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ABSTRACT 11 

Pavement deterioration models are an important part of any pavement management system. 12 
Many of these models suffer from endogeneity bias due to the inclusion of independent 13 
variables that are correlated with unobserved factors, which are captured by the model’s 14 
error terms. Examples of such endogenous variables include pavement overlay thickness 15 
and maintenance and rehabilitation activities, both of which are not randomly chosen but are 16 
in fact decision variables that are selected by pavement engineers based on field conditions. 17 
Inclusion of these variables in a pavement deterioration model can result in biased and 18 
inconsistent model parameter estimates, leading to incorrect insights. Previous research has 19 
shown that continuous endogenous variables, such as pavement overlay thickness, can be 20 
corrected using auxiliary models to replace the endogenous variable with an instrumented 21 
variable that has lower correlation with the unobserved error term. Discrete endogenous 22 
variables, such as the type of maintenance and rehabilitation activities, have been accounted 23 
for by modeling the likelihood of each potential outcome and developing individual 24 
deterioration models for each of the potential responses. This paper proposes an alternative 25 
approach to accommodate discrete endogenous variables—the selectivity correction 26 
method—that allows a single model to incorporate the impacts of all discrete choices. This 27 
approach is applied to develop a pavement roughness progression model that incorporates 28 
both continuous and discrete endogenous variables using field data from Washington State. 29 
The result is a roughness progression model with consistent parameter estimates, which 30 
have more realistic values than those obtained in previous studies that used the same data. 31 
 32 
Keywords: roughness progression model, endogeneity correction, empirical pavement 33 
modelling 34 

INTRODUCTION 35 

Rough pavements are undesirable because they adversely affect the ride quality of vehicles 36 
on a roadway (Al-Omari and Darter, 1994). Pavement roughness also negatively affects 37 
freight vehicles as driving on very rough pavements can cause damage to goods being 38 
transported, especially if the goods are delicate. Vehicle operating costs, in terms of fuel 39 
consumption and vehicle wear and tear, are strongly influenced by the roughness of the 40 
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pavement and can be significant. For example, additional operating costs due to rough 41 
pavements have been shown to be about one order of magnitude greater than the cost of 42 
properly maintaining the roadway surface (GEIPOT, 1982; Paterson, 1987). 43 
 44 
In order to properly maintain roadway surfaces, pavement engineers need to have 45 
predictions of roadway conditions. For this reason, models of pavement roughness 46 
progression have become an important part of infrastructure management systems. These 47 
models are used to predict the condition of pavement sections in the future, which can be 48 
used to determine when and where to most efficiently allocate funds available for 49 
maintenance. 50 
 51 
Several pavement roughness models (Ozbay and Laub, 2001; Prozzi and Madanat, 2004; 52 
Puccinelli and Jackson, 2007) have been developed using experimental pavement sections 53 
subject to accelerated loading patterns. These types of models have limitations, because the 54 
deterioration of these sections may not reflect the deterioration process of in-use pavement 55 
sections; thus, their applicability is a subject of concern.  56 
 57 
Models of pavement roughness deterioration developed using field data, i.e., data from in-58 
use pavement sections, present several problems as well. Some models (Way and 59 
Eisenberg, 1980; Kay et al, 1993; Gulen et al, 2001) suffer from misspecification bias 60 
because either relevant variables were originally excluded from the model or they were 61 
removed from the model due to low statistical significance. The misspecification may limit the 62 
models applicability or cause other insignificant variables to appear significant (Paterson, 63 
1987; Prozzi and Madanat, 2003). Other models (Karan et al, 1983; Madanat et al, 2005) 64 
suffer from endogeneity bias caused by the inclusion of explanatory variables that are 65 
correlated with the model error term. Examples include the inclusion of pavement overlay 66 
thickness and maintenance and rehabilitation activities, both of which are design variables 67 
selected by pavement engineers based on conditions in the field. Specifically, locations that 68 
experience the most deterioration usually have thicker pavement overlays and more frequent 69 
maintenance activities performed. The inclusion of these endogenous variables leads to 70 
biased and inconsistent estimates of the model parameters. Several methods have been 71 
proposed to overcome the endogeneity bias present in models developed using field data. 72 
For endogenous variables that are continuous, Madanat et al (1995) demonstrated that 73 
instrumental variables could be used to reduce correlation between the endogenous variable 74 
(in this case, the presence of pavement cracking) and unobserved error term. For 75 
endogenous variables that are discrete, Madanat and Mishalani (1998) proposed a 76 
structured econometric approach that combines a discrete choice model to predict the 77 
likelihood of each discrete outcome and individual pavement deterioration models for each 78 
discrete outcome.  79 
 80 
As an alternative approach, this paper proposes the use of the selectivity correction 81 
approach to account for endogeneity of discrete independent variables in the development of 82 
a pavement roughness deterioration model. This method allows a single model to be 83 
developed that describes pavement deterioration for all potential discrete outcomes. This 84 
method is combined with the instrumental variable method to simultaneously account for 85 
endogeneity in two variables that might be included in a pavement roughness deterioration 86 
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model: 1) thickness of pavement overlays, and 2) maintenance and rehabilitation (M&R) 87 
activities. The resulting model of pavement roughness progression should have more 88 
consistent parameter estimates than previous models that do not correct for this endogeneity 89 
bias. 90 
 91 
The rest of this paper is organized as follows. We first describe the empirical dataset used in 92 
this study to develop the model for pavement roughness. Then, we explain the source of 93 
endogeneity bias and the methodology that will be used to correct for its presence. Next, we 94 
present the results of the model development. Finally, we summarize the conclusions. 95 

