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The hypercubic family of interconnection networks, encompassing the hypercube and its
derivatives and variants, has a wide range of applications in parallel processing. Various
problems in general complex networks can be addressed by choosing a hypercubic network
as a skeleton. In this paper, we provide insight into why hypercubic networks are suitable
as network skeletons and discuss a mapping scheme to take advantage of the symmetry of
such networks for developing efficient algorithms.
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1. Introduction

The hypercube and its numerous derivatives and variants, collectively referred to as

the hypercubic family of networks, have a wide range of applications as interconnec-

tion structures or performance comparison benchmarks.1–4 In particular, there is a

wealth of research about the use of hypercubic architectures as interconnection net-

works for parallel processing, necessitating studies of their structural, performance,

and fault tolerance attributes.5–9 The references just cited are intended as a small

sample of studies, the likes of which are still ongoing, with results published regularly

in parallel processing, computer architecture, and some domain-specific venues.

∗Project supported by the National Natural Science Foundation of China (Grants 61170313,
61103037, 61370003).
†Corresponding author.
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In complex networks, it is common to address various structure-related issues by

choosing a hypercubic network as a skeleton.10–15 It is quite natural to question why

hypercubic networks are used as skeletons. In this paper, we provide a theoretical

explanation of this choice, following the theory with an investigation of mapping

problems.

An N -node general network G can be trivially embedded into the complete

graph KN through an isomorphic mapping. So, given that KN can be mapped onto

a hypercube Q with dilation log N , any N -node network G can be mapped onto a

hypercube Q with dilation log N , which implies that a path in Q corresponding to

an edge in G has length of at most log N . The hypercube Q is highly symmetric,

leading to simple analysis and algorithms. Thus, a highly efficient routing algorithm

in Q readily translates to an efficient routing algorithm in the general network G.

This is the essence of network virtualization,16 an active research branch in computer

science.

We have found hypercubic architectures useful in our prior work and have used

them both for proposing novel networks and for modeling existing ones. In this

paper, we further develop the methods used in Refs. 16–22 to provide insight into

why hypercubic networks are suitable as network skeletons and discuss a mapping

scheme to take advantage of the symmetry of such networks for developing efficient

algorithms in various application domains. We also provide concrete evidence for

the resultant benefits via application to real networks that are of practical interest.

The paper is organized as follows. Section 2 introduces related work, Section

3 explains in detail the reason why hypercubic networks are chosen as skeleton of

networks. Two applications of our theory in mapping and network virtualization are

discussed in Section 4. We discuss some related problems and conclude the paper in

Section 5. An appendix provides details of 3 example networks.

2. Previous Work

The hypercubic family of interconnection networks has been investigated extensively

for several decades.1–9 In parallel processing, much research has been devoted to

the hypercube and its derivatives and variants, because their high symmetry leads

to simple analysis and efficient algorithms, making them both theoretically and

practically desirable. An n-dimensional hypercube has N = 2n nodes, a diameter

of n = log2N , and highly efficient routing schemes (e.g., dimension-order routing)

of order log N . Some variants of the hypercube possess similar desirable properties,

and have thus found applications in several fields of computer science.10–15

Real networks, on the other hand, are generally complicated, with many of them

having small-world properties and order-(log N) diameters, where N is the net-

work size.10–13 An effective approach to investigating these networks is via network

virtualization,16 that is, simulating them by using certain networks with simpler

structures through a mapping between them. These networks with simple struc-

tures generally have good communication performance.
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Proper choice of the mapping leads to efficient communications for a general net-

work.16 Unfortunately, such mapping problems, with constraints between networks,

are generally NP-hard. Therefore, for a network under consideration, it is vital to

choose a simple network that renders the mapping problem feasible.

