Selfish drive can trump function when animal mitochondrial genomes compete

Permalink
https://escholarship.org/uc/item/7sc779h3

Journal
NATURE GENETICS, 48(7)

ISSN
1061-4036

Authors
Ma, H
O'Farrell, PH

Publication Date
2016-07-01

DOI
10.1038/ng.3587

Peer reviewed
Title: Selfish drive trumps function when animal mitochondrial genomes compete

Authors: Hansong Ma¹, Patrick H. O'Farrell¹*

Affiliations:
¹Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94143

*Correspondence to:
Patrick H. O'Farrell,
Email: ofarrell@cgl.ucsf.edu

Abstract

A poorly understood competition among mitochondrial genomes determines which genomes populate cells, and which are transmitted. We introduced mitochondrial genomes from distant strains or species into D. melanogaster embryos. In several pairings, a functionally compromised genome, apparently benefitting from an overpowering selfish drive, outcompeted an uncompromised genome for transmission. In some of these cases, selfish drive led to the complete elimination of the functional genome over several generations with lethal consequences, while in others the advantage conferred by selfish drive was counterbalanced by a functional advantage in the other genome, resulting in stable transmission of two mitochondrial genomes. By isolating recombinant mitochondrial genomes, we mapped selfish-drive to the non-coding region that includes the origins of replication. We suggest that mitochondrial genomes evolve under the influence of both a purifying selection¹-⁵ that conserves function in the coding regions, and a selfish selection for enhanced replication that promotes divergence of noncoding sequences. Uniparental inheritance isolates mitochondrial genomes in distinct lineages, and divergence of selfish drive proceeds independently within each lineage. The differences in selfish drive can have profound consequences when genomes of different lineages are combined as we have done here, and as planned in the treatment of human mitochondrial diseases⁶-⁸.
Natural selection culls populations of compromising mutations and favors traits that enhance organismal fitness. If all else is equal, this selection guides evolution. However, transmission can be an unfair game. Selfish genetic elements, which enhance their own transmission relative to the rest of an individual’s genome, can arise and spread even if neutral or damaging. Transmission of nuclear genes is managed by a segregation system that limits opportunities for selfish behavior, biasing evolution toward natural selection. In contrast, mitochondrial genomes have a ‘relaxed’ mode of replication and random segregation. These differences increase opportunities for the spread and persistence of selfish mitochondrial variants. For example, in S. cerevisiae, where the mitochondrial genomes are inherited from both parents, preferential inheritance of hypersuppressive petite mtDNA has been reported apparently due to preferential replication. In multicellular organisms, variant mitochondrial genotypes arising by mutation will be favored by within-organism selection if they have increased replication, or if they provide cells a proliferative advantage. If such variant genomes arise in the germline, gains made in the individual will lead to preferential transmission that will provide an evolutionary drive. This evolutionary drive is somewhat contained by uniparental inheritance, which prevents spread of such successful genomes beyond the lineage in which they arise. Nonetheless, within each lineage mitochondrial genomes that outcompete neighbors should overtake and succeed. However, despite expectation that selfish drive would be an influential factor in mtDNA evolution, reported examples of selfish mtDNA for transmission are extremely rare in animals. Additionally, little is known about how the interplay of selections based on function and selfish drive influences the persistence and abundance of defective mitochondrial genomes in an organism and in a population.

Here, by making heteroplasmic flies carrying diverged Drosophila mitochondrial genomes, we show direct evidence that selection based on ‘selfish drive’ can promote destructive gains in the prevalence of a functionally defective genome. We then mapped the selfish drive to the non-coding region of the mitochondrial genome by isolating relevant recombinant genomes. Moreover, we show that the selfish-drive can interact with purifying selection to maintain a defective genome in a population in partnership with a functional genome (balanced heteroplasmy). These results suggest that selfish drive is an important factor defining the trajectory of mitochondrial genome evolution.