DATA 96 

Data for this analysis were obtained from the Washington State Pavement Management 97 
System (WSPMS) database. This database consists of pavement condition data collected by 98 
the Washington State Department of Transportation along each of its state roads from 1983 99 
to 1999. Roads were divided into unique 0.1-mile long sections and each section was 100 
observed multiple times during the duration of the data collection period, resulting in a two-101 
dimensional panel dataset. A total of 352,803 observations were available from 48,484 102 
unique roadway sections. A subset of about 60,000 observations was randomly selected for 103 
modeling purposes. This random sampling method was adopted to minimize any potential 104 
correlation that likely exists from observations for contiguous or geographically close sections 105 
within the dataset. The sample still contains sufficient variability in the explanatory variables, 106 
given its large size. 107 
 108 
The data included information about the road surface conditions, traffic conditions, 109 
environmental conditions, and any maintenance and rehabilitation activities that were 110 
performed. A subset of the variables present in the WSPMS database that are relevant to the 111 
pavement roughness progression model are: 112 
 113 

• Cumulative traffic loading [in equivalent single axel loads, or ESALs] 114 
• Current year traffic loading [ESALs] 115 
• Base thickness [ft] 116 
• Thickness of last overlay [ft] 117 
• Minimum temperature [°F] 118 
• Maximum temperature [°F] 119 
• Annual precipitation [in] 120 
• Time since last overlay [years] 121 
• Time since last maintenance activity [years] 122 
• Type of M&R activity [AC overlay, BST treatment, Maintenance] 123 
• Roughness (IRI) in previous year [cm/km] 124 
• Change in roughness [cm/km] 125 
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METHODOLOGY 126 

A linear regression model was used to predict the change in roughness as a function of 127 
several of the potential explanatory variables available in the dataset. Because the dataset 128 
consists of panel data, a random effects model with two error terms was used (Washington 129 
et al, 2003). This type of model includes the random effects of individual roadway sections 130 
(invariant of time) as well as a random error term over time at each location. The functional 131 
form of this model is presented below in Equation 1.  132 
 133 

