Title
Genetic Interactions Involving Components of the Endosomal Protein Trafficking Machinery

Permalink
https://escholarship.org/uc/item/7sq3n552

Author
Rodriguez-Fernandez, Imilce de los Angeles

Publication Date
2012

Peer reviewed|Thesis/dissertation
Genetic Interactions Involving Components of the Endosomal Protein Trafficking Machinery

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Human Genetics by

Imilce de los Angeles Rodriguez-Fernandez

2012
ABSTRACT OF THE DISSERTATION

Physical and Genetic Interactions Involving Components of the
Endosomal Protein Trafficking Machinery

by

Imilce de los Angeles Rodriguez-Fernandez

Doctor of Philosophy in Human Genetics

University of California, Los Angeles, 2012

Professor Esteban C. Dell’Angelica, Chair

The goal of this dissertation is to better understand the endosomal protein trafficking machinery; focusing on the role of the biogenesis of lysosome-related organelles complex-1 (BLOC-1), Adaptor Protein-3 (AP-3), and Rabaptin-5-associated exchange factor for Rab5 (Rabex-5). BLOC-1 is a stable protein complex implicated in protein trafficking between endosomes and lysosome-related organelles (LRO). Mutations in three subunits of BLOC-1 cause Hermansky-Pudlak syndrome (HPS) types 7, 8 and 9, and two of its subunits have been tentatively associated to schizophrenia. A data-mining approach was developed to prioritize over 100 candidate-binding partners for fly and human BLOC-1. The top candidate in the ranking was the Rab GTPase Rab11. Experiments done in Drosophila melanogaster revealed a synthetic lethal genetic interaction between Rab11 and Rab32/38; the later encoded by the gene lightoid. AP-3
is a stable heterotretameric complex also involved in trafficking between endosomes and LROs. Mutations in one subunit of AP-3 results in HPS type 2. Homologues of AP-3 genes in Drosophila melanogaster are involved in pigment granule biogenesis. A large-scale screening was conducted to identify genetic modifier of AP-3 function in the fly eye. Deletions in two regions in chromosome 2 and two regions in chromosome 3 modified the AP-3 mutant g² eye pigment color in heterozygous form. Further experiments demonstrated that Gap69C and Atg2 are genetic modifiers of AP-3. Rabex-5 is a guanine nucleotide exchange factor of Rab5, a Rab GTPase important in the early endosome trafficking. To understand Rabex-5 physiological function a reverse genetic approach was undertaken to generate a mutant form of the Rabex-5 encoding gene, Rbx5. Homozygous loss-of-function (Rbx5⁵e⁵) mutant flies displayed a “giant larvae” phenotype and did not survive to adulthood. Mutant larval tissues including the brain and wing imaginal discs displayed growth abnormalities. Rescue experiments suggested that Rbx5⁵e⁵ adult lethality was due to affecting Rab5 function.
The dissertation of Imilce de los Angeles Rodriguez-Fernandez is approved.

Janet S. Sinsheimer

David E. Krantz

Karen Reue

Esteban C. Dell’Angelica, Committee Chair

University of California, Los Angeles

2012
Para Mamá, Papá y David
TABLE OF CONTENTS

List of tables and figures... ix

List of abbreviations.. xiii

Acknowledgements.. xv

Vita... xvii

Chapter 1: Introduction... 1

 Endosomal protein trafficking... 2

 Lysosome-related organelles.. 4

 BLOC-1... 5

 AP-3... 7

 Rabex-5.. 9

 References... 14

Chapter 2: A data-mining approach to rank candidate protein-binding partners – The
 case of biogenesis of lysosome-related organelles complex-1 (BLOC-1)......................... 20

 Abstract... 21

 Introduction... 22

 Experimental procedures .. 23
Discussion... 94

References... 116

Chapter 5: Conclusions... 121

References... 126
LIST OF TABLES AND FIGURES

Chapter 1

Figure 1.1 Scheme representing clathrin-mediated endocytosis of ligand-bound receptors and protein trafficking across the endosomal-lysosomal system... 11

Figure 1.2 Schematic representations of the subunit composition of BLOC-1 and AP-3... 12

Table 1.1 Genes encoding BLOC-1 and AP-3 subunits, the resulting HPS type and murine strains when mutated, and its Drosophila orthologs........... 13

Chapter 2

Figure 2.1 Schematic representations of the subunit composition of BLOC-1 from humans and the corresponding orthologues encoded by the genome of Drosophila melanogaster.. 22

Figure 2.2 Ranking of candidate binding partners for human BLOC-1 subunits..... 26

Figure 2.3 Ranking of candidate binding partners for subunits of BLOC-1 from flies.. 28

Figure 2.4 Synthetic sick/lethal interaction between mutant alleles of the fly genes Rab11 and lightoid encoding related Rab GTPases.......................... 29

Table 2.1 Supplementary table 1.. 35

Table 2.2 Supplementary table 2.. 37

Table 2.3 Supplementary table 3.. 39
Table 3.1 General information about the Bloomington Deficiency kit (Dk) used and the initial screening hits.. 55

Figure 3.1 Schematic representation of the AP-3 modifier screening using the Dk collection of fly lines.. 56

Figure 3.2 Secondary screening using Dk lines selected from the primary screen.... 57

Figure 3.3 Effects of deficiency lines resulting from the secondary screen on ruby eye color... 58

Figure 3.4 Effects of deficiency lines resulting from the secondary screen on wild-type eye color ... 59

Figure 3.5 Five deficiency lines hits also modified garnet brown eye color 60

Figure 3.6 Validation and fine-mapping of the critical region mediating the modifier effect first observed for Df(3L)eyg[C1]... 61

Figure 3.7 Attempts to validate the modifier effect first observed for Df(2R)CB21...62

Figure 3.8 Attempts to validate the modifier effect first observed for Df(3R)Exel6195... 63

Figure 3.9 Failure to validate the effects observed for Df(3L)ED4978............. 64

Figure 3.10 Failure to validate the effects observed for Df(2L)XE-3801.......... 65

Figure 3.11 Validation and fine-mapping of the critical region mediating the modifier effect first observed for Df(3L)BSC23 ... 66

Figure 3.12 Red pigment levels of the mini-white gene marker carried by deficiencies was compared to garnet ... 67

Figure 3.13 Removal of one copy of Gap69C partially suppressed garnet red color pigmentation... 68

Figure 3.14 Red pigmentation phenotype of garnet flies was modified by one copy of
the insertion mutant allele $Atg2^{EP3697}$

Chapter 4

Table 4.1
Drosophila lines used in Chapter 4 experiments

Figure 4.1
Imprecise excision mutagenesis resulted in a null allele for *Rabex-5*

Figure 4.2
Rbx5 flies do not survive to adulthood

Figure 4.3
Flies heterozygous for *Rbx5* over a large deletion, do not survive to adulthood

Figure 4.4
Rbx5 flies die as an abnormal prepupa

Figure 4.5
Rescue of the lethality of *Rbx5* flies by ubiquitous expression of a *Rabex-5* transgene

Figure 4.6
Rbx5 larvae have abnormal wing imaginal discs with detectable levels of a neoplastic transformation marker

Figure 4.7
Five and ten-day-old *Rbx5* larvae expressed relatively high Mmp1 levels as detected by immunoblot analysis

Figure 4.8
Rbx5 mutant larvae displayed brain abnormalities

Figure 4.9
Abnormal optic lobe development in *Rbx5* larvae

Figure 4.10
Rbx5 mutant larvae have abnormal number of neuroepithelial cells and neuroblasts in the optic lobe

Figure 4.11
Lethality of *Rbx5* flies is likely due to impaired Rab5-activating function of *Rabex-5*

Figure 4.12
Larvae expressing a Rab5 dominant-negative construct displayed brain abnormalities similar to those of *Rbx5* homozygotes
Figure 4.13 Larvae expressing a Rab5 dominant-negative construct displayed normal wing imaginal disc morphology .. 114

Figure 4.14 Synthetic lethal interaction in Rbx5ex1 flies overexpressing a dominant-negative Rab5 transgene ... 115
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP-3:</td>
<td>Adaptor Protein-3</td>
</tr>
<tr>
<td>BLOC-1:</td>
<td>Biogenesis of lysosome-related organelles complex-1</td>
</tr>
<tr>
<td>Dk:</td>
<td>Deficiency kit</td>
</tr>
<tr>
<td>Dpn:</td>
<td>Deadpan</td>
</tr>
<tr>
<td>GAP:</td>
<td>GTPase-activating protein</td>
</tr>
<tr>
<td>GEF:</td>
<td>Guanine nucleotide exchange factor</td>
</tr>
<tr>
<td>GMR:</td>
<td>glass multimer reporter</td>
</tr>
<tr>
<td>GTP:</td>
<td>guanosine triphosphate</td>
</tr>
<tr>
<td>LROs:</td>
<td>lysosome-related organelles</td>
</tr>
<tr>
<td>Hoechst:</td>
<td>trihydrochloride, trihydrate</td>
</tr>
<tr>
<td>HPS:</td>
<td>Hermansky-Pudlak Syndrome</td>
</tr>
<tr>
<td>PBS:</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PBST:</td>
<td>PBS with 0.4% Triton X-100</td>
</tr>
<tr>
<td>Rabex-5:</td>
<td>Rabaptin-5-associated exchange factor for Rab5</td>
</tr>
<tr>
<td>Rbx5:</td>
<td>Rabex-5 gene</td>
</tr>
<tr>
<td>NE:</td>
<td>neuroepithelium</td>
</tr>
</tbody>
</table>
NB: neuroblasts

SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor

TM6: $TM6B, p^{Xp} Tb^I$ (Drosophila balancer chromosome)

UAS: upstream activation system

Ub: ubiquitin
ACKNOWLEDGEMENTS

During my doctoral studies, I was very lucky to be surrounded by great people, from which I learned a lot and were always there for me, making this thesis possible.

I would like to thank my thesis advisor, Esteban Dell’Angelica for being a great mentor and role-model. He was always willing to teach me new concepts and answer all of my questions, no matter how busy he was. This dissertation would not have been possible without all his support, guidance and motivation. I will always be thankful.

Also, I would like to thank my committee members, Janet S. Sinsheimer, David E. Krantz and Karen Reue, for all their advice and support throughout the years. For always being available to discuss any questions or concerns; and for making me feel part of their own research group.

