
sperm motility and energetics. This dye has been found to
successfully integrate into mouse sperm (Breed and Sarafis
1995), the endoplasmic reticulum, mitochondria (Sabnis et al
1997) and human sperm (Gallon et al 2006). It is a positively
charged molecule that targets the negative membrane potential
of the mitochondria, resulting in a greater fluorescence when
the membrane potential is larger (Wang and Taylor 1989).
Inhibition of oxidative phosphorylation (aerobic respiration)
can be achieved with a variety of substances. Carbonyl
cyanide m-chlorophenyl hydrazone (CCCP) is an inhibitor that
works by disrupting the mitochondrial membrane potential and
discharging the H+ gradient in the mitochondria (Alvarado
and Vasseur 1998). Successful integration of CCCP into the
cell, and subsequently the mitochondria, would directly attack
the source of DiOC6(3) fluorescence, resulting in a decrease
or complete inhibition of fluorescence. In this study we
demonstrate that this dye in combination with optical trapping
can be used to study sperm motility and energetics.

2. Material and methods

2.1. Sample collection and preparation

Semen samples for human (Homo sapiens) and dog (Canis
lupis familiaris) were obtained and handled as previously
described (Nascimento et al 2008a, Nascimento et al 2008b).
Drill (Mandrillus leucophaeus) samples were collected weekly
and cryopreserved following a protocol similar to dog (Durrant
et al 1999). The samples were thawed and centrifuged at
2200 rpm for 10 min and decanted. The pellet was mixed with
Medium 199 (M199), and ∼50 µl of sperm are diluted into
2.5 ml media and loaded into rose culture chambers. For all
three species, the sperm were incubated in CCCP at 10 nM for
20 min before undergoing testing.

2.2. Optical set-up and real-time automated tracking and
trapping system (RATTS)

The tracking and trapping system uses an Nd:YVO4
continuous wave 1064 nm wavelength laser traveling through
a series of lenses and mirrors to enter a Zeiss Axiovert S100
microscope and a 40×, phase III, NA 1.3 oil immersion
objective as described previously (Nascimento et al 2008a,

2008b). The maximum laser power after traveling through the
microscope and objective lens is approximately 450 mW at the
focal point. This was determined by measuring the amount of
laser power at the back aperture of the microscope objective
and multiplying that by the transmission (33%) through the
objective. The objective transmission was determined using
the dual-objective method (Misawa et al 1991).

The microscope configuration permits collection of phase
and fluorescence images (figure 1). The laser passes through
a dichroic long-pass filter that reflects visible light from
the microscope optical system to the above-mounted camera
systems. Before it hits the objective, a filter cube with an HQ
475/25 nm excitation filter and 505 nm dichroic filter permits
fluorescence activation of the specimen in the image plane. A
Zeiss Fluor arc lamp (not depicted in figure 1) provides the
excitation light via epi-illumination through the microscope
objective. The red filter above the image plane allows 670 nm
wavelength light to pass through the specimen in order to
generate the phase contrast image on the Cohu digital camera.
The dual video system attached to the top port of the first video
adapter separates the phase information (reflects >670 nm)
from the fluorescence information (transmits 500–670 nm).
The reflected phase image is collected by a Cohu charge-
coupled device (CCD) camera at 30 frames s−1 (fps). The
fluorescence information passes through an HQ 500/20 nm
emission filter and is collected by a high sensitivity Quantix
digital camera.

Measurement of motility and fluorescence is accom-
plished with the aid of a real-time automated tracking and
trapping system (RATTS) that operates at a 30 fps video
rate and provides remote robotic interfaces with the hardware
(Shi et al 2006). RATTS has been modified to measure the
mitochondrial membrane potential (prior to, during and after
laser trapping) in conjunction with swimming speed and escape
laser power (swimming force) of individual sperm. Using
RATTS, sperm are tracked for extended durations before and
after laser trapping. Motility measurements, including VCL
and the absolute position of the sperm relative to the cell
chamber, are calculated and written to the hard drive at video
rates. The fluorescence was evaluated by taking a small region
of interest surrounding the sperm and measuring the intensity.
Fluorescence of untreated sperm was considered the baseline.
Fluorescence ratio was determined by finding the difference
of measured fluorescence intensity of a sperm and the baseline
fluorescence, and then dividing by the baseline. A fluorescence
value close to or at zero indicates little or no fluorescence,
and a value greater than zero indicates noticeable fluorescence.
Fluorescence was evaluated during the pre-trap and trapping
phase. When fluorescence was tracked for a long period of time
(much longer than the program would track and trap a sperm),
fluorescence was relatively consistent (data not shown).