itiKitKititit XXXy ευββββ ++++++= ...22110  (1)134 
  135 
In Equation 1, yit is the change in roughness for section i at time t, β1,…, βK are the model 136 
parameters, and X1it,…,XKit are the explanatory variables. The first error term, υi, captures the 137 
unobserved heterogeneity (cross sectional variation) between different roadway sections. 138 
The second error term, εit, captures the random error of each section that changes over time. 139 
To estimate this model, the two-step generalized least squares (GLS) method was applied 140 
(Freedman, 2005). The first step requires the model to be estimated using ordinary least 141 
squares regression (OLS) in order to estimate the covariance between error terms. The 142 
second step then uses this covariance matrix to calculate more efficient estimates of the 143 
model parameters, β , than would otherwise be obtained with traditional OLS. 144 
 145 
Similar to an OLS model, the GLS model must still satisfy the Gauss-Markov assumption that 146 
the explanatory variables should not be correlated with the error terms in the model for the 147 
estimates to be consistent (Rudd, 2000). In modeling pavement roughness, two potential 148 
explanatory variables are likely to be endogenous and thus correlated with the error terms: 149 
the overlay thickness and the type of maintenance and rehabilitation activity performed. Both 150 
of these are design variables that are typically selected by pavement engineers based on the 151 
conditions that the pavement section experiences; therefore, they are not randomly chosen 152 
and cannot be assumed exogenous (Madanat et al, 1995; Madanat and Mishalani, 1998). 153 
This endogeneity needs to be accounted or else estimates of β  will be biased.  154 
 155 
Endogeneity in the model was addressed in one of two ways. For the continuous 156 
endogenous variable—the thickness of the last overlay—the instrumental variables method 157 
was used (Mannering, 1998). In this method, the endogenous variable is replaced in the GLS 158 
model by another variable that is: 1) highly correlated with it and 2) uncorrelated with the 159 
error terms in the GLS model. Such a variable was obtained by estimating an auxiliary model 160 
for the endogenous variable using linear regression. This model was a function of several 161 
explanatory variables which may or may not be included in the roughness progression 162 
model. The predicted values of the endogenous variable were then substituted for the 163 
variable in the GLS model since these predicted values were uncorrelated with the error 164 
terms. The use of a continuous instrumental variable changes the roughness progression 165 
model to the form presented in Equation 2. 166 
 167 

itiKitKitKKititit XXXXy ευβββββ +++++++= −−


1122110 ... ,  (2) 168 
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 169 
where KitX


 is the predicted value of the endogenous variable obtained from the auxiliary 170 

model. 171 
 172 
For the discrete endogenous variable—the type of M&R action that was performed—the 173 
selectivity correction approach was used (Train, 1986; Mannering and Hensher, 1987). In 174 
this method, a discrete choice model was developed to estimate the probabilities of selecting 175 
one of several M&R options. The probability of selecting M&R alternative j, jP


, was then 176 

used to add a new explanatory variable in the GLS model known as the selectivity correction 177 
term. For a logit discrete choice model (which was used here) with J different choices, J-1 178 
selectivity terms could be added to the GLS model. The inclusion of these terms changes the 179 
model to the form presented in Equation 3. 180 
 181 
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λ  was calculated using the probabilities from 184 

the discrete choice logit model and γj were parameters to be estimated. 185 

MODEL DEVELOPMENT 186 

This section applies the methodology described in the previous section to develop auxiliary 187 
models for endogeneity correction and the final pavement roughness progression model.  188 