Many thanks to Julian Martinez-Agosto for all his help during the project presented on Chapter 4, without his constant advice and insight this project would not have been possible. He was always willing to help and teach me new techniques and concepts. Also many thanks to Volker Hartenstein, for his collaboration on the project presented in Chapter 4, I will always be thankful on the training I got and for his many advices.

I would also like to thanks my current and former lab mates, Veronica T. Cheli, Ramin Nazarian, Julia T. Garcia, Diego Hoyle and Frank Lee, for making every day in the lab fun and for all their help. Special thanks to Veronica and Ramin, for their patience, support and motivation while training me, and for the many interesting conversations and jokes.
Many thanks to my family in Puerto Rico, for their love and always being there for me, and for making me feel like I never left. Special thanks to my mom, dad, brothers and sister, for letting me follow my goals in life and for being supportive. Thanks to my in-laws for loving me as a daughter and for their constant support.

I am extremely grateful to my husband, David Hermina, for his love, outstanding support and motivation every day of my doctoral studies. Without him this dissertation would not have been possible.

I want to thank many of the friends I made along the way. Thanks to my “second family” in LA and to all my friends in the Gonda Building, for making my doctoral studies a lot of fun. Thanks to my best friend Desiree Cotto for being an example of dedication, courage and ambition.

Chapter 2 is a reprint of the article: “A Data-mining Approach to rank candidate protein-binding partners – The case of biogenesis of lysosome-related organelles complex-1 (BLOC-1)” by Imilce A. Rodriguez-Fernandez and Esteban C. Dell’Angelica, *J Inherit Metab Dis* 32: 190-203 reproduced with permission from the Society for the Study of Inborn Errors of Metabolism (SSIEM) and Springer. The final publication of this reprint is available at springerlink.com.

This research was supported by the National Institute of Health UCLA Human Genetics Genomic Analysis Training Program (GATP) pre-doctoral training grant, and by the UCLA Dissertation Year fellowship.
VITA

2002-2004 Started B.Sc. in Biology
 University of Puerto Rico, Ponce Campus
 Ponce, Puerto Rico

2003-2004 Honor Student Award
 Department of Biology
 University of Puerto Rico, Ponce Campus
 Ponce, Puerto Rico

2004-2006 B.Sc., Microbiology
 Magna Cum Laude
 University of Puerto Rico, Mayaguez Campus
 Mayaguez, Puerto Rico

2007-2011 Pre-doctoral training grant
 UCLA Human Genetics Genomic Analysis Training Program (GATP)

Winter 2008 Teaching Assistant, Cell and Molecular Biology Laboratory
 Department of Molecular, Cell and Developmental Biology
 University of California, Los Angeles

2009 Honorable Mention Status
 FORD Foundation Diversity Pre-doctoral Fellowships Program, National Academies

Fall 2009 Teaching Assistant, Introduction to Cell Biology
 Department of Molecular, Cell and Developmental Biology
 University of California, Los Angeles

2011 Honorable Mention Status
 FORD Foundation Diversity Dissertation Year Fellowships Program, National Academies

2012 UCLA Dissertation Year Fellowship
PUBLICATIONS

SELECTED PRESENTATIONS

CHAPTER 1

INTRODUCTION
Endosomal protein trafficking

Endocytosis is the process used by eukaryotic cells to internalize portions of the plasma membrane, containing ligand-bound receptors and other proteins, in the form of a vesicle. The cargo within the vesicle is then delivered to a membrane-bound organelle known as early endosomes [1]. Two mechanisms for endocytosis have been described based on the presence and requirement of the scaffolding protein, clathrin. Clathrin-mediated endocytosis is the best characterized type of internalization (Figure 1.1). At the plasma membrane, this process involves the interaction of a receptor intracellular domain with an adaptor protein (i.e. AP-2) that in turn associates with clathrin, forming what is known as a clathrin-coated vesicle (or clathrin-coated vesicle pit). This vesicle is pinched-off the plasma membrane by the protein dynamin, transported by motor proteins and then docked and fused to an acceptor membrane by the action of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins [2,3]. Non-clathrin-mediated endocytosis is not well understood and in some cases requires the presence of certain microdomains at the plasma membrane known as lipid rafts [1]

Regardless of the type of endocytosis used by the cell, vesicles are transported to early endosomes. In a scenario where signal attenuation at the plasma membrane is needed, a ligand-bound receptor is transported to the late endosome and multivesicular body and finally reaches the lysosome, where it gets degraded. If along this route the receptor is needed again, then from the early endosome gets recycled back to the plasma membrane [1]. Early and late endosomes, multivesicular bodies and lysosomes can be identified in a cell based on their difference in protein composition and, in the case of lysosomes, their acidic luminal pH [4]. Of particular importance is the role of molecular switches belonging to the large family of small GTPases known as Rabs [5]. When active these proteins “label” the membrane of organelles to coordinate
the events involved in the docking and fusion of vesicles. The endosomal protein trafficking results in a highly complex, intertwined network, owing to the constellation of proteins involved at each step. Many of the trafficking routes and machineries are starting to be elucidated.

Recent evidence suggests that endosomal protein trafficking plays a more central role in cell signaling than previously anticipated (reviewed in [1,6,7,8]). The canonical view of the relationship between signaling and endosomal protein trafficking is by signal attenuation of receptors sent to the lysosome for degradation. Interestingly, it has been shown that, at least for EGFR, signaling can propagate even after internalization from a compartment termed as the “signaling endosome” [7]. Thus, not only the endosomal-lysosomal system serves as avenue for trafficking it can also be view as a signaling platform [7]. Mutations in genes encoding endocytic proteins have been identified in human cancer [9,10]. Similar findings have been made, in the fruit fly Drosophila melanogaster, where mutations in endocytic genes (termed as endocytic tumor suppressors) resulted in tissue growth abnormalities and adult lethality (reviewed in [11]).

Additional disorders can arise when mutations affect a gene encoding a protein involved in the activity of lysosomes such as when affecting the sphingolipidase β-Glucosidase A (Gaucher disease) or the integral membrane protein LAMP2 (Danon disease) [12]. Similarly, affecting the protein complexes involved in the biogenesis of related compartments known as lysosome-related organelles (LROs) result in a disorder called Hermasky-Pudlak Syndrome (HPS) [12,13]. The identification and study of such human disorders or relevant animal models has provided insight on how the biogenesis of these organelles may occur. Model organisms are important for the implementation of strategies such as forward and reverse genetics, including genetic screenings and epistasis analyses. Information gathered from these strategies may help
elucidate the functions of many genes and their role together in the biogenesis of lysosomes and LROs.

Lysosome-related organelles

LROs comprise a group of heterogenous organelles that provide certain cell types the capacity of performing specialized functions. As their name implies, LROs share some characteristic with lysosomes, such as acidic luminal pH and common membrane proteins [13,14]. In mammalian cells, at least ten different LROs have been identified [4,13]. Some relevant examples of mammalian LROs are: the melanosomes, which synthesize and store the pigment melanin, the platelet dense granules, which are important for platelet aggregation, and the lamellar bodies of type II alveolar epithelial cells, which are important for the storage and secretion of pulmonary surfactant [13]. Interestingly, the melanosomes and platelet dense granules co-exist with conventional lysosomes while other LROs appear to have replaced lysosomes [4]. This suggests that the endosomal protein trafficking machinery for the biogenesis of LROs and lysosome may be shared. These specialized organelles are not unique to mammals. The worm, *Caenorhabditis elegans*, utilizes a type of LRO called the gut granule for fat storage [15]. The fruit fly, *Drosophila melanogaster*, has pigment granules, found inside the pigment cells of each individual unit of the compound eye [16].

Knowledge gained from studying diseases that affect LROs biogenesis, such as Hermasky-Pudlak syndrome (HPS), have helped decipher part of the molecular mechanism for the formation of these organelles [17]. HPS is a rare, Mendelian autosomal disorder characterized by oculocutaneous albinism (resulting from abnormal melanosomes), bleeding
diathesis (caused by absence of platelet dense granules) and, in some patients, pulmonary fibrosis (due to abnormal lamellar bodies) [18,19]. Each HPS type is defined based on the gene found to be mutated. Thus far, there are nine types of HPS with mutations in genes encoding subunits of at least four different protein complexes, known as biogenesis of lysosome-related organelles complex (BLOC)-1, -2, -3 and adaptor protein (AP)-3 [17,20]. Owing to the scope of this dissertation, the role of BLOC-1 and AP-3 in LROs biogenesis is further described.

BLOC-1

BLOC-1 is a stable cytosolic complex composed of eight different subunits, known as dysbindin, pallidin, muted, cappuccino, snapin, BLOC subunit 1 (BLOS1), BLOS2 and BLOS3 (Figure 1.2). Mutations in three human genes encoding the proteins dysbindin, BLOS3 and pallidin result in HPS types 7, 8 and 9, respectively [17,20]. A role of BLOC-1 in the biogenesis of LROs was first proposed based on the coat color phenotype of pallid and muted mice strain, which carry a mutation in the gene encoding pallidin and muted, respectively. These mice strains displayed similar characteristics in abnormal melanosomes and platelet dense granules observed for HPS patients [21]. Five more BLOC-1 deficient mice strains displaying the similar phenotypes have been described (see Table 1.1) (reviewed in [22]). Murine mutations in genes encoding subunits of the other complexes mutated in HPS, BLOC-2, -3 and AP-3, have been studied. Epistasis analyses of double and triple mutant mice deficient in AP-3, BLOC-1, AP-3, BLOC-2 and/or BLOC-3 suggested that, at least for pigmentation, the three BLOCs do not work in a linear pathway and that the interaction between AP-3 and BLOC-1 suggested that these complexes act at least in independent of each other [23,24]. However, BLOC-1 was found to
interact biochemically with AP-3 and BLOC-2 [24]. BLOC-1 is required for sorting of tyrosinase-related protein 1 (Tyrp1), a protein important for melanin biosynthesis, from the early endosome to the melanosome [25]. Another study tested for genetic interactions between alleles resulting in mutations in BLOC-1 and OCA2 (also known as P protein), a protein mutated in oculocutaneous albinism type 2 in humans and found to localize to melanosomes. The findings of this study suggested that OCA2 may require BLOC-1 to exert its biological function [26]. Orthologs of each subunit of BLOC-1 have been found in Drosophila melanogaster and blo61 mutant flies displayed eye pigmentation defects demonstrating a conserved role of BLOC-1 in the biogenesis of fly pigment granules [27].