3. Results

3.1. Optimal DiOC6(3) concentration for fluorescence

The purpose of these experiments was to determine the optimal
concentration of the DiOC6(3) dye necessary to detect and
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Figure 1. Optical system: the laser travels to the image plane, while the fluorescence image passes through a dichroic beamsplitter in the dual
video adapter to the low light level Quantix CCD camera and the phase image is reflected to the Cohu digital camera.

DogHuman Drill

Figure 2. DiOC6(3) midpiece fluorescing in three species (human, dog and drill). The optimal concentration of DiOC6(3) is 40 nM for
human and 50 nM for dog and drill.

measure fluorescence in individual sperm. The fluorescence
of the untreated sperm is considered the baseline fluorescence.
Fluorescence ratio was determined by finding the difference
of measured fluorescence intensity of a sperm and the baseline
fluorescence, and then dividing by the baseline. A fluorescence
value close to or at zero indicates little or no fluorescence, and
a value greater than zero indicates fluorescence. Human sperm
were evaluated after exposure to 30, 40 and 50 nM of dye.
The dog sperm were exposed to 40 and 50 nM, and the drill to
10, 30 and 50 nM. The optimal concentration of DiOC6(3) is
40 nM for human and 50 nM for dog and drill (figure 2).

The dye was added after the sperm washing protocols and
incubated at 37 ◦C for 20 min. Using the above fluorescence
algorithm, fluorescence values were determined at the different

concentrations. The further the value from zero, the greater the
fluorescence. Human had fluorescence of 0.25, 0.23 and 0.16
at 30, 40 and 50 nM, respectively. Dog values were 0.23 and
0.21 at 40 and 50 nM. Drill fluorescence values were 0.03, 0.08
and 0.3 at 10, 30 and 50 nM. The possible reason for the drop in
fluorescence of human sperm could be due to excess DiOC6(3)

disrupting respiration, thus affecting the membrane potential
(Wang and Taylor 1989). This allows the dye to interact
with other membranes, such as the endoplasmic reticulum,
which the dye is known to stain at higher concentration. The
nonlinear staining could be due to natural variability of the
dye (Wang and Taylor 1989) or an insufficient dye quantity
to stain the larger drill midpiece. The optimal experimental
concentrations chosen were 40 nM for human and 50 nM for
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Figure 3. Box plots for human, dog and drill sperm. Each species showed an increase in fluorescence upon addition of DiOC6(3) and a drop
in fluorescence after CCCP was added. The center of the box represents the median, and the upper and lower edge of the boxes represents the
upper and lower quartiles of the data. The outer edge of the bars represent data to the ±2.7 standard deviations, thus covering 99.3% of data if
normally distributed. The crosses represent outliers.

dog and drill, which were the concentrations used in further
testing.

3.2. Motility and energetics measurements

For each of the species, three different groups were measured:
(1) sperm incubated in the fluorescent membrane probe
DiOC6(3); (2) sperm incubated in DiOC6(3) plus a cyanide
inhibitor of oxidative phosphorylation (CCCP), subsequently
referred to as ‘dye + CCCP-treated’ and (3) untreated control
sperm. Since sperm populations do not have Gaussian
distributions with respect to motility determinants (Nascimento
et al 2008a), the non-parametric Wilcoxon rank sum test was
used for statistical analyses (Donnelly et al 2001). Each
of the three groups was compared as follows: untreated
versus dye; untreated versus dye + CCCP-treated; dye versus
dye + CCCP-treated. Fluorescence and VCL were plotted
against each other in order to elucidate any relationship
between mitochondrial activity and sperm motility.

When DiOC6(3) was added, all three species showed a
significant increase in fluorescence over controls (figure 3).
The addition of the CCCP inhibitor caused a decrease to the
control levels. With respect to the VCL and swimming force

measurements (table 1), for dog and human sperm there was
no apparent decrease in either the VCL or swimming force
when the dye or the dye + CCCP were added to the medium.
The swimming force and VCL for dog sperm were higher
than for human sperm. The data for fluorescence versus
velocity is presented in figure 4. For the drill sperm, the
VCL appeared to decrease slightly for the dye + CCCP-treated
sperm. The p value between the untreated sperm versus
dye-and CCCP-treated sperm was 8.27 × 10−11, which is
statistically significant. Table 2 contains the p values for other
group comparisons. The swimming force seemed to increase in
the dye + CCCP-treated group when compared to the control.