Endogeneity correction of overlay thickness 189 

In order to correct for endogeneity in the overlay thickness, we developed an auxiliary model 190 
that predicted the overlay thickness as a function of several explanatory variables. The 191 
variables were chosen based on our knowledge of pavement design methods.  The objective 192 
of this exercise was to develop an empirical model that would produce overlay thicknesses 193 
that are close in values to those designed by Washington DOT’s pavement engineers. The 194 
resulting model is presented in Equation 4.  195 
 196 
(log of overlay thickness)it = α0 + α1(current traffic loading)it + α2(log of previous roughness)it + 197 
α3(time since last maintenance activity)it + α4 (minimum air temp)it + vi + eit (4) 198 
 199 
where vi and eit are error terms. This model form was developed based on knowledge of 200 
factors that affect pavement deterioration and might influence an engineer’s decision-making 201 
when selecting a new overlay thickness. These factors include traffic conditions (current 202 
traffic loading), current pavement conditions (log of prev. roughness), age of the pavement 203 
(time since last maint. activity) and environmental conditions (min. air temp).  204 
 205 
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Table 1 presents the estimates of the parameters α0--α4 using the GLS method. The 206 
parameter estimates conform to a priori expectations. Thicker overlays are provided for 207 
roadway sections that experience heavier traffic volumes (higher value of current traffic 208 
loading) and that are in a more deteriorated state (higher value of previous roughness). 209 
Thinner overlays are provided for warmer climates since fewer freeze-thaw cycles would be 210 
expected. The time since last maintenance activity was found not to be statistically 211 
significant. Therefore, while it was expected that thicker overlays would be provided for 212 
roadway sections that have not had recent M&R activities performed, this may not be the 213 
case.  214 
 215 

The model seems to have a very good fit, as evidenced by the high R-squared value (0.882). 216 
Additionally, the random-effects model is appropriate, due to the high heterogeneity across 217 
pavement sections. σv

2 represents the variance of the random disturbance vi, shown in 218 
Equation 4, capturing the unobserved heterogeneity between different roadway sections in 219 
the panel data.  σe

2
 represents the variance of the random disturbances eit in Equation 4 and 220 

accounts for random errors that occur across time and roadway sections. The ratio of the 221 
variance of the error terms between different roadway sections to the total variance (σv

2 + σe
2) 222 

shows that unobserved heterogeneity represents a high fraction of the total unobserved 223 
variation in the model (0.856).  224 

Endogeneity correction for M&R activity type 225 

In order to correct for endogeneity bias in M&R activity decisions, we developed a model that 226 
predicted the probabilities of performing various M&R activities using a multinomial logit 227 
(MNL) model.  The objective was to represent empirically the process by which Washington 228 
DOT engineers select the M&R treatments to apply to different pavement sections. Four 229 
possible activities were available: do-nothing, AC overlay, BST treatment, and routine 230 
maintenance. The probability of selecting activity j is given by Equation 5. 231 
 232 

∑
=

= J

j
j

j

V

V
i

1
)exp(

)exp(
)Pr(  (5) 233 

 234 
where Vj is the utility of alternative j. The utilities of the various M&R activities were modeled 235 
as a function of several explanatory variables, chosen based on assumptions about M&R 236 
decision-making. The resulting model specification is presented in Equation 6. 237 
 238 
utility of AC overlay = θ0 + θ1(log of previous roughness) + θ2(overlay age) + θ3(current year 239 
traffic loading)  240 
utility of BST treatment = φ0 + φ1(log of previous roughness) + φ2(overlay age) + φ3(current 241 
year traffic loading)  242 
utility of maintenance = ψ0 + ψ1(log of previous roughness) + ψ2(overlay age) + ψ3(current 243 
year traffic loading)  (6) 244 
 245 
Note that these utilities are relative to the do-nothing alternative.  246 
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 247 
Table 2 presents the estimates of the parameters θ0--θ3, φ0--φ3, ψ0--ψ3 for the MNL model. 248 
Most parameter estimates conform to a priori expectations. Compared to the do-nothing 249 
alternative, agencies are more likely to perform M&R activities on more deteriorated 250 
pavement sections, and more likely to perform AC overlays and BST treatments on the most 251 
deteriorated pavement sections as evidenced by the signs and magnitudes of θ1, φ1 and ψ1. 252 
Washington DOT pavement engineers are also more likely to perform AC overlay and 253 
maintenance activities for pavement sections that experience heavier traffic loading. The 254 
model also confirms that agencies are also less likely to apply a BST treatment on pavement 255 
sections with higher traffic loading, since BST treatments are usually selected for lower-traffic 256 
segments by Washington DOT engineers (Li et al, 2008). 257 
 258 
A higher value of overlay age was found to increase the probability of performing an AC 259 
overlay but decrease the probability of performing routine maintenance (as compared to 260 
doing nothing). While this may initially seem counter-intuitive, it actually makes perfect sense 261 
from an agency perspective. As an overlay ages, decision makers may put off routine 262 
maintenance for that roadway section because they know a new overlay will be applied in the 263 
near future. Therefore, as overlays ages, the probability of doing nothing or performing an 264 
AC overlay will increase, but the probability of performing routine maintenance will decrease. 265 
Note that overlay age was found to be statistically insignificant for the BST treatment activity. 266 
 267 
The MNL model has a goodness-of-fit value (ρ2) of 0.061. While this is not high, it should be 268 
remembered that goodness-of-fit values for discrete models are always much smaller than 269 
those of regression models, and most variables are statistically significant. Additionally, a 270 
log-likelihood test was performed and this had a p-value of 0.00 which means that the model 271 
is indeed statistically significant. Therefore, this model was used to determine probabilities of 272 
performing different M&R activities in the endogeneity correction. Using the different 273 
probabilities, the correction terms for M&R activities were calculated as shown in Equation 3. 274 