Two of BLOC-1 subunits, dysbindin and BLOS3, have been tentatively associated to schizophrenia (discussed in [28]). In the brain, BLOC-1 was found to interact with two SNARE proteins, SNAP-25 and Syntaxin-13, which are key regulators of the fusion of intracellular membranes [29]. In addition, BLOC-1 was shown to be important for neurite outgrowth of primary hippocampal neurons suggesting a novel role in neurodevelopment [29]. In flies, BLOC-1 deficiency resulted in abnormal glutamatergic transmission and behavior [27].

The identification of binding partners could lead to a better understanding of the molecular mechanisms in which BLOC-1 is involved. Efforts have been made, particularly through large-scale studies of protein-protein interaction, to identify binding partners of BLOC-1 (reviewed in [30]). Large-scale strategies particularly when the yeast two-hybrid system is used can result in many false-positives. Hundreds of potential binding candidates for human and fly BLOC-1 have been published, making follow-up studies virtually impractical. To address this issue, Chapter 2 of this dissertation discusses the development of a data-mining approach to prioritize candidate binding partners found in the literature for human and fly BLOC-1.
AP-3

AP-3 is a conserved and stable heterotetrameric complex that mediates intracellular protein trafficking to lysosomes in fibroblasts and to LROs in specialized cells (Figure 1.2) [31]. In addition, AP-3 is structurally and functionally related to AP-1, AP-2 and AP-4, which are adaptor complexes involved in intracellular protein trafficking events. The role of AP-3 in the biogenesis of lysosomes and LROs emerged from the efforts of many laboratories using distinct animal models with AP-3 mutations, and from the discovery that mutations in the β3A subunit of AP-3 results in HPS type 2 [31,32,33]. In mice, defects in AP-3 result in two strains called pearl and mocha (Table 1.1) [34,35]. The phenotype displayed in these mice (i.e. hypopigmentation of coat color and eyes), resembles the clinical characteristics of HPS patients. In Drosophila melanogaster, four eye pigmentation mutants, garnet, carmine, orange and ruby result from mutations in the gene encoding the δ, µ3, σ3 and β3 subunit of AP-3, respectively (Table1.1) [36,37,38].

Adaptor protein complexes participate in coat assembly and cargo selection, which are important for intracellular protein trafficking across the different membrane-bound compartments. Cargo selection by all AP complexes is achieved by tyrosine- and dileucine-based sorting signals found in the cytoplasmic tail of receptors[39]. AP-3 have been identified to play a role in the transport of tyrosinase (a melanin precursor), to melanosomes in a possible redundant pathway with AP-1 [40]. Tyrosinase interacts with AP-3 through a dileucine-sorting signal [41]. Moreover, a dileucine signal is needed for the interaction between AP-3 and the lysosomal protein LIMP-II [39]. For other lysosomal proteins collectively referred to as Lamps, AP-3 deficiency results in their mislocalization, but further characterization suggest that AP-2, but not the other AP complexes, is required for the delivery of these proteins to the lysosomes [42].
exemplifies how different adaptor complexes can selectively control the delivery of proteins to the same organelle, and how the sorting signal is important for cargo selection. Coat assembly requires the interaction with scaffolding proteins such as clathrin. Along this line, AP-3 was shown to interact with clathrin in mammals [43]. Important for both cargo selection and coat assembly is the association of AP-3 to membranes by small GTPases of the ADP-Ribosylation factor (ARF) family [44,45].

Experiments done in flies, have uncovered a potential role of AP-3 in the sorting of the white protein [46]. The white protein, encoded by the white gene, is an ABC transporter important for the transport of pigment precursors into the LROs called pigment granules. Misorting of white and other unknown proteins could be in part responsible for the abnormal biogenesis of pigment granules in the eyes of AP-3 mutant flies. Previous evidence from this laboratory, have shown that Drosophila serves as a model to help elucidate the mechanism underlying the protein network implicated in the LRO biogenesis by genetic approaches [27,47]. The AP-3 hypomorphic known as g^2, provides a sensitized genetic background that could be use as a tool to identify additional proteins involved in pigment granule biogenesis in a mechanism that could be dependent or independent of the function of AP-3.

Chapter 3 of this dissertation discusses the findings of a screening done in Drosophila melanogaster for the identification of genetic modifiers of the function of AP-3 in eye pigmentation.
Rabex-5

Rabaptin-5-associated exchange factor for Rab5 (Rabex-5) is one of the Guanine nucleotide exchange factors (GEF) of Rab5. Rab5 is a small GTPase that has been shown to be the master regulator of early endosomal biogenesis [48]. All Rabs act as molecular switches, by alternating from an inactive, to an active state. The active form is achieved through the action of GEF proteins, which catalyses the exchange of GDP by GTP. Activated Rabs can exert their function by the recruitment of effectors molecules important for many steps of protein trafficking [5].

The specific role of Rabex-5 in endosomes is starting to be deciphered. For instance, it has been described that after Rabex-5 activates Rab5, GTP-bound-Rab5 gets stabilized by a complex formed between Rabex-5 and Rabaptin-5 [49]. It has been shown that Rabex-5 is capable of binding ubiquitin, and that this modification is important for its recruitment to endosomes [50]. Rabex-5 mutant mice (Rabgef^{−/−}) have been generated. Besides a decreased in pups viability, Rabgef^{−/−} adult mice developed a severe skin inflammation and increased number of mast cells [51]. Experiments done in Rabgef^{−/−} mast cells showed enhanced levels of degranulation, normally observed during the activation of mast cells. Therefore, Rabex-5 was proposed as a negative regulator of Ras signaling, which is the pathway involved in the activation of these cells [51]. Additional involvement of Rabex-5 in the Ras signaling pathway has been proposed [52,53].

Many questions regarding the functional significance of Rabex-5 remain to be answered. If Rabex-5 is involved in Ras signaling pathway, how come mutant mice displayed only a phenotype in mast cells. A potential compensatory mechanism by other Rab5 GEF could explain the Rabgef^{−/−} phenotype. For instance, Rin1, another GEF for Rab5 and also a downstream
effector of Ras [54] could be having functional redundancy with Rabex-5. Another question is whether Rabex-5 has tissue-specific roles provided by its domain architecture.

Chapter 4 focuses on the characterization of a null mutant in *Drosophila* Rabex-5 and provides new insights into the physiological function of Rabex-5.
Figure 1.1. Scheme representing clathrin-mediated endocytosis of ligand-bound receptors and protein trafficking across the endosomal-lysosomal system. Clathrin-mediated endocytosis of a ligand-bound receptor involves the invagination of the plasma membrane and the formation of a clathrin-coated pit. This vesicle, containing the ligand-bound receptor as cargo, is docked and fused to the early endosome, sent to the late endosome and the lysosome for degradation. If the receptor is needed again, from the early endosome it is recycled back to the plasma membrane. Signaling can also occur at the endosome. In specialized cells, additional cargo is transported to other compartments such as lysosome-related organelles. Rab GTPases coordinate trafficking events at different compartments. Rab5 and Rab7 are involved in the protein trafficking at the early and late endosome, respectively (shown in red and cyan). Rab11 is involved in trafficking at the recycling endosomes (shown in pink).
Figure 1.2. Schematic representations of the subunit composition of BLOC-1 and AP-3.

BLOC-1 is composed of eight subunits, and shown as black lines are the inter-subunit interactions based on experimental evidence. AP-3 is composed of two large subunits (δ and β3); a medium (μ3) subunit; and a smaller (σ3) subunit.
Table 1.1. Genes encoding BLOC-1 and AP-3 subunits, the resulting HPS type and murine strains when mutated, and its *Drosophila* orthologs.

<table>
<thead>
<tr>
<th>Protein Complex</th>
<th>Subunit</th>
<th>Human gene(s)</th>
<th>HPS type</th>
<th>Murine Strain</th>
<th>Drosophila ortholog</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP-3*</td>
<td>β3A</td>
<td>AP3B1</td>
<td>HPS-2</td>
<td>Pearl</td>
<td>ruby (rb)</td>
</tr>
<tr>
<td></td>
<td>δ</td>
<td>AP3D1</td>
<td>--</td>
<td>Mocha</td>
<td>garnet (g)</td>
</tr>
<tr>
<td></td>
<td>μ3A</td>
<td>AP3M1</td>
<td>--</td>
<td>--</td>
<td>carmine (cm)</td>
</tr>
<tr>
<td></td>
<td>σ3A/ σ3B</td>
<td>AP3S1/AP3S2</td>
<td>--</td>
<td>--</td>
<td>orange (or)</td>
</tr>
<tr>
<td>BLOC-1</td>
<td>Dysbindin</td>
<td>DTNBP1</td>
<td>HPS-7</td>
<td>Sandy</td>
<td>dysbindin</td>
</tr>
<tr>
<td></td>
<td>Pallidin</td>
<td>BLOC1S6</td>
<td>HPS-9</td>
<td>Pallid</td>
<td>pallidin</td>
</tr>
<tr>
<td></td>
<td>Muted</td>
<td>BLOC1S5</td>
<td>--</td>
<td>Muted</td>
<td>muted</td>
</tr>
<tr>
<td></td>
<td>Cappuccino</td>
<td>BLOC1S4</td>
<td>--</td>
<td>Cappuccino</td>
<td>blos4</td>
</tr>
<tr>
<td></td>
<td>Snapin</td>
<td>SNAPIN</td>
<td>--</td>
<td>--</td>
<td>snapin</td>
</tr>
<tr>
<td></td>
<td>BLOS1</td>
<td>BLOC1S1</td>
<td>--</td>
<td>--</td>
<td>blos1</td>
</tr>
<tr>
<td></td>
<td>BLOS2</td>
<td>BLOC1S2</td>
<td>--</td>
<td>--</td>
<td>blos2</td>
</tr>
<tr>
<td></td>
<td>BLOS3</td>
<td>BLOC1S3</td>
<td>HPS-8</td>
<td>Reduced pigmentaion</td>
<td>blos3</td>
</tr>
</tbody>
</table>

*Ubiquitous form. In brain the β3A and μ3A subunits can be replaced with β3B and μ3B, respectively.
REFERENCES