4. Discussion

The results of this study demonstrate that the non-
dual-wavelength ratiometric dye DiOC6(3) is effective in
monitoring the mitochondrial membrane potential (aerobic
respiration) in motile sperm. The addition of the aerobic
respiration inhibitor, CCCP, eliminated fluorescence in all three
species while having no inhibitory effect on swimming forces
and VCL in both the dog and human. If aerobic respiration
is the primary energy source for motility in these two species,
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Figure 4. Fluorescence ratio versus VCL in human and drill sperm. There appears to be no correlation between fluorescence and VCL.

Table 1. The means of the VCL, swimming force and fluorescence for untreated sperm (no dye), dye-treated sperm and sperm with CCCP
and dye.

No dye Dye CCCP + dye

Human VCL (µm s−1) 82.13 (n = 148) 84.58 (n = 411) 82.65 (n = 160)
Human swimming force (pN) 38.1 (n = 114) 26.2 (n = 251) 31.0 (n = 87)
Human fluorescence ratio −1.74 × 10−5 (n = 65) 0.202 (n = 122) 0.023 (n = 78)
Dog VCL (µm s−1) 108.97 (n = 334) 106.44 (n = 472) 108.77 (n = 370)
Dog swimming force (pN) 42.0 (n = 104) 46.6 (n = 116) 50.1 (n = 54)
Dog fluorescence ratio −3.65 × 10−6 (n = 100) 0.192 (n = 103) 0.025 (n = 53)
Drill VCL (µm s−1) 113.56 (n = 256) 117.42 (n = 280) 96.11 (n = 162)
Drill swimming force (pN) 44.5 (n = 17) 39.2 (n = 16) 55.5 (n = 35)
Drill fluorescence ratio −1.57 × 10−5 (n = 277) 0.62 (n = 273) 2.69 × 10−2 (n = 137)

Table 2. The p values from the Wilcoxon rank sum test. Values
below 0.05 are considered statistically significant, and are in bold.
The first column (no dye versus dye) compares untreated sperm
versus DiOC6(3)-treated sperm. The second column compares
untreated sperm and sperm treated with DiOC6(3) and CCCP. The
final column compares sperm treated with dye and sperm treated
with the dye and CCCP.

p values from the
Wilcoxon rank sum
test

No dye
versus dye

No dye versus
CCCP + dye

Dye versus
CCCP + dye

Human VCL 0.93 0.65 0.62
Human swimming
force

0.34 0.06 0.32

Human fluorescence
ratio

2.37 × 10−29 6.16 × 10−22 9.85 × 10−33

Dog VCL 0.06 0.18 0.33
Dog swimming force 0.39 0.27 0.73
Dog fluorescence ratio 5.19 × 10−34 9.33 × 10−15 2.20 × 10−21

Drill VCL 0.15 8.27 × 10−11 1.92 × 10−8

Drill swimming force 0.44 0.47 0.96
Drill fluorescence ratio 0 0 2.69 × 10−60

it would be expected that the VCL would drop considerably
when the CCCP is added. The results of previous studies
on mammalian motility (Nascimento et al 2008b, Storey
2008) and the results reported here with the CCCP inhibitor

demonstrate that glycolysis is a primary source of the ATP for
sperm motility in human and dog.

The results with the drill sperm are less clear. The
decrease in VCL in the dye + CCCP group indicates a reliance
on aerobic respiration for ATP. However, the increase in
swimming force for this group is perplexing. It is possible
that the dye may be causing sperm hyperactivation resulting
in greater lateral head movements with a stronger swimming
force and at the same time a reduction in the VCL. The
higher signal-to-noise ratio may indicate a difference in dye
uptake, or more activity within the midpiece, and thus a greater
membrane potential. Evolutionarily, human and dog are
not conventionally seen as competitive reproductively within
their own species. Wild dogs travel in packs of only 4–8
adults (Woodroffe and Ginsberg 1999) and humans are closer
to a mating system with lower sperm competition (Martin
2007). Humans have some of the smallest midpieces amongst
primates, indicating that activity in the midpieces is not nearly
as important for sperm motility as in other species with larger
midpieces. Drill has a larger midpiece volume (Anderson et al
2005), which has been correlated with multi-male systems
(Anderson and Dixson 2002), possibly due to the evolution
of higher energy requirements because sperm from different
males are competing to get to the egg. However, the sample
size for the drill was smaller compared to the other species
and the data, therefore, should be viewed as preliminary.
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In conclusion, the results reported here demonstrate that
optical trapping in combination with the non-ratiometric dye
DiOC6(3) are effective for the study of sperm motility and
energetics in both common species (dog and human), and in
rare and highly endangered species, such as the drill.
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