We first observed selection based on selfish drive when analyzing the segregation behavior of marked genome with a temperature sensitive allele of the cytochrome oxidase I gene, mt:ND2401 + mt:CoIT300I that we refer to as the temperature sensitive genome (Figure 1). Previously, we and another lab showed that when the temperature sensitive genome was combined with a closely related wild type genome, its abundance declined over generations at restrictive temperature and this purifying selection was due to competition among mitochondrial genomes during oogenesis. Unexpectedly, when the temperature sensitive genome was partnered with the ATP6[1] genome, a diverged D. melanogaster genome distinguished by numerous sequence polymorphisms and a
shorter AT-rich region, the temperature sensitive genome completely displaced the
ATP6[1] genome after several generations at either 25°C or 29°C (Figure 1A)33. This
occurred despite the fact that flies homoplasmic for ATP6[1] are relatively healthy, and
apparently more robust and fertile than flies with the temperature sensitive genome at
either temperature (Figure 1B and 34). At 29°C, the loss of the ATP6[1] genome led to a
crisis: as long as the ATP6[1] genome was modestly abundant, the population expanded
because the ATP6[1] genome provides wild type mt:Col function, but in subsequent
generations all the flies died as the functional ATP6[1] genome disappeared. We
conclude that the temperature sensitive genome achieves a selective advantage without
providing an advantage to the organism.

Since the ATP6[1] genome is distinguished by numerous sequence polymorphisms and a
shorter AT-rich region, its failure to thrive in heteroplasmic combination could be
attributed to any of these differences. As described in a separate communication, we
have shown that recombination among mitochondrial genomes occurs33. The death of
the heteroplasmic stocks provided a selection for recombinants carrying the drive region
of the temperature sensitive genome and the functional mt:Col allele of the ATP6[1]
genome. When five heteroplasmic lines were followed at 29°C, one line gave surviving
progeny that contained a recombinant genome (Figure 1B). The recombinant genome
contained the majority of the ATP6[1] coding sequence including the functional mt:Col
allele, and the entirety of the non-coding segment plus a small segment of flanking
coding sequence from the temperature sensitive genome (Figure 1C)33. This
combination of sequences endowed the recombinant with an ability to compete well for
maintenance, as well as providing function: traits that allowed it to persist and
ultimately increase in abundance to become the dominant genome (Figure 1D). Later,
we isolated another recombinant with the entire coding sequence derived from the
ATP6[1] genome but with a restriction fragment length characteristic of the regulatory
region from the temperature sensitive genome (Figure S1A). Southern analysis and
qPCR showed that this recombinant also became the dominant genome in later
generations (Figure S1B & C). Together these data show that non-coding sequences from
the temperature sensitive genome are sufficient to endow the recombinant with strong
drive. We conclude that, at least in this pairing of genomes, the difference in selfish
drive maps to the non-coding region of the mitochondrial genome.

The non-coding region, which contains the origins of replication, is the most variable
region in the mitochondrial genomes of many species35-38. The D. melanogaster version is
super AT-rich (>90%) and especially large with five tandem type I repeats and four
tandem type II repeats that make up > 90% of its ∼4.6 kb extent39 (Figure S2A).
Mitochondrial genomes in this species not only exhibit frequent nucleotide changes in
this region, but also exhibit length polymorphisms (e.g. Figure S2A and 40,41). Other
Drosophila species also show extensive divergence in the regulatory region (Figure S2B
and 42,43). We introduced mitochondrial genomes from other Drosophila species into D.
melanogaster and examined their ability to compete.
We first made a heteroplasmic line containing mtDNA from both *D. melanogaster* and *D. yakuba*, species that diverged ~10 mya. We introduced cytoplasm of *D. yakuba* embryos into *D. melanogaster* embryos carrying the temperature sensitive genome (Figure 2A), but the efficiency of retaining the *D. yakuba* mitochondrial genome after transfer was very low and no stable lines were recovered. Thus, we applied selection against the temperature sensitive genome to select for flies retaining the *D. yakuba* genome. Among the 50 injected females that were kept at 29°C, two produced viable and fertile progeny. These progeny gave two lines that maintained the *D. yakuba* genome in heteroplasmic combination with the persisting temperature sensitive genome. The *D. yakuba* genome was carried at a low but stable level (<5%) for many generations as long as temperature selection against the temperature sensitive genome was maintained (Figure 2B).