CHAPTER 2

A DATA-MINING APPROACH TO RANK CANDIDATE PROTEIN-BINDING PARTNERS – THE CASE OF BIOGENESIS OF LYSOSOME-RELATED ORGANELLES COMPLEX-1 (BLOC-1)

Copyright © SSIEM and Springer 2008

Reprinted accordingly the Springer Journal of Inherited Metabolic Disease copyright information (www.springer.com/medicine/internal/journal/10545)
A data-mining approach to rank candidate protein-binding partners—The case of biogenesis of lysosome-related organelles complex-1 (BLOC-1)

I. A. Rodriguez-Fernandez · E. C. Dell’Angelica

Summary The study of protein–protein interactions is a powerful approach to uncovering the molecular function of gene products associated with human disease. Protein–protein interaction data are accumulating at an unprecedented pace owing to interactomics projects, although it has been recognized that a significant fraction of these data likely represents false positives. During our studies of biogenesis of lysosome-related organelles complex-1 (BLOC-1), a protein complex involved in protein trafficking and containing the products of genes mutated in Hermansky–Pudlak syndrome, we faced the problem of having too many candidate binding partners to pursue experimentally. In this work, we have explored ways of efficiently gathering high-quality information about candidate binding partners and presenting the information in a visually friendly manner. We applied the approach to rank 70 candidate binding partners of human BLOC-1 and 102 candidates of its counterpart from Drosophila melanogaster. The top candidate for human BLOC-1 was the small GTPase encoded by the RAB11A gene, which is a parologue of the Rab38 and Rab32 proteins in mammals and the lightioid gene product in flies. Interestingly, genetic analyses in D. melanogaster uncovered a synthetic sick/lethal interaction between Rab11 and lightioid. The data-mining approach described herein can be customized to study candidate binding partners for other proteins or possibly candidates derived from other types of ‘omics’ data.

Abbreviations

AP-3 adaptor protein-3
BLOC biogenesis of lysosome-related organelles complex
BLOS BLOC subunit
HPRD Human Protein Reference Database
HPS Hermansky–Pudlak syndrome
Introduction

The postgenomic era is witnessing a blossoming of so-called systems-biology ‘omics’ approaches to understand the function of genes through studies on their products (transcripts and/or proteins) on an unprecedentedly large scale. Among them are the ‘interactomics’ approaches aimed at elucidating the network of protein–protein interactions that occur in vivo (Gandhi et al. 2006; von Mering et al. 2002). Considering the extensive success in understanding the molecular function of proteins through the study of individual protein–protein interactions, the expectation for the impact of the field in interactomics to biology—and eventually to medicine—is very high.

However, at least two main drawbacks have been recognized. First, intrinsic limitations of each interactomics approach can result in large numbers of false-negative and false-positive results. While the problem of false negatives tends to be minimized because negative results are typically not reported, one must consider that not all positive interactions being reported will turn out to be ‘real’ (i.e. to occur in vivo and be of biological significance). In the case of the yeast two-hybrid (Y2H) system, which so far has been the method most extensively used to study the interactomes of organisms other than yeast, false-positive rates of 50% or higher have been estimated (Deane et al. 2002). Consequently, follow-up experimentation is always required to validate interactions of interest. The second drawback, which is common to other systems-biology approaches, is the potential of ‘data overload’ caused by an unprecedented wealth of experimental observations. This has led to a proliferation of successful bioinformatics strategies to filter, organize and extract useful information from the experimental data (Camargo et al. 2007; Gandhi et al. 2006; Giot et al. 2005; Rual et al. 2005; Stelzl et al. 2005; von Mering et al. 2002).

We have recently faced a combination of the two problems mentioned above, i.e. having to pursue experimentally too many candidate binding partners resulting from Y2H projects, during our studies on biogenesis of lysosome-related organelles complex-1 (BLOC-1). BLOC-1 is a stable protein complex that in mammals comprises eight known subunits: pallidin, muted, cappuccino, dysbindin, snapin, BLOC subunit 1 (BLOS1), BLOS2 and BLOS3 (Fig. 1A; for a recent review see Raposo and Marks 2007). Mutations in the DTNBPI gene encoding dysbindin and the BLOC1S3 gene encoding BLOS3 cause Hermansky–Pudlak syndrome.

Fig. 1 Schematic representations of the subunit composition of BLOC-1 from humans (A) and the corresponding orthologues encoded by the genome of Drosophila melanogaster (B). Thick black lines denote published experimental evidence for binary inter-subunit interactions. Numbers connected by blue lines represent unique binding partners described for individual BLOC-1 subunits, and numbers connected by lines of other colour denote candidate binding partners shared by two or more subunits.
syndrome (HPS) type 7 (HPS-7) and HPS-8, respectively (Li et al 2003; Morgan et al 2006). All types of HPS, including the two associated with BLOC-1 deficiency, follow an autosomal-recessive mode of inheritance and are characterized by partial loss of pigmentation in hair, skin and eyes (i.e. oculocutaneous albinism) and prolonged bleeding times due to platelet storage pool deficiency (reviewed by Wei 2006). Both clinical manifestations arise from defects in the biogenesis of so-called ‘lysosome-related’ organelles, namely melanosomes and platelet dense granules (Raposo and Marks 2007). The other known types of HPS are associated with deficiencies in another three protein complexes: HPS-3, -5 and -6 are due to mutations in the HP33, HP55 and HP56 genes encoding subunits of BLOC-2; HPS-1 and -4 diseases arise from mutations in the HP51 and HP54 genes encoding subunits of BLOC-3; and HPS-2 is due to mutations in the AP3B1 gene encoding a subunit of adaptor protein-3 (AP-3) (Di Pietro and Dell’Angelica 2005; Wei 2006). While the molecular role of AP-3 as a sorting-signal-decoding device mediating intracellular protein trafficking between endosomes and lysosomes (or between endosomes and lysosome-related organelles) is well established, the molecular functions of the BLOCs remain poorly understood (Di Pietro and Dell’Angelica 2005; Raposo and Marks 2007). Nevertheless, BLOC-1 was localized in melanocytes to early-endosome-associated tubules and found to facilitate the trafficking of tyrosinase-related protein 1 and the Menkes disease protein, ATP7A, to maturing melanosomes (Di Pietro et al 2006; Setty et al 2007, 2008).

As part of our efforts aimed at elucidating the molecular mechanism of BLOC-1 function, we have focused our attention on direct protein–protein interactions reported in the literature, either as the focus of individual studies (reviewed by Li et al 2007; see also Bao et al 2008; Felten et al 2007; Granata et al 2008; Mistry et al 2007; Nian et al 2007; Sun et al 2008; Suzuki et al 2007) or as part of large sets of interactomics data (Camargo et al 2007; Rual et al 2005; Stelzl et al 2005). In all of these cases, the initial—or only—experimental evidence was obtained by Y2H analysis. In the case of human BLOC-1, the number of candidate binding partners for one or more of its subunits added up to 70 (Fig. 1A). The existence of a BLOC-1 counterpart in the fruit fly, Drosophila melanogaster, was predicted by the presence in its genome of recognizable orthologues for seven of the eight subunits of the mammalian complex (Falcón-Pérez et al 2007); for the products of these seven fly genes the total number of candidate binding partners derived from large-scale Y2H analyses (Formstecher et al 2005; Giot et al 2003) was 102 (Fig. 1B). No homologues of BLOC-1 subunits have been found in the genome of the yeast Saccharomyces cerevisiae.

The above numbers of candidate binding partners for human and Drosophila BLOC-1 would exceed our ability to pursue them experimentally, especially if one considers that multiple approaches would be required to test whether each putative interaction might occur in vivo and be relevant to the function of BLOC-1 in intracellular protein trafficking. Various methods have been described to assess the reliability of interactions within large sets of Y2H data (Deane et al 2002; Goldberg and Roth 2003), or to attempt to reduce the very high false-positive rates (~90%) of in silico predictions of protein–protein interactions (Mahdavi and Lin 2007; Scott and Barton 2007). These methods were designed to assess simultaneously thousands of putative interactions; hence they rely on either global properties of the dataset (e.g. small-world network properties) or scoring criteria that tend to be simplistic as they are restricted to information that can be gathered automatically (e.g. co-occurrence of keywords in GeneOntology descriptions, existence of paralogues reported to interact with each other).

In this work, we explored ways to efficiently gather high-quality information about the candidate binding partners of BLOC-1 subunits from humans and flies, and to rank the candidates and present the information in a visually friendly manner. For the top candidate resulting from this analysis, the endosomal Ras-related GTPase Rab11, follow-up experimental work uncovered an unexpected genetic interaction with the product of the fly gene lightoid, which is the orthologue of the Ruby gene defective in a rat model of HPS (Oiso et al 2004) and encodes a Rab protein implicated in the biogenesis of lysosome-related organelles (Ma et al 2004; Wasmeier et al 2006). The possibility of applying a similar data-mining approach to analysis of other subsets of ‘omics’ data is discussed.

Methods

Literature and database searches

Literature searches for candidate binding partners of human BLOC-1 were performed by using all alternative names of each BLOC-1 subunit as keywords in PubMed (http://www.pubmed.gov) and subsequently browsing the abstracts of all resulting papers. In addition, the supplementary materials of four papers reporting large-scale human protein–protein interaction studies (Camargo et al 2007; Ewing et al 2007;
Rual et al. 2005; Stelzl et al. 2005) and a publicly available database of Y2H data generated by the Alliance for Cell Signaling (http://www.afcs.org) were searched using the subunit names as keywords. Candidate binding partners for BLOC-1 subunits from D. melanogaster were identified by searching the Drosophila Interactions Database (http://www.droidb.org) using the names of subunit-encoding genes (Fig. 1B). Information about official gene symbol, chromosome number, protein name and reported or proposed function was gathered from the Entrez Gene database at the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene). Patterns of gene expression were inferred from the analysis of Expression Sequence Tag counts available through the NCBI UniGene database (http://ncbi.nlm.nih.gov/UniGene/). Information about reported or proposed functions for S. cerevisiae orthologues was obtained from the Saccharomyces Genome Database (http://www.yeastgenome.org/). When available, information about the presence in human proteins of regions with predicted propensity to adopt coiled-coil folds or transmembrane domains was gathered from the Human Protein Reference Database (HPRD) (http://www.hprd.org/) (Mishra et al. 2006).