3. Hypercubic Skeletons in Networks

In this section, we provide a theoretical explanation of why hypercubic networks

are often chosen as skeletons in networks. For this purpose, we need some terminol-

ogy from algebra, beginning with the definitions of Cayley directed graphs, Cayley

(undirected) graphs, and coset graphs.4

Definition 1. (Cayley directed graph). Assume that G is a finite group with iden-

tity element e, and let S be a generating set of G with e /∈ S. The Cayley directed

graph defined on G and S is denoted by Γ = Cay(G,S) with V (Γ) = G and

E(Γ) = {(g, gs)|g ∈ G, s ∈ S}. �

Definition 2. (Cayley undirected graph, or simply Cayley graph). Assume that G

is a finite group with identity element e, and let S be a generating set of G with

e /∈ S, such that g−1 ∈ S iff g ∈ S. The Cayley undirected graph defined on G and

S is denoted by Γ = Cay(G,S) with V (Γ) = G and E(Γ) = {(g, gs)|g ∈ G, s ∈ S}.

�

Definition 3. (Coset graph). Given a Cayley directed graph Γ = Cay(G,S) and a

subgroup K ≤ G, the right coset graph defined on G, K, and S is a directed graph,

denoted by ∆ = Cos(G,K,S), such that the node set is the right coset G/K, that

is, V (∆) = G/K, and for any g, g′ ∈ G, (Kg, Kg
′

) ∈ E(∆) iff there exist k, k′ ∈ K

and s ∈ S satisfying kgs = k′g′. �

Hypercube, cube-connected cycles, and butterfly networks are well-known ex-

amples of Cayley graphs, while de Bruijn and shuffle-exchange networks belong

to the class of coset graphs.1–4 For instance, a k-dimensional n-ary hyper-torus

is the Cayley graph Γ = Cay(G,S) defined on group G and its subset S, where

G = Zk
n and S = {(±1, 0, . . . , 0), (0,±1, . . . , 0), . . . , (0, 0, . . . ,±1)}. It is easily seen

that the basic k-cube is a k-dimensional binary hyper-torus. A k-dimensional n-ary

de Bruijn graph is the coset directed graph ∆ = Cos(G,K,S) defined on group

G, subgroup K, and subset S, with G = Zk
nZk, K = Zk, and S = {(0, 0, . . . , 0; 1),

(1, 0, . . . , 0; 1}. A k-dimensional n-ary cube-connected cycles network is the Cayley

directed graph Γ = Cay(G,S) defined on group G and its subset S, where G = Zk
nZk

and S = {(0, 0, . . . , 0; 1), (1, 0, . . . , 0; 0)}. Undirected versions of k-dimensional n-ary

de Bruijn and cube-connected cycles graphs can be similarly defined.

The Cayley and coset graphs above can be viewed as hypercube variants, with

similarly favorable topological and performance properties. For example, de Bruijn

and cube-connected cycles graphs are highly symmetric, have small diameters, and

support efficient communication. Moreover, these graphs have relatively small node

degrees, which is beneficial for many network applications.
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We now introduce a special mapping between two networks, called generalized

homomorphism, which is a vital concept in the following discussion, and has a wide

range of applications.16

Generalized Homomorphism: Given graph Σ = (V (Σ), E(Σ)) and Γ =

(V (Γ), E(Γ)), a mapping f from Σ to Γ is a generalized homomorphism if f maps

any edge (a, b) in Σ onto a path from f(a) to f(b) in Γ. If the path from f(a) to

f(b) has length at most n, then mapping f is said to have dilation n. �

Consider a general network G with N nodes. The facts that G can be embedded

into the complete graph KN through an isomorphism and graph KN can be mapped

onto a hypercube Q with dilation log N lead to the following important result.

Theorem 1. Any N -node graph G can be mapped onto a hypercube Q with dila-

tion log N .

Proof. First, consider the N -node complete graph KN . The fact that KN has all

the edges of G leads to G being embeddable into KN with an isomorphic mapping.

We next show that KN can be mapped onto a hypercube with dilation log N .