Maintenance of both genomes appears to be due to a balance of two selections: The *D. yakuba* genome gains a selective advantage at 29°C because it provides a functional *mt:Col* gene, but apparently another factor gave the *D. melanogaster* genome an advantage that allowed it to persist despite its functional deficit at the high temperature. In accord with this balance of selections, *D. yakuba* mtDNA disappeared from these lines within two generations at permissive temperature. From previous work, we know that selection against the temperature sensitive genome occurred mainly during oogenesis at restrictive temperature\(^\text{3}\). If, in contrast to this time-limited selection for function, the selective advantage of the *D. melanogaster* mitochondrial genome acted through the life cycle, we might see oscillations in the relative abundances of the two genomes. In particular, after enjoying the selection for function during oogenesis, we expected the *D. yakuba* genome to be at a high level of abundance in newly deposited eggs. Indeed, the proportion of *D. yakuba* genome in heteroplasmic lines oscillated within one generation: it was highest in newly deposited eggs and then decreased during development, only to increase again during oogenesis (Figure 2C), suggesting that the competition between the two genomes played out, at least in part, during somatic growth. We propose that the advantage incurred by selfish drive can influence competition at many stages of the life cycle, while the functional selection is more restricted to times during oogenesis. This temporal distinction might be responsible for previous observations of oscillations in the relative abundance of heteroplasmic genomes\(^\text{4}\).

Since the *D. yakuba* genome had no PstI recognition site, whereas the temperature sensitive genome had a PstI site at mt7496, we expressed a mitochondrionally-targeted PstI in the germline of the heteroplasmic lines to completely eliminate *D. melanogaster* mtDNA (Figure 3A). Interestingly, flies homoplasmic for *D. yakuba* genome (called *D. mel* (*mito-yakuba*)) were not only viable but also as healthy as *wild type* flies at various temperatures (Figure 3B). This was surprising because various examples of nuclear-mitochondrial incompatibility have been described\(^\text{45-48}\), and thus we initially thought that the selective disadvantage of the *D. yakuba* genome was the result of functional deficits resulting from a mismatch between the nuclear genes and mitochondrial genes.
contribute to electron transport. Instead, the finding that the D. yakuba mitochondrial
genome worked well once we had eliminated the D. melanogaster genome showed that
the only substantial defect of the D. yakuba genome was in its ability to compete with the
endogenous genome.

Another cross species combination of mitochondrial genomes gave a very different type
of result. When we introduced a D. mauritiana (diverged ~2mya) mitochondrial genome
(mal) into D. melanogaster flies, D. mauritiana genome completely replaced the D.
melanogaster genomes within a few generations at 25°C (Figure S3). A similar
observation has been made when a different D. melanogaster/D.mauritiana heteroplasmic
line was generated. Thus, while one would expect the D. melanogaster mitochondrial
genome to be optimized for function in its resident background, it was the weaker
competitor, again suggesting that competitive success might not be based entirely on
function.

To further examine the basis of competition, we re-introduced D. melanogaster
mitochondrial genomes into the D. mel (mito-yakuba) line. All of several D. melanogaster
genomes tested outcompeted the D. yakuba genome, even the relatively poor D.
melanogaster competitor genome, ATP6[1] (Figure 3C). This is not selection based on
function because D. melanogaster genomes that took over (e.g. the temperature sensitive
genome, mt:ND2del1, and the ATP6[1] genomes) gave lines that were far less healthy than
D. mel (mito-yakuba) flies (Figure S4 and 34,50,51). The D. yakuba genome appeared to have
an intrinsic replicative/transmission disadvantage, perhaps associated with its diverged
and shorter (~1kb) non-coding region. It should be noted that competitive strength of D.
yakuba, ATP6[1] and the temperature sensitive genome do not fall on a simple hierarchy:
the D. yakuba genomes is displaced by ATP6[1], suggesting that it is weaker, yet, when
these genomes are paired with the temperature sensitive genome, only the D. yakuba
genome can be maintained at high temperature, suggesting that it is the more successful
competitor. This suggests competitive strength is determined by more than the potency
of a single factor or interaction.