Protein sequence analyses

Sequence analyses of candidate binding partners were carried out using the reference amino acid sequences downloaded from the NCBI Entrez Gene database; if more than one isoform were predicted (owing to alternative splicing of the encoding gene), the longest protein sequence was used. Homology searchers for readily recognizable orthologues in D. melanogaster and S. cerevisiae (for human proteins) or in H. sapiens and S. cerevisiae (for fly proteins) from the non-redundant protein sequence database were carried out using the Gapped-BLASTP algorithm (Altschul et al. 1997) with default parameters as available at the NCBI website (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Information about predicted functional domains was obtained from the conserved-domain search tool available at NCBI as part of the BLASTP server. In the cases of Drosophila proteins, or of human proteins where no predictions of coiled-coil or transmembrane regions were available at the HPRD, predictions of such regions were carried out at the Network Protein Sequence Analysis Tools server (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_server.html) using default parameters (Combet et al. 2000).

Candidate ranking

The information gathered about candidate binding partners of BLOC-1 subunits was organized in a table using Microsoft Excel 2004 for Mac Version 11.2, where each row represented a candidate binding partner and the columns corresponded to various scoring criteria. A colour-code was adopted whereby green, yellow and red at each column position represented ‘encouraging’, ‘less encouraging’ or ‘discouraging’ information about the candidate, respectively. White was used to denote lack of information or information that was too general to be considered either encouraging or discouraging. Further details about the colour-based scoring system are available in Supplementary Table 1. In order to rank the candidates, the colour code was converted into numerical values using a custom-made Macro tool (available upon request), and the sum of all derived values was calculated for each row and used to sort the rows (in descending order) using the Data AutoFilter tool of Excel.

Genetic experiments in flies

Flies were reared at 25°C in a designated room with automatic 12 h light/12 h dark cycles, using standard food and following conventional fly husbandry procedures (Greenspan 1997). The following D. melanogaster lines were obtained from the Bloomington Drosophila Stock Center at Indiana University (Bloomington, IN, USA): y w y w / 2 / (stock 192), lie 2 / (stock 338) and y w & ; P(w & = ; lcw) /-RubI(2) / TM3, Sb 1 / (stock 12148). Wild-type Canton-S flies and lines carrying the modified chromosome FM7 as well as the chromosome balancers CyO and TM3, Sb 1 / were kind gifts from David E. Krantz (University of California, Los Angeles, CA, USA). The y w & 2 / line was derived from y w & y w by multiple outcrosses into Canton-S and was kindly provided by Anne F. Simon (University of California, Los Angeles, CA, USA). For some experiments, the lie line was partially ‘cantonized’ by three outcrosses into the genetic background of Canton-S.

Results

Ranking of candidate binding partners of human BLOC-1 subunits

Literature and databases searches for candidate binding partners of BLOC-1 resulted in a total of 68 gene
products reported to interact with individual subunits, and two gene products reported to interact with
dysbindin and another subunit (Fig. 1A). Twenty-seven of these candidates resulted from small-scale
Y2H screenings (reviewed by Li et al 2007; see also
Bao et al 2006; Felten et al 2007; Granata et al 2008;
Mistry et al 2007; Nian et al 2007; Sun et al 2008;
Suzuki et al 2007), while the rest of them were found
as part of large-scale Y2H projects (Camargo et al
2007; Rual et al 2005; Stelzl et al 2005; no candidates
were found in a large-scale mass spectrometry study
reported by Ewing et al 2007). In order to select the
most promising candidates for experimental analyses,
we sought to rank them according to a number of
specific criteria that would be relevant to the likeli-
hood that a given candidate would interact with
BLOC-1 in vivo and participate in its role in intracel-
lar protein trafficking between endosomes, lysosom-
es and related organelles. Because none of these
criteria would constitute an absolute requirement for a
candidate to be considered further, we reasoned
that the combination of all criteria (i.e. the sum of all
scores) would represent our best estimate of how
promising each candidate would be. To allow for rapid
visual analysis, for each criterion we used green and
red colour to represent ‘encouraging’ or ‘discouraging’
information, respectively; yellow was used to represent
information that was not as encouraging as that
labelled with green, and white was used to represent
lack of information or information that was too vague
to be considered either encouraging or discouraging
(see Supplementary Table 1 for details about the
colour code for each criterion).

Ten different criteria were applied to prioritize
candidate binding partners of human BLOC-1 subunits
(Fig. 2). The first three corresponded to experimental
evidence found in the original article describing an
interaction between a BLOC-1 subunit and a given
candidate gene. The criteria were based on three
commonly used types of protein–protein interaction
assays: Y2H data, affinity-pulldown assay, and co-
immunoprecipitation. The Y2H data were considered
couraging (i.e. green colour) if resulting from a
small-scale screening (assuming that the authors had a
valid reason to select a given interaction partner out of
several prey constructs that might have led to expres-
sion of reporter genes) or if deemed to be of high
confidence by a large-scale Y2H project. The affinity-
pulldown data were considered most encouraging if a
recombinant form of the binding partner was able to
pull-down the native BLOC-1, not just an isolated
subunit in recombinant form or overexpressed in cells
by transfection. Likewise, the co-immunoprecipitation
data were considered most encouraging if involving
native BLOC-1 as opposed to a transiently overex-
pressed subunit. Such stringency level for these two
criteria, i.e. considering most encouraging only those
positive pulldown and co-immunoprecipitation results
involving the entire BLOC-1 complex, stemmed from
our own study (Nazarian et al 2006) on the previously
reported interaction of the dysbindin subunit of
BLOC-1 with α- and β-dystrobrevins (Benson et al
2001). In that study, we had found that dysbindin can
interact with the dystrobrevins when isolated from the
complex (i.e. in the context of the Y2H or in
recombinant form) but not in the context of native
BLOC-1, likely because the region of dysbindin that
can bind dystrobrevins in vitro is engaged in multiple
inter-subunit interactions within BLOC-1 and not
available for dystrobrevin binding in vivo (Nazarian
et al 2006). Although immunofluorescence co-localiza-
tion is another criterion often used to validate protein-
protein interactions, inspection of the relevant litera-
ture led us to exclude it from our analyses. This is
because BLOC-1 subunits have been reported to co-
localize with various binding partners at dissimilar
locations such as the plasma membrane (Benson et al
2001, 2004), cytoplasm (Fukui et al 2005), both plasma
membrane and cytoplasm (Mistry et al 2007; Yuan
et al 2006), the perinuclear region (Rüder et al 2005),
the Golgi complex (Wolff et al 2006) and even inside
nuclei (Felten et al 2007; Nian et al 2007).

The information for scoring criteria 4–10 was
obtained from databases and, upon initial training,
could be gathered at a rate of ~6 min per candidate.
Criteria 4 and 5 corresponded to the prediction of
coiled-coil-forming and transmembrane regions, re-
spectively, and high-quality information was found
readily available at HPRD for most human proteins.
Coiled-coil-forming regions are involved in protein–
protein interactions but are also notorious for their
tendency to give false-positive results in the Y2H
system. Because all BLOC-1 subunits except for
BLOS3 (for which no candidate binding partner has
been described) contain coiled-coil-forming domains,
we decided that not finding these regions in the
candidate binding partners would be encouraging and
finding them would be discouraging. Similarly, for
transmembrane regions we decided to consider their
presence discouraging, in part because of concerns
about false positives in the Y2H and the expecta-
tion that, by analogy to well-known membrane traf-
ficking pathways, most components of the pathway
in which BLOC-1 functions will turn out to be periph-
eral membrane proteins. Criterion 6 was based on
information about structural or functional domains
predicted for the candidate binding partners. Here, conserved functional domains specifically related to protein/membrane trafficking, also known as vesicle-mediated trafficking, were considered most encouraging. Criterion 7 was based on mRNA expression patterns as inferred from ‘virtual dot blots’ available at the UniGene database. Because all BLOC-1 subunits are expressed ubiquitously (reviewed by Di Pietro and Dell’Angelica 2005; Wei 2006) and evidence for a role of BLOC-1 in protein trafficking within non-specialized cells has been obtained (Di Pietro et al. 2006; Salazar et al. 2006), detection of the candidate’s transcript in a wide variety of tissues and cell types was considered most encouraging. Criteria 8 and 9 were based on the ability to detect homologues of the candidate binding partner in D. melanogaster and S. cerevisiae, respectively. Because BLOC-1 subunit orthologues can be found in the former but not in the latter, we scored as most encouraging detecting a homologue of the human candidate binding partner in D. melanogaster (with E-value <10^-4) and not finding it in S. cerevisiae. For the sake of time, the search for homologues was carried out in a single BLASTP round using the non-redundant protein sequence database, and subsequently using an in-built tool to restrict the viewing of results to proteins from the only two species of interest. If a homologue was found in S. cerevisiae through the BLASTP search, information about its potential function was gathered from the Saccharomyces Genome Database, and if it was related to protein trafficking the result was considered less encouraging (yellow) than not finding such a homologue (green) but more than finding a homologue with an unrelated function (red).

Fig. 2. Ranking of candidate binding partners for human BLOC-1 subunits. Candidates are listed using the official names of the encoding human gene, with the top position in the list representing the first place in the ranking. Scoring criteria: 1, confidence level on the Y2H interaction (green is for high confidence in a large-scale Y2H project or isolated from an small-scale Y2H screen); 2, interaction detected by affinity pulldown (green is for a positive result obtained using native BLOC-1); 3, interaction detected by co-immunoprecipitation (green is for a positive result obtained using native BLOC-1); 4, predicted regions with propensity to fold into coiled-coils (green is for their absence from candidate); 5, predicted transmembrane regions (green is for their absence from candidate); 6, predicted functional domains (green is for the prediction of at least one domain previously implicated in protein/membrane trafficking); 7, expression pattern (green is for ubiquitous expression); 8, homology to fruit fly proteins (green is for the presence of a recognizable orthologue encoded by the genome of D. melanogaster); 9, homology to yeast proteins (green is for failure to detect a clearly recognizable homologue encoded by the genome of S. cerevisiae); 10, proposed biological function (green is for a role in protein/membrane trafficking on endosomes or lysosomes).
candidates, for which the original literature was scanned and read either completely or, in cases with too many original research articles, through a selection of recent reviews. The collected information was then used as a reference to assess the potential utility of functional information readily available in various databases. Although our analysis was neither quantitative nor extensive enough to provide a definitive comparison of the quality of different databases, in our opinion it was the combination of the Summary sections in the NCBI Entrez Gene database and the GeneOntology terms (also available from the same database) that more efficiently captured the information on what is known or predicted about the function of most human proteins analysed. We considered most encouraging those descriptions about a function in protein/membrane trafficking (or vesicle-mediated protein transport) with reference to endosomes or lysosomes, less encouraging similar descriptions without specific reference to endosomes or lysosomes, and discouraging those descriptions about unrelated functions such as transcription or translation.