Let 2n−1 < N ≤ 2n. Define a generalized homomorphism f from KN to an n-

dimensional hypercube Q such that for any edge e in KN , f(e) is a shortest path in

Q. For example, provided that N = 2n, the edge (0, N − 1) in KN is mapped onto

a path f((0, N − 1)) = 00 . . . 0 → 0 . . . 01 → 0 . . . 11 → . . . → 1 . . . 11 in Q, where

1 . . . 11 is the n-bit binary representation of N− 1. Noting that the mapping f has

a dilation of no more than n completes the proof.

It is well-known that many real networks possess small-world properties, im-

plying that they have diameters of order log N . Thus, Theorem 1 suggests that it

is quite likely to find a routing algorithm of order log2N for such networks. Next,

we elaborate on the latter property and its practical importance by means of two

examples.

4. Two Example Applications

In the following we illustrate the application of Theorem 1 to obtaining efficient

routing algorithms in general networks. Our two representative examples have been

chosen from the classes of complex networks and peer-to-peer networks.

4.1. Routing in complex networks

Many real networks are small-world networks, whose diameters are of order log N .

Moreover, many of these real networks also are scale-free.17,18 Before proceeding

with a discussion of routing, we describe several concepts related to such networks.

Small-world, scale-free networks: An N -node network is a small-world net-

work if its diameter is of order log N and its clustering coefficients are positive. An

N -node network is scale-free if its node degrees follow the distribution P (k) = ck−γ
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for 1 ≤ k <N , where c and γ are constants. For many scale-free networks, the degree

exponent γ is at least 2 and the number of degree-1 nodes is nonzero. �

Let 1 = k1 < k2 < · · · < kl be the degree sequence of a network and ni be the

number of degree-i nodes. Regarding the degree sequence of a scale-free network,

we have the following result.18,19

Theorem 2. For an N -node scale-free network Γ with the degree exponent γ ≥ 2,

if n1 6= 0, then n1 is of order N , and the degree sequence length l is of order log N .

Theorem 2 is a very useful result. Consider a scale-free, small-world network Γ.

The diameter and degree sequence length l of the network being O(log N), and our

ability to estimate the number nk of degree-k nodes from nk ≈ n1k
−γ ,17,18 allow us

to derive an efficient routing algorithm as follows:

• For any ki > 3, the subgraph induced by all the nodes of degree ki in Γ is simulated

by a ki-dimensional hypercube or another hypercubic network.

• The network Γ itself is simulated by the Cartesian product of hypercubic graphs

involved in the simulation above, along with all degree-1, degree-2, and degree-3

nodes.

• To route from source node u to destination node v, we build two paths. One path

begins at u, proceeds through nodes with increasing degrees along the degree

sequence, and arrives at a node with maximum degree. The second path, beginning

at v and ending at a node of maximum degree, follows a similar course. Combining

these two paths, we obtain a path of length O(log2N) from u to v.

Figure 1 illustrates a route from node u to node v via an example, with Bi

denoting the set of degree-i nodes. Beginning at u, the route proceeds through

nodes with increasingly higher degrees, eventually arriving at node w in Bl, the

set of max-degree nodes. Then, the route continues from w along the node degree

sequence in a reverse direction to finally reach v. If for every i = 4, 5, . . . , l, the

routing in the subgraph induced by Bi is efficient, say its path lengths are of order

log N , then there exists an efficient routing algorithm in the whole network Γ that

is of order log2N .

To illustrate the applicability of our method to real-world networks, we

have provided an appendix with the graphs for “elegans” (a biological net-

work, data from http://www.cosin.org/extra/data), “abiword” (a software net-

work, http://www.tc.cornell.edu/ myers/Data/SoftwareGraphs/index.html), and

“ncstrlwg2” (a network representing collaboration by scientists, data supplied by

E. J. Newman), along with associated data on the number of nodes and the number

of intra-cluster edges for each “cluster,” a name commonly given to the subgraph

induced by all the nodes having the same degree. These graphs are not scale-free in

the strict sense of the term, but have degree sequence lengths on the order (log N)c

for a reasonably small constant c.
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B4 B5 Bl

l-1

u

v

w

B4 is the set of 

degree-4 nodes 

Bl is the set of 

degree-l nodes 

Degree-1 node

Degree-2 node

Degree-3 node

Fig. 1. Illustrating the routing in a scale-free small world network.