We observed some adaptation in the D. mel (mito-yakuba) line after several generations.
Re-introducing the temperature sensitive genome at the restrictive temperature gave
balanced heteroplasmy with a higher ratio of D. yakuba genome compared to the two
original lines (Figure 3C). Since the sequence of the D. yakuba mitochondrial genome
remained unchanged (data not shown), the adaptation is likely due to nuclear modifiers.
This finding shows that nuclear genes modulate the ability of mitochondrial genomes to
succeed in competition. It will be interesting to explore the nature of this interaction
between nuclear and mitochondrial genomes.

While the mechanism of selfish drive is unknown, its localization to the non-coding
region constrains the possibilities. The non-coding sequences are not likely to influence
drive by complex actions such as evasion of mitophagy or localizing mitochondria to the
germline. Furthermore, since selfish drive is independent of function, control of the
transcription of the coding sequences, which would affect function, is not likely to be
responsible. In contrast, the non-coding region has a direct involvement in
replication. The noncoding region includes the two origins for asymmetric replication of
the mitochondrial DNA (Figure S2A). These origin sequences are substantially
conserved, and are associated with repeat sequences. Polymorphisms in repeat number
and nucleotide changes distinguish the genomes examined in this study (Figure S2A).
Little is known about the control of mitochondrial replication in Drosophila; nonetheless,
we might anticipate that sequences throughout the control region would contribute to
replication functions such as copy control, primer synthesis and initiation efficiency.
Even subtle changes could result in a large competitive advantage because differences in
replication would be amplified over many rounds of genome doubling. We thus
hypothesize that selfish drive can be equated with replicative drive.
If selfish selection prevails in the non-coding regions of mitochondrial genomes, while
purifying selection is more pronounced in the coding regions, the evolutionary
trajectory of these two regions might differ. Indeed, variations in the length of
mitochondrial genomes within large laboratory fly populations has been attributed to
differences in the non-coding region where longer variants, presumably with an
increased number of repeat sequences, exhibited preferential transmission41. In addition,
recurrent mutations at specific sites in the non-coding region related to replication were
found to occur independently in multiple somatic tissues and individuals in humans26.
Comparisons among related species also show that non-coding regions of mitochondrial
genomes evolve much more rapidly than the coding region52-54. These distinctive
behaviors of non-coding sequences could be partially explained by a positive selection
for variants with increased selfish drive. In contrast, purifying selection would preserve
the sequences of coding sequences. Thus, the divergence pattern of the mitochondrial
genome is consistent with the idea that selfish selection and purifying selection have
largely distinct targets, non-coding and coding sequences, respectively.
Figure Legends

Figure 1: Selection based on selfish drive in a heteroplasmic line containing the ATP6[1] genome and the temperature sensitive double-mutant: mt:ND2del1+mt:CoIT300I. A) Decline of the ATP6[1] genome when co-existing with mt:ND2del1+mt:CoIT300I. A schematic (upper left) of D. melanogaster mitochondrial genome with base pairs indicated on the outer circle. Protein coding genes are indicated in red, rDNA loci in green and the non-coding regulatory region in brown. The key features distinguishing the ATP6[1] and temperature sensitive genome are indicated (upper right panel) and a PCR primer set that selectively amplifies the intact ND2 locus of the ATP6[1] genome is indicated. The relative abundance of the ATP6[1] genome as assessed by qPCR with specific and general primers is shown (lower panels) for five lines maintained at 25°C and 29°C for multiple generations. After the ATP6[1] abundance fell to low level, the flies at 29°C started to die, except for one lineage (red line), which not only survived at the restrictive temperature, but also showed an increasing abundance in a genome with the ATP6[1] mt:ND2 region. B) Phenotypic analysis of flies homoplasmic for either the ATP6[1] or mt:ND2del1+mt:CoIT300I genome. Note that for a wild type Canton S stock, mean survival was about 50 days (Figure 3). Survivorship was recorded every two days at both temperatures. For the climbing test, the time required for 50% of the flies in a population of the indicated age (growing at 25°C) and sex to climb to a prescribed height in a graduated cylinder after being gently knocked down to the bottom was recorded. By day 8, mt:ND2del1+mt:CoIT300I flies were more or less immobilized for a long time after they were knocked to bottom of the cylinder, so the data were not included in the graph. Results are means ± SD (n = 3 for each data point). C) The map of the recombinant genome sequenced by PacBio SMRT technology. Red lines indicate the distribution of SNPs characteristic of mt:ND2del1+mt:CoIT300I genome that are present in the recombinant. The ATP6[1] genome also lacks ~1.6 kb of the non-coding region (two type I repeats and two type II repeats)33. D) The transmission of the recombinant genome was favored when paired with the temperature sensitive genome. The directional arrows indicate how the abundance of a particular genotype was increasing or decreasing at any given generation.