Model for pavement roughness progression 275 

Using the results of the previous two models correcting for endogeneity, we developed the 276 
model of interest, which predicts pavement roughness progression (the increase in 277 
roughness between two observations) as a function of several explanatory variables. The 278 
explanatory variables were chosen based on knowledge of pavement deterioration and 279 
included environmental variables, pavement variables, traffic variables, and the endogeneity 280 
corrections. Note that for the M&R correction, we only included the correction term for the AC 281 
overlay because BST treatments and routine maintenance are not performed to directly 282 
correct for pavement roughness. The model is presented in Equation 7.   283 
 284 
(change in pavement roughness)it = β0 + β1(previous pavement roughness)it + β2(cumulative 285 
traffic loading)it + β3(predicted overlay thickness)it + β4(base thickness)it + β5(min. air temp)it + 286 
β6(precipitation in current year)it + β7(overlay age)it + β8(AC overlay correction term)it  + υi + εit 287 
 (7) 288 
 289 
where υi and εit are error terms.  290 
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 291 
Table 3 presents the estimates of the parameters β0--β8 using a random effects model and 292 
estimated using the GLS method. Overall, the model seems to have a good fit, as evidenced 293 
by the moderately high R-squared value (0.413).  Further, it is clear that unobserved 294 
heterogeneity is present and thus the use of GLS is appropriate, given the value of the error 295 
ratio (0.164). 296 
 297 
The estimates of the coefficients conform to a priori expectations. The model predicts that, all 298 
else constant, pavement roughness progression is concave—the change in roughness 299 
decreases as pavements become rougher. This concave deterioration pattern has also been 300 
observed in the WSPMS data for cracking (Madanat et al, 2010). Pavement roughness 301 
progression is also found to increase with cumulative traffic loading, precipitation and overlay 302 
age, as expected. Roughness progression decreases for roadway sections with thicker 303 
overlays and thicker bases and for higher minimum temperatures.  304 
 305 
To determine how changing the probability of performing an AC overlay activity affects 306 
pavement roughness progression, we use the results from Table 3 and incorporate the 307 
change in λj. Figure 1 shows how pavement roughness progression changes as a function of 308 
the probability of an AC overlay, assuming the probabilities of performing each of the 309 
remaining M&R activities (do-nothing, BST treatment, and routine maintenance) are equal. 310 
Note from Figure 1 that pavement roughness progression decreases with the AC overlay 311 
probability; i.e., higher probabilities of performing an AC overlay result in lower expected 312 
pavement roughness progression, confirming a priori expectations. 313 