4.2. Routing in peer-to-peer networks

Peer-to-peer networks, often entailing the construction of a virtual topology or over-

lay network on a physical network, have been studied extensively over the past

decade.14–16 Setting up a homomorphism between an overlay network Σ and a hy-

percubic network Γ allows the structural simplicity and high routing efficiency of

Γ to produce simple and efficient routing algorithms for Σ. Let us illustrate our

method through certain variants of the cube-connected cycles network.

Let K = Zq (q ≥ 4) be an order-q cyclic group, N = Zq
2 be the direct product of

order-2 basic group, and G = Z2∇Zq be the half-direct product of N and K. The

identity element (0q, 0) and the existence of an inverse for every element in G make

G a group. For each vertex identifier (c, r) in G, we call c ∈ Zq
2 the group identifier

and r ∈ Zq the region identifier. In order to obtain a Cayley graph Γ = Cay(G,S),

we specify a subset S of group G that contains two parts, that is, S = Sg∪Sr, where

Sg is used to connect different groups and Sr is used to connect different regions.

Sg = {(0q,±1)}

Sr = {(10q−1, 0), (010q−2, 0), (0010q−3, 0), (110q−2, 0)}

Figure 2 shows the connections between node (0q, 0) and its neighbors, with solid

lines used to depict edges between node (0q, 0) and its neighbors and broken lines

representing edges among the neighbors. Figure 3 shows an example Γ with q = 4.

The main parameters of an overlay network include the number of nodes (network

size), diameter, node degree, and clustering coefficients. The mean node degree of

a graph is the average of the number of neighbors for all nodes and the diameter is

the maximum length among all shortest paths. We can derive any node (c, r) from

the identity element and the subset q where S is the generating set of G. Thus, Γ is

a connected graph. Since the node degree of a Cayley graph is equal to the order of

S, the network Γ of Figure 3 is a degree-6 regular graph.

1550006-6
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Fig. 2. Connections between node (0q , 0) and its neighbors.

Based on all neighbors of a node, we obtain a routing algorithm in a static

network topology, which is described in Algorithm 1.

For example, by Algorithm 1, the path from source node (0000, 0) to destination

node (1111, 3) is: (0000, 0) → (1100, 0) → (1100, 1) → (1100, 2) → (1111, 2) →

(1111, 3). In general, the routing path from (ci, ri) to (cj , rj) consists of two segments.

First, ci is changed into cj in at most 2q hops. Then, the region identifier ri is

changed into rj in at most q/2 hops. Therefore, the resulting path goes through at

most 5q/2 hops, which implies the diameter of Γ is at most 5q/2. For a given q, the

number of nodes in Γ is N = q2q, leading to the conclusion that the diameter of Γ is

O(log N). Recall that if the connectivity of a d-regular graph is d, then the graph is

maximally fault-tolerant. We know that any 6-regular graph that is vertex-transitive

is maximally-fault tolerant.1–4 Thus, graph Γ is maximally fault-tolerant.

By the foregoing discussion, graph Γ has a small node degree, a simple routing

algorithm, and is both maximally fault-tolerant and small-world. Next, we construct

a virtual topology or overlay network Σ based on Γ.

A vertex identifier in Σ is an ordered pair (c, r), where c ∈ {x1x2 . . . x
q−l
l∗ |xi ∈ Z2,

0 ≤ l ≤ q} (i.e., a string of 0s and 1s of length l, padded with ∗s to make the total

length equal to q) is the group identifier and r ∈ Zq a region identifier in Γ; the

parameter q is chosen according to the size of the overlay network. Moreover, key

values that need to be stored are mapped onto a 2-element group by using several

hash functions, where the bit-width m of group identifiers (generally m > q) is a

constant chosen such that q2m is large enough to provide unique identifiers for all

needed objects.