Figure 2: Stable transmission of the D. yakuba mitochondrial genome in the D. melanogaster nuclear background. A) A heteroplasmic line was established by transferring cytoplasm of D. yakuba embryos into embryos carrying the mt:ND2del1 + mt:CoIT300I genome. B) The proportion of D. yakuba mtDNA was maintained at ~4% for over 30 generations in two independent heteroplasmic lines at 29°C. C) The abundance of D. yakuba mtDNA was highest in newly deposited eggs and then decreased during development in four independent lines at 29°C. Results are means ± SD (n = 3 for each data point).

Figure 3: Conservation in function of the mitochondrial genome cross-species, but divergence in the ability to compete. A) The D. melanogaster genome was eliminated
from a heteroplasmic line by expressing PstI that is targeted to mitochondria. B) The lifespan and the climbing ability of the D. mel (mito-yakuba) line are similar to D. melanogaster flies with the wild type mtDNA. C) D. yakuba mitochondrial genome was quickly outcompeted by various D. melanogaster genomes at 25°C. After establishment of the D. mel (mito-yakuba) line, cytoplasm transplantation was performed using mt:ND2del+mt:Col'T300, ATP6[1] and mt:ND2del embryos as donors and the relative abundance of the D. yakuba genome was followed over generations by qPCR (see methods). The differently colored lines represent independently produced heteroplasmic lines: these vary in starting abundance of the D. yakuba mtDNA, which reflects the degree of success of the cytoplasmic transfer. The D. yakuba mtDNA was only maintained when partnered with the temperature sensitive genome at 29°C.
Online Methods

Fly stocks

The D. melanogaster mutant alleles mt:ND2{del1} and mt:CoIT{300I} were previously described 2,5,5. These alleles were present either alone, or on a double mutant genome mt:ND2{del1} + mt:CoIT{300I}. Flies homoplasmic for the ATP6[1] mitochondrial genome was kindly provided by Michael Palladino (University of Pittsburgh, U.S.). D. mauritiana and D. yakuba flies were obtained from Drosophila species stock center, San Diego. Flies with different mitochondrial genomes were out-crossed to Canton S for 10 generations to homogenize the nuclear background. Other strains used included UAS-mito-PstI and nos-Gal4. The stocks were cultured at 18-25°C on standard fly medium.

Establishment of heteroplasmic lines

Poleplasm transplantation was used to generate heteroplasmic flies and the method was described in 3. For the mt:ND2{del1} + mt:CoIT{300I}/ATP6[1] line (+’ indicates alleles on the same genome and ‘/’ indicates the co-residence of the two indicated genomes), ATP6[1] flies were used as the recipient during poleplasm transplantation in order to obtain lineages with high initial abundance of the ATP6[1] genome. Numerous female progeny (G0) from injected embryos were individually crossed to mt:ND2{del1} + mt:CoIT{300I} males for 2 days at 25°C. After progeny collection, mothers were sacrificed for total DNA extraction and the proportion of ATP6[1] genome was estimated by qPCR as described below. The progeny (G1) of the mothers were either maintained at 25°C, or shifted to 29°C and maintained at 29°C for multiple generations.