Model discussion 314 

Predicted values of pavement roughness deterioration can be estimated using Equation 3 315 
and the parameters in Table 3. To examine how well this model predicts the data used to 316 
create the model, cumulative distributions of the predicted and observed values are plotted in 317 
Figure 2. Conditional forecasting was applied in which the observed values of the continuous 318 
endogenous variable, overlay thickness, were inserted directly into Equation 3. As shown in 319 
the figure, the model predicts the data fairly well though there is some over-prediction of 320 
large negative values.   321 
 322 
In a linear regression model, the parameter coefficients reflect the change in the dependent 323 
variable (in this case, the annual change in pavement roughness) due to a unit change in 324 
one of the independent variables.  However, this model includes endogeneity corrections for 325 
maintenance activities that are a nonlinear function of some of the explanatory variables. 326 
Therefore, the effect of changing an explanatory variable needs to be examined more 327 
closely.  Figure 3 shows the effect of changing relevant explanatory variables on the 328 
dependant variable both with and without the endogeneity corrections.  Variables were 329 
examined at their mean value and ±1 and ±3 standard deviations away from the mean.  In 330 
some cases, this method resulted in a value that was out of the feasible range for the 331 
variable; e.g., negative values for variables that must be positive. For such variables (traffic 332 
loadings and base thicknesses) either 0 or the minimum observed value was used instead. 333 
For the current year traffic loading, a change in this value resulted in a corresponding change 334 
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in the cumulative loading variable since the cumulative loading variable includes the current 335 
year traffic loading. Note that when one variable was changed, all other variables were kept 336 
at their mean value in the dataset. 337 

 338 
Figure 3 presents the change in roughness when the endogeneity corrections are included 339 
and also when the endogeneity corrections are not included, for comparison. The results for 340 
some variables (base thickness and precipitation) are exactly the same with and without 341 
endogeneity corrections because these variables are not included in the endogeneity 342 
correction models.  343 
 344 
When endogeneity corrections are ignored we see that the change in roughness increases 345 
with traffic loading—the higher the current year loading, the faster the roughness 346 
progression. However, when endogeneity corrections are included, the opposite trend 347 
occurs. This is because a higher current year traffic loading increases the probability of an 348 
AC overlay activity, which reduces the expected change in the roughness as shown in 349 
Table 4. The same trend occurs for overlay age; note, however, that the magnitude of the 350 
difference is so small that it is not visible in the figure. 351 
 352 
For previous roughness, we see that the general trend stays the same both when including 353 
and not including the endogeneity corrections, but the magnitude of the change in roughness 354 
changes. The magnitude of the expected change is greater when endogeneity corrections 355 
are included.  356 
 357 
Based on Figure 3, the variables that cause the highest variation in the change in pavement 358 
roughness are previous roughness, minimum temperature, precipitation, annual traffic 359 
loading and base thickness (in that order). Overlay age does not seem to have much of an 360 
effect on the change in pavement roughness as the predicted change in roughness changes 361 
very little for the entire range of overlay age. 362 
 363 
The coefficient estimates presented in Table 3 can also be compared with those of a 364 
previous pavement roughness progression model (Madanat et al, 2005) to see how 365 
correcting for endogeneity changes the influence of different variables when M&R activity 366 
probabilities are held constant. This comparison shows that by correcting for endogeneity, 367 
temperature and precipitation have a more pronounced impact on roughness progression 368 
while overlay age has a less pronounced impact. Perhaps more importantly, the previous 369 
model had a negative coefficient for cumulative traffic loading, which surprisingly suggests 370 
that pavements deteriorate less quickly under heavy loads. After correcting for endogeneity, 371 
the sign of this coefficient is now positive which conforms to a priori expectation about the 372 
underlying physical process.   373 