In order to rank the candidates, the colour code was converted into numerical values using a rather simple rule: green = +2, yellow = +1, white = 0 and red = −1. The only exception was the criterion 10, for which the above values were doubled (green = +4, yellow = +2, white = 0, red = −2) to give extra weight to the information gathered about the candidate’s function. As mentioned above, two of the candidates (CK1ε and β-dystrobrevin) had been reported to interact with more than one BLOC-1 subunit (Benson et al. 2001; Li et al. 2003; Wolff et al. 2006; Yin et al. 2006). Although we first considered the possibility of giving extra weight to candidates interacting with multiple BLOC-1 subunits, we also gave consideration to a counterargument whereby these multiple interactions could reflect a tendency of ‘sticky’ proteins to give multiple false positives. Hence, we adopted the conservative approach of giving to the candidate only the best of the two scores obtained when analysed with each interacting BLOC-1 subunit separately. The resulting ranking is shown in Fig. 2, and additional information is provided in Supplementary Table 2. At the top of the ranking is the product of the RAB11A gene, which is a small GTPase of the Rab family of Ras-related proteins. In particular, the RAB11A gene product, Rab11, is associated with recycling of endosomes and has been shown to play key roles in protein and membrane trafficking events during development (Alone et al. 2005; Giansanti et al. 2007; Pelissier et al. 2003; Prekeris et al. 2006; Riggs et al. 2005; Ullrich et al. 1996). Rab11 is also a parologue of Rab38 and Rab32, which are two highly related Rab family members with restricted expression and roles in the biogenesis of melanosomes (Wasmiejer et al. 2006). At second and third places are the proteins phakin 2 and neurobeachin, respectively. Fourth in the ranking is the product of the EXO70 gene, which is a subunit of the exocyst complex implicated in the “tethering” of exocytic vesicles at specific sites of the plasma membrane (reviewed by Munson and Novick 2006). Interestingly, another two subunits of the exocyst, encoded by the EXOCS and EXOC4 genes, had also been reported to interact with BLOC-1 subunits in large-scale Y2H projects and herein ranked at the 9th and 11th places, respectively (Fig. 2 and Supplementary Table 2).

Ranking of candidate binding partners of subunits of Drosophila BLOC-1

We next sought to apply our ranking approach to candidate binding partners from a different species: the fruit fly D. melanogaster. Here, all interactions but two were derived from a large-scale Y2H study reported by Giot and colleagues (2003), which also observed three of the several inter-subunit interactions observed for human BLOC-1 (Starcevic and Dell’Angelica 2004) (Fig. 1A, B, black lines). Ninety-one gene products were reported to interact with a single BLOC-1 subunit, while 13 gene products were found to interact with two or three subunits (Fig. 1B). Although few of these interactions were deemed to be of high confidence according to an automatic scoring system (Giot et al. 2003), careful examination of small subsets of interactions derived from large Y2H projects has revealed that even those interactions deemed to be of ‘low confidence’ in individual datasets might turn out to be real and should not be dismissed (Gandhi et al. 2006). Consequently, all candidates were included in our analysis.

We used similar scoring criteria to those described above for the human candidate binding proteins, except for the following differences. First, since the only experimental evidence for interaction of the Drosophila proteins was derived from Y2H analysis, the criteria based on affinity-pull down and co-immunoprecipitation assays were irrelevant and were not used. Second, given that reliable predictions of coiled-coil forming and transmembrane domains were not readily available for Drosophila proteins (as they were in HPRD for human proteins), we ran such predictions using the Network Protein Sequence Analysis Tools server. Third, no criterion based on patterns of mRNA expression was used because the available data on the
expression of BLOC-1 subunits in *D. melanogaster* were sparse and not very consistent. Fourth, by analogy with the criterion that finding *Drosophila* homologues of human candidate binding proteins would be encouraging, we considered encouraging finding a human homologue of a fly candidate binding partner through a simple BLASTP search (with E-value <10^-4). Finally, given that the information gathered about the function of fly proteins was more limited than that of human proteins, instead of doubling the numerical weight of this criterion we added one more based on the function reported or proposed for the human homologue, if any, and then applied the same simple conversion rule (green = +2, yellow = +1, white = 0 and red = −1) to all criteria.

The resulting ranking of candidate binding partners of *Drosophila* BLOC-I subunits is shown in Fig. 3, and further details are listed in Supplementary Table 3. There were virtually no common binding partners for human and fly BLOC-I, which is not entirely surprising given the well-documented lack of overlap between interactomic data obtained for different species—or even the same species—by different projects (reviewed by Gandhi et al. 2006). However, ranked at the 7th place was the product of the CG2095 gene (Fig. 3), which is a subunit of the exocyst complex from flies and the orthologue of the human EAO4 gene product that was ranked 11th among the human candidates (Fig. 2).

Genetic interactions in flies

We next attempted to pursue experimentally the top candidate binding partner of human BLOC-I, the Rab11 GTPase. Preliminary affinity-pulldown assays,

Fig. 3 Ranking of candidate binding partners for subunits of BLOC-1 from flies. Candidates are listed using the official names of the encoding genes from *D. melanogaster* (alternative names in parentheses), with the top position in the list representing the first place in the ranking. Scoring criteria: 1, confidence level on the Y2H interaction (green for high confidence); 2, predicted regions with propensity to fold into coiled-coils (green for their absence from candidate); 3, predicted transmembrane regions (green for their absence from candidate); 4, predicted functional domains (green is for the prediction of at least one domain previously implicated in protein/membrane trafficking); 5, homology to human proteins (green is for the presence of a recognizable orthologue encoded by the human genome); 6, homology to yeast proteins (green is for failure to detect a clearly recognizable homologue encoded by the genome of *S. cerevisiae*); 7, proposed biological function of the fly protein (green is for a role in protein/membrane trafficking on endosomes or lysosomes); 8, proposed biological function of the human orthologue, if any (green is for a role in protein/membrane trafficking on endosomes or lysosomes).
using recombinant Rab11 expressed in bacteria and native BLOC-1 from bovine brain cytosol, have so far yielded no significant interaction (I. A. Rodriguez-Fernandez and E. C. Dell’Angelica, unpublished results). However, additional experiments will be required to rule out the possibility that our negative results may have been a consequence of the experimental conditions used; for example, the interaction of small GTPases such as Rab11 with other proteins is known to depend strictly on their binding to GDP or GTP (Jagoe et al. 2006; Prekeris et al. 2000) and differences in the protein-binding abilities of soluble and membrane-associated BLOC-1 have been documented (Di Pietro et al. 2006). In an alternative approach, we sought for evidence of genetic interaction between a mutant allele of Rab11 in flies and mutations in components of the molecular machinery that is conserved between humans and flies and required for the biogenesis of lysosome-related organelles in both species. Unfortunately, direct genetic interaction between Rab11 and BLOC-1 could not be tested in flies, because so far no mutant lines deficient in Drosophila BLOC-1 have been reported in the literature or made available at public repositories. Consequently, we focused on genes like those encoding subunits of the AP-3 complex, which are required for the biogenesis of melanosomes and platelet-dense granules in humans as well as for the biogenesis of eye pigment granules in flies. Actually, the association of AP-3 subunit mutations with HPS in humans (Dell’Angelica et al. 1999) was demonstrated only after the role of Drosophila AP-3 in eye pigment granule biogenesis was discovered (Ooi et al. 1997; Simpson et al. 1997). Other reasons for focusing on AP-3 were the reported physical and functional interactions between this complex and BLOC-1 in mammals (Di Pietro et al. 2006; Salazar et al.

![Diagram](image.png)

Fig. 4 Synthetic sick/lethal interaction between mutant alleles of the fly genes Rab11 and lightoid encoding related Rab GTPases. (A) Male flies carrying a null-mutant allele of the white gene (w°) on chromosome X, a copy of a null-mutant allele of the lightoid gene (lt°) over a second-chromosome balancer (CyO), which induces a ‘curly-wing’ phenotype and a copy of a mutant allele of Rab11 (Rab11td°) over a third-chromosome balancer (TM3, St°), which induces a ‘short-and-thick-hair’ phenotype, were crossed with virgin females homozygous for the llt mutation. (B) Male flies homozygous for the llt° mutation were crossed with virgin females homozygous for the w° mutation on chromosome X and carrying a copy of lt° over the second-chromosome balancer CyO and a single copy of the Rab11td° allele on the third chromosome. (C) Male flies carrying mutations in the yellow (y°) and white (w°) genes on chromosome X and heterozygous for the Rab11td° allele over the third-chromosome balancer (TM3, St°) were crossed with virgin females heterozygous for a mutant allele of the garnet gene (g°) over a modified X-chromosome, FM7 (which in males leads to abnormally small eyes). Shown in all panels (A–C) are the four possible genotypes expected for the males in the progeny at a theoretical frequency of 25% each, as well as the absolute numbers (and percentages) of adult male flies observed within 24 h after eclosion. Note in (A) and (B) the significantly low numbers of male flies that survived to adulthood when homozygous for llt° and carrying a single copy of the Rab11td° allele.
Another relevant example involves two Rab proteins, Rab38 and Rab32, which are required for proper biogenesis of melanosomes in mammals (Wasmeier et al. 2006); mutations in the Rab38-encoding gene were documented for rat models of HPS (Oiso et al. 2004), and mutations in the only Drosophila orthologue of Rab38 and Rab32, lightoid, were shown to cause defects in the biogenesis of fly eye pigment granules (Ma et al. 2004). Because Rab11 is a paralogue of lightoid, the possibility of partial functional overlap between them deserved consideration. Consequently, we performed fly genetic analyses to test whether the Rab11^{p120} mutant allele, which causes lethality in homozygous form owing to essential roles of Rab11 in cytokinesis and tissue development (Alone et al. 2005; Giansanti et al. 2007; Pelissier et al. 2003; Riggs et al. 2003), could enhance the eye pigmentation defects of flies deficient in AP-3 (i.e. homozygous for the g^e mutant allele) or in the Rab38/Rab32 orthologue (i.e. homozygous for the l^{td1} mutant allele). The eye pigmentation of flies homozygous for g^e and heterozygous for Rab11^{p120} was indistinguishable from that of homozygous g^e flies (data not shown). Unexpectedly, almost no fly homozygous for l^{td1} and carrying a single copy of the Rab11^{p120} allele survived to young adulthood. Thus, upon a fly crossing designed to yield about 25% of male flies homozygous for l^{td1} and heterozygous for Rab11^{p120} only four male flies with this genotype out of more than a hundred (3%) were recovered within 24 h after eclosion (Fig. 4A). Similar results were obtained using a different mutant allele of Rab11, Rab11^{p208} (data not shown). As an attempt to rule out effects caused by other loci, we outcrossed the l^{td1} allele into the genetic background of Canton-S and performed a new set of crosses searching for flies homozygous for l^{td1} and heterozygous for Rab11^{p120}; this time, however, the number of males with this genotype was zero (Fig. 4B). On the other hand, male flies homozygous for g^e and heterozygous for Rab11^{p120} were viable; actually, they were observed in excess of the theoretical 25% frequency owing to detrimental effects of Fm7 and TM3 chromosomes on viability (Fig. 4C). Taken together, these results demonstrated a synthetic sick/lethal interaction between Rab11 and lightoid, likely due to partially overlapping functions of the encoded Rab proteins.