For the mt:ND2{del1} + mt:CoIT{300I}/mt:D. yakuba line, cytoplasm from D. yakuba embryos was transplanted into the mt:ND2{del1} + mt:CoIT{300I} embryos and eclosed adults were kept at 29°C to select for flies with the D. yakuba genome. By doing this, two independent lines were established and both stably transmitted D. yakuba mitochondrial genome (~4%) from generation to generation at 29°C. Subsequently, a mitochondrially-targeted restriction enzyme, mito-PstI, was expressed in the germline of the two heteroplasmic lines to eliminate the mt:ND2{del1} + mt:CoIT{300I} genome, as only the D. melanogaster mitochondrial genome contain a PstI site. Through this, several lines with only wild type D. yakuba mtDNA were established. The D. mel (mito-yakuba) line was then used a recipient for subsequent cytoplasm transplantations.

For the mt:ND2{del1} + mt:CoIT{300I}/mt:D. mau line, cytoplasm from D. mauritiana embryos was transplanted into the mt:ND2{del1} + mt:CoIT{300I} or mt:ND2{del1} embryos. Several G0 mothers were crossed to mt:ND2{del1} + mt:CoIT{300I} males for 2 days at 25°C to produce G1 females in order to establish independent lineages.

Phenotypic analysis of flies with different mitochondrial genotypes

Flies homoplasmic for mt:ND2{del1} + mt:CoIT{300I}, ATP6[1], mt:ND2{del1} and D. yakuba mitochondrial genome were backcrossed to Canton S males for 10 generations. To assay
the lifespan, newly eclosed flies were separated by sex and around 10 flies were placed
in one vial. The flies were transferred to fresh vials and survivorship was recorded every
two days at both 25°C and 29°C. At least 100 flies were used to plot the longevity curve.
The climbing assay was performed as described in Ma et al.2. Basically, 20 flies of various
ages were transferred to a plastic cylinder (22 cm long, 1.5 cm diameter) with a mark 10

cm line from bottom. After 1 h for acclimation, the flies were knocked down to the
bottom by gently tapping the tubes. The time required for 50% of the flies to climb to the
marked 10 cm line was recorded. Three trials were conducted for each group, and three
groups were used for each genotype. For all the above phenotypical studies, individual
flies were picked randomly and no blinding was done.

DNA isolation:
Total DNA was extracted from adults as described in Ma et al.2. Frequencies of
mitochondrial genotypes were measured in individual founding females (G0) and their
further generations via qPCR. When populations were analyzed, we extracted DNA
from groups of 40 individuals.

Sequencing the D. yakuba mtDNA
Three long-range PCR reactions using Expand Long Template PCR system (Roche) were
performed using the total DNA from D. yakuba and D. mel (mito-yakuba) as template:
mt186-7519, mt7229-14797 and mt12822-400 with the following program: 1 cycle of 93°C
for 3min, 30 cycles of 93°C 15s, 50°C 30s, 60°C 8 min, and 1 cycle of 60°C for 10 min.
Primers were designed all around the D. yakuba mitochondrial genome (Table S1) for
sequencing by QuintaraBio (Albany, CA).

qPCR Parameters:
qPCR assays were performed as described in Ma et al.2. Basically, the total mtDNA copy
number of heteroplasmic flies was measured by qPCR of a 52 bp region (mt361-mt412)
present in all mtDNA genotypes (primer mt361F and mt412R, Table S1). To measure
copy number of genomes with ATP6[1], or D. yakuba, or D. mauritiana allele of mt:ND2 in
the presence of mt:ND2del1, qPCR of the 51 bp ATP6[1], or D. yakuba, or D. mauritiana
mt:ND2 region was performed (See Table S1 for primers). Standard curves were
constructed using a series of 10-fold dilutions of purified PCR fragment containing both
the common region and ATP6[1], or D. yakuba, or D. mauritiana mt:ND2 region. The
efficiency of the 2 primer sets was normalized each time by comparing total mtDNA
copy number estimated for the same wild type DNA sample. qPCR was performed with
the following reaction conditions: 95°C for 10 min, 40 cycles of 95°C 30 s and 48°C 30 s.
For each 20 μl qPCR reaction, 1% of a fly’s total DNA was used as template. The Ct
values used ranged from 13 to 33 and each reaction was repeated >3 times. To
distinguish the ATP6[1] genome from the D. yakuba mtDNA, two different sets of
primers were designed for the qPCR assay (Table S1): mt6237F and mt6314R as the
common primers; and mt6652F and mt6811R as primers specific for recognizing D.
yakuba mtDNA.
Monitoring abundance of *D. yakuba* genome during development