CONCLUSIONS 374 

This paper presents a methodology to simultaneously account for endogeneity in pavement 375 
roughness models that is created when M&R activities and overlay thickness are included. 376 
Pavement overlay thickness is corrected using the instrumental variables method that has 377 
previously been shown to improve coefficient estimates (Madanat et al, 1995). The presence 378 
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of M&R activities was corrected using the selectivity correction method, which to the authors’ 379 
knowledge has never been used in pavement deterioration models to date. The estimated 380 
coefficients in the proposed model all meet a priori expectations and are in accordance with 381 
knowledge of pavement deterioration, unlike some of those in the previous model developed 382 
with the same dataset (Madanat et al, 2005). The model seems to predict well for values of 383 
change in pavement roughness close to the mean and less well for values far from the mean. 384 
The inclusion of endogeneity corrections also sheds insight onto the expected change in 385 
pavement roughness when M&R decision-making is included. These improved results 386 
confirm the importance of appropriate corrections for endogenous explanatory variables, 387 
which are common in field data sets, i.e., those consisting of in-service pavement sections.   388 
 389 
The model for M&R activities created as a part of the endogeneity correction also revealed 390 
that the probability of routine maintenance of a pavement section decreases with age. This 391 
makes sense because agencies are more likely to put off performing routine maintenance on 392 
a pavement section (which only slows deterioration) if they know a rehabilitation activity will 393 
be applied in the near future. Further work is required to confirm that this type of M&R 394 
decision-making behavior is also found in the datasets of other highway agencies. 395 
 396 
All models were developed using data obtained for in-use pavement sections in Washington 397 
State. While these roadways represent a range of traffic and environmental conditions, the 398 
model is not likely to be directly transferable to pavement sections in other municipalities. For 399 
one, changes in design guidelines, construction procedures and the environment are likely to 400 
result in different types of pavement performance. Furthermore, the endogeneity correction 401 
methods mimic the decision-making process of pavement engineers in Washington State, 402 
which focuses on keeping pavement cracking at very low levels (Madanat et al 2010). It is 403 
unlikely that a similar policy is used in some other states or countries. Nevertheless, the 404 
overall trends, results and insights are likely to be general and transferable to other locations. 405 
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Table I – Model estimates for overlay thickness  470 
 Parameter 

Estimate T-Statistic P-Value 

Current Year ESALs 4.10E-02 11.05 0.00 
Log (Previous Roughness) 6.04E-03 10.83 0.00 
Time since last Maintenance 2.46E-05 0.54 0.59 
Minimum Temperature -6.12E-04 -15.37 0.00 
Constant 1.37E-01 45.38 0.00 
R-squared 0.882 
σv

2/( σv
2 + σe

2) 0.856 
 471 
  472 
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Table 2 – Model estimates for M&R activity type  473 
  AC Overlay BST Treatment Maintenance 
  

 
Paramete

r  
Estimate 

P-
Value 

Parameter 
Estimate 

P-
Value 

Parameter 
Estimate 

P-
Value 

Constant  -
1.59E+01 0.00 -1.65E+01 0.00 -9.54E+00 0.00 

log(Prev 
Roughness)  2.55E+00 0.00 2.58E+00 0.00 1.76E+00 0.00 

Overlay Age  7.42E-04 0.00 --- --- -2.17E-03 0.00 
Current Year 
ESALs  2.62E+00 0.00 -1.18E+01 0.00 1.70E+00 0.00 

 474 
  475 
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Table 3 – Model estimates for pavement roughness progression 476 
 Parameter Estimate T-Statistic P-Value 

Previous Roughness -2.43E-01 -43.96 0.00 
Cumulative ESALs 2.42E+00 9.88 0.00 
Predicted Overlay Thickness -4.78E+02 -9.38 0.00 
Base Thickness -5.72E+00 -9.73 0.00 
Minimum Temperature -2.68E+00 -19.81 0.00 
Precipitation 1.56E-01 16.04 0.00 
Overlay Age 1.52E-02 10.16 0.00 
AC Overlay Correction Factor -1.61E+01 -18.23 0.00 
Constant 1.42E+02 10.73 0.00 
R-squared 0.413 
συ2/( συ2 + σε2) 0.164 

 477 
  478 
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Table 4 – Effect of annual loading on M&R probabilities and roughness progression 479 

  Prob(AC) Prob(BST) Prob(M) Prob(DN) 
Predicted 
Change in 
Roughness 

Current 
Year 

Traffic 
Loading 

0 0.04 0.03 0.39 0.54 -10.46 
MEAN 0.06 0.01 0.44 0.50 -13.09 
+1SD 0.07 0.00 0.50 0.43 -15.99 
+3SD 0.11 0.00 0.59 0.30 -20.89 

 480 
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