Discussion

The goal of this work was to find ways of obtaining high-quality information to prioritize candidate binding partners in cases where the number of reported interactions exceeds the capacity of individual laboratories to perform all of the necessary validation experiments. Such is the situation that we have faced through our studies of BLOC-1, for which 70 candidate binding partners have been found in humans and 102 in flies—mostly by large-scale Y2H projects. Bearing in mind that a large proportion of Y2H data represents false positives (Deane et al. 2002; Gandhi et al. 2006; von Mering et al. 2002), the assumption that all interactions reported for BLOC-1 may be ‘real’ appears unwarranted; rather, many of them are probably not worth pursuing experimentally. We suspect that researchers working on other proteins of medical relevance may be facing a similar dilemma. For example, over 280 candidate binding partners have been described for DISC1, the product of a gene that is truncated upon a chromosomal translocation strongly associated with psychiatric disease and for which the molecular function remains poorly understood (Camargo et al. 2007).

Various methods have been described for the global assessment of large sets of interactomics data (Camargo et al. 2007; Deane et al. 2002; Giot et al. 2003; Goldberg and Roth 2003; Mahdavi and Lin 2007; Rual et al. 2005; Scott and Barton 2007; Stelzl et al. 2005). Some approaches to assess the reliability of Y2H data rely on the existence of paralogues shown to interact with each other (Deane et al. 2002); although successful for many proteins, in the case of BLOC-1 only two of its subunits display homology to other human sequences, and for them virtually no interaction data are available (data not shown). Other approaches give weight to finding the corresponding interaction between the orthologues from another species; again such an idea has been successful for several proteins (e.g., Gandhi et al. 2006), yet it cannot be applied to binding partners of BLOC-1 because the only protein shared by the lists of human and fly candidate binding partners (the Sec8 protein encoded by human EXOC4 and Drosophila CG2095) was reported to interact with dysbindin in humans and BLOS2 in flies (Supplementary Tables 2 and 3). Our approach is unique in that it ‘customizes’ the scoring criteria according to prior knowledge by the researcher about characteristics of the candidates that the researcher would find encouraging to pursue with experimental work. We believe that a customized approach can be very powerful when focusing on candidate binding partners of well-characterized proteins or of proteins with unique properties (e.g. tissue-specific expression, well-established localization to a specific cellular compartment). On the other hand, we recognize that the choice of criteria is intrinsically arbitrary, which could adversely affect the usefulness
of the ranking. For example, some researchers might disagree with our choice to consider encouraging the absence of predicted coiled-coil-forming and transmembrane domains in the candidate's primary structure. Nevertheless, it is worth emphasizing that no single criterion is sufficient to completely exclude a candidate from further consideration. For example, 6 of the top 12 human candidates do contain coiled-coil-forming regions, compared with a total of 35 out of 70 candidates in the entire list, and the human candidate ranked 12th does contain a transmembrane domain. Finally, despite our best efforts, some of the information gathered about the candidates may be inaccurate. For example, practical reasons led us to restrict our search for experimental evidence to only the first article reporting the interaction, although for a few candidate binding partners (e.g., SNAP25; Iaradi et al. 1999) subsequent work has brought the original findings into question (Vites et al. 2004). In addition, some of the candidates for which failure to detect a yeast homologue in a BLASTP search was considered encouraging do contain orthologues in yeast (e.g., the exocyst subunits encoded by EXOC7 and EXOC4; Munson and Novick 2006) that probably would have been detected by more sensitive but time-consuming algorithms such as PSI-BLAST. These limitations notwithstanding, we find the data-mining approach, and the idea of summarizing the information using a colour code, potentially very useful. For example: we have previously invested significant amounts of resources and time to pursue experimentally the reported interactions between the dybindin subunit of BLOC-1 and the dystrobrevins (Benson et al. 2001), with negative results (Nazarian et al. 2006); in retrospect, the current ranking of the two dystrobrevins (encoded by the DTNB and DTNA genes) to the 45th and 51st places would have discouraged us from pursuing these interactions in particular.

At the top of the ranking of human candidates was the product of the RAB11A gene. Rab11 is a small GTPase associated with a subset of endosomes known as recycling endosomes, which accumulate at a perinuclear region of the cell and play important roles in the sorting of proteins for recycling to the plasma membrane as well as in asymmetric distribution of signalling molecules during mitosis (Emery et al. 2005; Prekeris et al. 2006; Ullrich et al. 1996). Moreover, Rab11 is required for normal cytokinesis, and for development of various tissues in flies (Alone et al. 2005; Giansanti et al. 2007; Pellossier et al. 2003; Riggs et al. 2003). Consistent with these important functions, homozygous mutations in the only Rab11 gene in flies cause lethality as embryos or early larvae (Alone et al. 2005). This is in contrast with homozygous null mutations in lightoid, the only fly orthologue of both Rab32 and Rab38, which result in viable flies that display specific defects in the biogenesis of a lysosome-related organelle: the fly eye pigment granule (Ma et al. 2004). Likewise, mutations in the Rab38-encoding gene in mice and rats result in viable animals with defective biogenesis of melanosomes, and the rat mutant is considered an animal model of HPS (Loftus et al. 2002; Oiso et al. 2004). At first sight, one might conclude that Rab32/Rab38/lightoid, and not Rab11, would be the key Rab protein for lysosome-related organelles and with which BLOC-1 might interact. However, genetic analyses in flies have suggested that lightoid is unlikely to be the only Rab involved in this process. Thus, the pigmentation phenotype of homozygous null lightoid is not as severe as those of other eye colour mutants, and enhancement of the phenotype was observed for double mutants simultaneously deficient in lightoid and Ap-3 (Ma et al. 2004) or in lightoid and BLOC-2 (Falcón-Pérez et al. 2007). These considerations led us to evaluate the possibility that Rab11, which is a parologue of Rab32/Rab38/lightoid, could have some degree of functional overlap with the latter. Our results did provide evidence for functional overlap, but in an unexpected manner: while lightoid homozygous flies and Rab11 homozygous flies were viable as adults and fertile, flies that were both lightoid homozygous and Rab11 homozygous barely survived to young adulthood. This synthetic sick/lethal effect leads us to speculate that these two related Rab proteins may indeed have overlapping functions, for instance by interacting with common effector proteins, although such overlap would extend to some of the essential functions of Rab11. Further work will be required to understand the molecular basis for this intriguing genetic interaction, and the possible involvement of BLOC-1 in this process.

Other candidate binding partners that ranked close to the top should also deserve future experimentation. Second in the list of the human candidates is phakin 2, a novel protein predicted to associate with early endosomes owing to the presence of a FYVE domain. At third place is neurobeachin, a member of a family of large proteins that also includes Lyst, which is mutated in Chediak-Higashi syndrome and—like BLOC-1—is required for normal biogenesis of lysosome-related organelles (Shiflett et al. 2002). At the 4th, 9th and 11th places rank three of the eight subunits of the exocyst complex, and the orthologue of one of them ranks 7th among the candidate binding partners of Drosophila BLOC-1 subunits. Interestingly, solid evidence indicates that both mammalian and
Drosophila exocyst components interact with Rab11 (Beronja et al. 2005; Zhang et al. 2004). Finally, ranking at the top of the candidate binding partners of Drosophila BLOC-1 are a subunit of the microtubule-associated motor, dynein, a member of the endophilin family of membrane-curvature-sensing proteins, and the Hrs subunit of the endosome-association complex, ESCR-T, which also contains the Stam subunit ranked in 19th place.

It is likely that approaches similar to that described here could be useful to researchers who face other situations with an exceedingly high number of candidate genes or proteins. For example, a single Y2H screening typically results in a large number of ‘colonies’ representing a number of candidate binding partners. Other lists of candidates may arise from other types of ‘omics’ approaches, e.g. genes whose transcripts are found upregulated under certain experimental conditions, or proteins identified by mass spectrometric analysis of a partially purified sample.

In all of these situations, the researcher may need to rank the candidates to select those more ‘encouraging’ for experimental analysis. We believe that our ‘customized’ criteria approach with visually friendly presentation could be helpful also in those situations.

Acknowledgements We thank David E. Krantz and Anne F. Simon for reagents, and Juliana A. Martínez-Agosto and Verónica T. Cheli for critical reading of the manuscript. This work was supported in part by grant HL08817 from the National Institutes of Health. J. A. Rodríguez-Fernandez was supported by National Institutes of Health training grant T32 HG00536.

References

Li W, Zhang Q, Osio N, et al. (2003) Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat Genet 35:84–89. doi:10.1038/ng1229.