Four females heteroplasmic for *D. yakuba* and mt:ND2^{del1} + mt:CoI^{T300I} genomes were individually crossed (in separated vials) to mt:ND2^{del1} + mt:CoI^{T300I} males for 2 days at 29°C. The mothers of each vial were transferred to new vials to collect eggs for 16 h.

Subsequently, the mothers and half of the collected eggs were sacrificed to measure the abundance of *D. yakuba* genome via qPCR described above. The rest of the eggs were allowed to develop into late 3rd instar larvae before they were sacrificed to measure the abundance of *D. yakuba* genome.

Southern analysis

Southern blotting was used to detect the recombinant genome and monitor the length variation in the non-coding region of the mitochondrial genomes. It was performed as described in Ma and O'Farrell³³. Basically, digested DNA was separated on a 0.8% agarose gel by electrophoresis and transferred to Hybond N+ membrane by the capillary method. The blot was hybridized with PCR-generated probes (mt1577-2365 or mt21-400, see Table S2) that were labeled with DIG-11-dUTP.
Acknowledgements:

This research was supported by NIH (GM086854) funding to P.H.O’F. H.M. was supported by the Long-term postdoc fellowship from Human Frontiers Science Program (LT000138/2010-L). We thank Michael J. Palladino at University of Pittsburgh for kindly providing us flies with the $ATP6[1]$ mitochondrial genome.
References

51. Burman, J. L. *et al.* A *Drosophila* model of mitochondrial disease caused by a complex I mutation that uncouples proton pumping from electron transfer. *Dis

A) Recombinant 1

mt:ND2Δ1

mt:CoIT300I

ATP6[1]

100%

3 18 15 12 6 0

% of ATP6[1] ND2

3 18 15 12 6 0

Survivorship

0 3 6 9 12 15 18

Age (days)

29°C

B) 40

30

7

1

0

5

20

3

4

5

6

8

0 1 2 3 4 5 6 7 8

Age (days)

Time (s)

mt:ND2Δ1+mt:CoIT300I

mt:ND2Δ1+mt:CoIT300I

ATP6[1]

ATP6[1]

mt:ND2Δ1+mt:CoIT300I

25°C

mt:ND2Δ1+mt:CoIT300I

mt:ND2Δ1+mt:CoIT300I

mt:ND2Δ1+mt:CoIT300I

ATP6[1]

C) mt:ND2Δ1+mt:CoIT300I

19,542 bp

ATP6[1]

17,925 bp

non-coding region

Recombinant 1

19,542 bp

D) 100

80

60

40

20

0

% of ATP6[1] ND2

0 5 10 15 20 25 30 35

Generations

25°C

mt:ND2Δ1+mt:CoIT300I

mt:ND2Δ1+mt:CoIT300I

ATP6[1]

ATP6[1]

mt:ND2Δ1+mt:CoIT300I

mt:ND2Δ1+mt:CoIT300I
A)

B)

C)
A) D. melanogaster fly

B) 25°C

C) 25°C

Donor: mt:ND2Δ1 + mt:CoI

Donor: ATP6[1]

Donor: mt:ND2Δ1

Recipient

Other genotypes

D. mel (mito-yakuba)

D. yakuba

D. melanogaster

nos-GAL4: mt: PstI

mt:ND2Δ1

mt:CoI

T300I

mt:ND2

PstI

Canton S (wt)

D. mel (mito-yakuba)