The dynamic nature of a P2P overlay networks, with nodes often added or

deleted, must be taken into account in any routing algorithm. The deletion of a

node can be viewed as the result of merging operation of some nodes in the network

Γ. According to the naming rule of identifier space, we can reduce the node-to-node

routing problem and the location resource problem to the same problem by omitting

the last m− l bits in group identifiers.
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<0000,0> <0000,1> <0000,2> <0000,3>

<1000,0>

<0100,0>

<1100,0>

<0010,0>

<1010,0>

<0110,0>

<1110,0>

<0001,0>

<1001,0>

<0101,0>

<1101,0>

<0011,0>

<1011,0>

<0111,0>

<1111,0>

Fig. 3. Graph Γ with q = 4.

In the routing algorithm for Σ, two bits in the identifier of the current node

are changed in each step, such that the identifier of the node at the next hop is

closer to that of the destination node. If by merging identifier of the current node

and the identifier of the destination node, the resulting identifier is the same as

the identifier of some node in the network, then the routing can be viewed as self-

routing. Considering the possibility of faulty nodes, before choosing the next hop,

the routing goes back to verify whether the next hop is reachable. If the answer

is negative, the routing will choose a normal (non-faulty) neighbor of the current

node. In this case, the path will become a bit longer. Algorithm 2 yields the following

path from source node (00∗∗, 0) to destination node (11∗∗, 3): (00∗∗, 0) → (11∗∗, 0) →

(11∗∗, 1) → (11∗∗, 2) → (11∗∗, 3).
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Input: The current node (x1x2 … xq, rx) and the destination node (y1y2 … yq, ry)

Output: The identifier of the next-hop node on the routing path 

1.  Case 1 (x1x2 … xq = y1y2 … yq): 

2.    if (rx = ry) then

3.      The destination has been reached 

4.    else if (|rx ry| = 1) then

5.      Return (x1x2 … xq, ry  1)      // + if rx = ry + 1 

6.  Case 2 (x1x2 … xq  y1y2 … yq):

7    if (xrx+1 = yrx +1) then

8.      Return (x1x2 … xq, rx + 1) 

9.    else  

10.     Return (x1x2 … xrx
xrx+1xrx+2 … xq, rx)

Algorithm 1. A routing algorithm in graph .
Algorithm 1. A routing algorithm in graph Γ.

Input: The current node (x1x2 … xl*
q–l

, rx) and the destination node (x1x2 … xl*
q–l

, ry)

Output: The identifier of the next-hop node on the routing path 

1.  Case 1 (x1x2 … xl = y1y2 … yl): 

2.    if (rx = ry) then

3.      The destination has been reached 

4.    else 

5.      Return (x1x2 … xl*
q–l

, rx + 1) 

6.  Case 2 (x1x2 … xq  y1y2 … yq):

7    if (xrx+1 = yrx +1) then

8.      Return (x1x2 … xl*
q–l

, rx + 1) 

9.    else  

10.     Return (x1x2 … xrx
xrx+1xrx+2 … xl*

q–l
, rx)

Algorithm 2. A routing algorithm in graph 
Algorithm 2. A routing algorithm in graph Σ.

We can consider a variety of cases where nodes are added to or deleted from the

network. The details are omitted. Extensive simulations we have conducted show

our method to be feasible and effective.16,20 The examples provided in this section

constitute only two instances among a large number of possible applications. In

fact, generalized homomorphism is broadly applicable in wireless networks and other

domains, which are worthy of further investigation.

5. Conclusion

From the method described in Section 3 and the two application instances of

Section 4, we can see the important role of symmetry and mappings. Network sym-

metry can lead to structural simplicity and algorithmic efficiency. Real networks are
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usually complicated, prompting us to develop algorithms for them via mapping to

networks with simpler structures. To realize this approach, we face the two problems

of network selection and network mapping.

By using a theoretical framework emphasizing network symmetry, our work has

shown that hypercubic networks provide good solutions to the first problem. As for

the second problem, choosing a desirable network mapping is an NP-hard problem

in general. The novelty of our method is in the use of generalized homomorphism

for taking advantage of network symmetry. Our method is general, in the sense of

being applicable to many problems and application domains. Open problems for

future work include load balancing, one-to-many broadcasting, and issues specific

to wireless networks.

Appendix

This appendix contains three example small-world graphs, along with their degree

distributions and number of intercluster edges. In the tables accompanying the fig-

ures, k is node degree, nk is the number of degree-k nodes, and #ICE is the number

of intracluster edges.

Figure A1. The “elegans” graph, where B(k) is the set of degree-k nodes: the number of degree-1 nodes

is 203 and there is a single node of the maximum degree 28. Strictly speaking, the “elegans” graph is not

scale-free, but it does come close, given that its degree sequence length l = 17 is less than a small power of

log N = 8.295.

1550006-10



October 13, 2015 10:26

Interconnection Networks with Hypercubic Skeletons

Table A1. The parameters k, nk, and #ICE for the “elegans” graph of Figure A1. 

k nk #ICE k nk #ICE k nk #ICE

1 203 0 7 7 1 15 1 0 

2 47 5 8 4 0 16 2 0 

3 21 2 9 1 0 21 1 0 

4 10 3 10 4 1 26 1 0 

5 5 0 12 1 0 28 1 0 

6 4 1 13 1 0    

Figure A2. The “abiword” graph, where B(k) is the set of degree-k nodes: the number of degree-1 nodes

is 447 and there is a single node of the maximum degree 89. Strictly speaking, the “elegans” graph is not

scale-free, but it does come close, given that its degree sequence length l = 29 is less than a small power of

log N = 10.015.

1550006-11



October 13, 2015 10:26

W. Xiao, W. Chen & B. Parhami

Table A2. The parameters k, nk, and #ICE for the “abiword” graph of Figure A2. 

k nk #ICE k nk #ICE k nk #ICE

1 447 0 11 7 1 22 1 0 

2 212 17 12 5 0 24 1 0 

3 122 13 13 7 1 27 3 0 

4 64 10 14 4 0 28 1 0 

5 32 3 15 4 0 32 1 0 

6 22 4 16 3 2 35 1 0 

7 38 3 17 4 0 42 1 0 

8 23 0 18 1 0 47 1 0 

9 17 0 20 3 0 89 1 0 

10 7 0 21 2 0    

Figure A3. The “ncstrlwg2” graph, where B(k) is the set of degree-k nodes: the number of degree-1 nodes

is 894 and there is a single node of the maximum degree 79. Strictly speaking, the “ncstrlwg2” graph is not

scale-free, but it does come close, given that its degree sequence length l = 42 is less than a small power of

log N = 12.643.
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Table A3. The parameters k, nk, and #ICE for the “ncstrlwg2” graph of Figure A3.

k nk #ICE k nk #ICE k nk #ICE

1 894 0 15 47 43 29 5 3 

2 1328 321 16 38 8 30 4 0 

3 1090 463 17 30 5 31 4 0 

4 741 400 18 21 5 33 5 1 

5 554 331 19 25 16 34 3 0 

6 362 181 20 12 4 36 2 0 

7 266 163 21 37 146 37 1 0 

8 203 120 22 18 1 38 2 0 

9 159 71 23 14 8 39 1 0 

10 170 152 24 8 1 44 1 0 

11 81 24 25 3 0 52 2 0 

12 100 63 26 5 0 56 1 0 

13 67 81 27 5 1 59 1 0 

14 79 142 28 6 0 79 1 0 
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