A. Scoring criteria for candidate binding partners of human BLOC-1

<table>
<thead>
<tr>
<th>Criteria & color</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Green Yeast-two-hybrid (Y2H) data</td>
</tr>
<tr>
<td></td>
<td>Interaction from a small-scale Y2H screen or with high-confidence score from a large-scale Y2H project</td>
</tr>
<tr>
<td></td>
<td>Yellow Medium-confidence score obtained in a large-scale Y2H project</td>
</tr>
<tr>
<td>2</td>
<td>Green Affinity-pulldown data</td>
</tr>
<tr>
<td></td>
<td>Recombinant form of binding partner was able to pull-down native BLOC-1</td>
</tr>
<tr>
<td></td>
<td>Yellow Recombinant form of binding partner was able to pull-down recombinant or overexpressed BLOC-1 subunit</td>
</tr>
<tr>
<td></td>
<td>White No information</td>
</tr>
<tr>
<td>3</td>
<td>Green Coimmunoprecipitation data</td>
</tr>
<tr>
<td></td>
<td>Postive coimmunoprecipitation involving native BLOC-1</td>
</tr>
<tr>
<td></td>
<td>Yellow Coimmunoprecipitation involving overexpressed BLOC-1 subunit (epitope-tagged or not)</td>
</tr>
<tr>
<td></td>
<td>White No information</td>
</tr>
<tr>
<td>4</td>
<td>Green Predicted Coiled-coil domains</td>
</tr>
<tr>
<td></td>
<td>Absence of predicted coiled-coil-forming domains</td>
</tr>
<tr>
<td></td>
<td>Red Presence of predicted coiled-coil-forming domains</td>
</tr>
<tr>
<td>5</td>
<td>Green Predicted transmembrane regions</td>
</tr>
<tr>
<td></td>
<td>Absence of predicted transmembrane regions</td>
</tr>
<tr>
<td></td>
<td>Red Presence of predicted transmembrane regions</td>
</tr>
<tr>
<td>6</td>
<td>Green Predicted structural or functional conserved domains</td>
</tr>
<tr>
<td></td>
<td>Conserved domains specifically related to protein/membrane trafficking, such as FYVE, RAB, SNARE, BAR</td>
</tr>
<tr>
<td></td>
<td>Yellow Conserved domains involved in multiple functions besides protein/membrane trafficking</td>
</tr>
<tr>
<td></td>
<td>Red Conserved domains with unrelated function, such as DNA or RNA binding</td>
</tr>
<tr>
<td></td>
<td>White No conserved domains with known function</td>
</tr>
<tr>
<td>7</td>
<td>Green mRNA expression patterns</td>
</tr>
<tr>
<td></td>
<td>Transcript expressed in a wide variety of tissues and cell types</td>
</tr>
<tr>
<td></td>
<td>Yellow Transcript with restricted expression including brain (due to potential association of BLOC-1 with schizophrenia)</td>
</tr>
<tr>
<td></td>
<td>Red Transcript with restricted expression not including brain tissue</td>
</tr>
<tr>
<td>8</td>
<td>Green Detection of a D. melanogaster homologue</td>
</tr>
<tr>
<td></td>
<td>Positive detection of a homologue in D. melanogaster (with E-value <10^-5)</td>
</tr>
<tr>
<td></td>
<td>Yellow Potential D. melanogaster homologue (E-value >10^-5)</td>
</tr>
<tr>
<td></td>
<td>Red No D. melanogaster homologue detected on a BLASTP search</td>
</tr>
<tr>
<td>9</td>
<td>Green Detection of a S. cerevisiae homologue</td>
</tr>
<tr>
<td></td>
<td>No homologue detected in S. cerevisiae through BLASTP search</td>
</tr>
<tr>
<td></td>
<td>Yellow Homologue detected in S. cerevisiae (E-value <10^-5) with role in membrane/protein trafficking</td>
</tr>
<tr>
<td></td>
<td>Red Homologue detected in S. cerevisiae (E-value <10^-5) with role unrelated to membrane/protein trafficking</td>
</tr>
<tr>
<td>10</td>
<td>Green Reported or proposed function</td>
</tr>
<tr>
<td></td>
<td>Role in protein/membrane trafficking (vesicle-mediated transport) on endosomes or lysosomes</td>
</tr>
<tr>
<td></td>
<td>Yellow Role in protein/membrane trafficking but not necessarily on endosomes or lysosomes</td>
</tr>
<tr>
<td></td>
<td>Red Unrelated function such as transcription or translation</td>
</tr>
<tr>
<td></td>
<td>White No information or multiple functions (e.g., cytoskeleton regulation)</td>
</tr>
</tbody>
</table>
Supplementary Table 1

B. Scoring criteria for candidate binding partners of fly BLOC-1

<table>
<thead>
<tr>
<th>Criteria & color</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Yeast-two-hybrid (Y2H) data</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>High-confidence score from a large-scale Y2H project (Confidence score > 0.66 on a 0-1 scale)</td>
</tr>
<tr>
<td>Yellow</td>
<td>Medium-confidence score from a large-scale Y2H project (Confidence score 0.33-0.66 on a 0-1 scale)</td>
</tr>
<tr>
<td>Red</td>
<td>Low-confidence score from a large-scale Y2H project (Confidence score < 0.33 on a 0-1 scale)</td>
</tr>
<tr>
<td>2 Predicted Coiled-coil domains</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Absence of predicted coiled-coil-forming domains (P-value << 0.5)</td>
</tr>
<tr>
<td>Yellow</td>
<td>Prediction for the coiled-coil domain not convincing (P-value ~ 0.5)</td>
</tr>
<tr>
<td>Red</td>
<td>Presence of predicted coiled-coil-forming domains (P-value >> 0.5)</td>
</tr>
<tr>
<td>3 Predicted transmembrane regions</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Absence of predicted transmembrane regions</td>
</tr>
<tr>
<td>Yellow</td>
<td>Not convincing predicted transmembrane region (15-20 amino acid long)</td>
</tr>
<tr>
<td>Red</td>
<td>Presence of predicted transmembrane regions (> 20 amino acid long)</td>
</tr>
<tr>
<td>4 Predicted structural or functional conserved domains</td>
<td>Same as scoring criteria #6 for human BLOC-1 candidate binding partners</td>
</tr>
<tr>
<td>5 Detection of a H. sapiens homologue</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Positive detection of a homologue in H. sapiens (with E-value <10^{-5})</td>
</tr>
<tr>
<td>Yellow</td>
<td>Potential H. sapiens homologue (E-value >10^{-5})</td>
</tr>
<tr>
<td>Red</td>
<td>No H. sapiens homologue detected on a BLASTP search</td>
</tr>
<tr>
<td>6 Detection of a S. cerevisiae homologue</td>
<td>Same as scoring criteria #9 for human BLOC-1 candidate binding partners</td>
</tr>
<tr>
<td>7 Candidates’ reported or proposed function</td>
<td>Same as scoring criteria #10 for human BLOC-1 candidate binding partners</td>
</tr>
<tr>
<td>8 Candidates’ reported or proposed function for the human homologue</td>
<td>Same as scoring criteria #10 for human BLOC-1 candidate binding partners</td>
</tr>
<tr>
<td>Rank</td>
<td>Human Gene name</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>Rab11A</td>
</tr>
<tr>
<td>2</td>
<td>PLK1</td>
</tr>
<tr>
<td>3</td>
<td>RHEB</td>
</tr>
<tr>
<td>4</td>
<td>EXOC7P</td>
</tr>
<tr>
<td>5</td>
<td>SNAF2P2</td>
</tr>
<tr>
<td>6</td>
<td>CASKID</td>
</tr>
<tr>
<td>7</td>
<td>KIBRA2</td>
</tr>
<tr>
<td>8</td>
<td>WASF2</td>
</tr>
<tr>
<td>9</td>
<td>EXOC1B</td>
</tr>
<tr>
<td>10</td>
<td>ZMYND3</td>
</tr>
<tr>
<td>11</td>
<td>EXOC4</td>
</tr>
<tr>
<td>12</td>
<td>STX12</td>
</tr>
<tr>
<td>13</td>
<td>RAMWD5</td>
</tr>
<tr>
<td>14</td>
<td>HKTSTP</td>
</tr>
<tr>
<td>15</td>
<td>PHSN2</td>
</tr>
<tr>
<td>16</td>
<td>AATF</td>
</tr>
<tr>
<td>17</td>
<td>AKTIPD2</td>
</tr>
<tr>
<td>18</td>
<td>ADC1</td>
</tr>
<tr>
<td>19</td>
<td>FLJ36030</td>
</tr>
<tr>
<td>20</td>
<td>MACF1</td>
</tr>
<tr>
<td>21</td>
<td>D18</td>
</tr>
<tr>
<td>22</td>
<td>EPS1B</td>
</tr>
<tr>
<td>23</td>
<td>RAB151</td>
</tr>
<tr>
<td>24</td>
<td>CTNNB1</td>
</tr>
<tr>
<td>25</td>
<td>TUBA1A</td>
</tr>
<tr>
<td>26</td>
<td>POM121</td>
</tr>
<tr>
<td>27</td>
<td>EBA98</td>
</tr>
<tr>
<td>28</td>
<td>EPF10</td>
</tr>
<tr>
<td>29</td>
<td>PTPR</td>
</tr>
<tr>
<td>30</td>
<td>BID67</td>
</tr>
<tr>
<td>31</td>
<td>MET</td>
</tr>
<tr>
<td>32</td>
<td>GDA</td>
</tr>
<tr>
<td>33</td>
<td>CIS-116</td>
</tr>
<tr>
<td>34</td>
<td>KIF5C</td>
</tr>
<tr>
<td>35</td>
<td>DUS5L</td>
</tr>
<tr>
<td>36</td>
<td>KIAA0599D</td>
</tr>
<tr>
<td>37</td>
<td>CHRNA3</td>
</tr>
<tr>
<td>38</td>
<td>SLC1A2</td>
</tr>
<tr>
<td>39</td>
<td>DBC3</td>
</tr>
<tr>
<td>40</td>
<td>ASG1</td>
</tr>
<tr>
<td>41</td>
<td>BRSK1P</td>
</tr>
<tr>
<td>42</td>
<td>C2orf45</td>
</tr>
<tr>
<td>43</td>
<td>LAMC1</td>
</tr>
<tr>
<td>44</td>
<td>TRPM7</td>
</tr>
<tr>
<td>45</td>
<td>DNM1</td>
</tr>
<tr>
<td>46</td>
<td>LMDAS5</td>
</tr>
<tr>
<td>47</td>
<td>CCM039</td>
</tr>
<tr>
<td>48</td>
<td>TRP6</td>
</tr>
<tr>
<td>49</td>
<td>CCAM2</td>
</tr>
<tr>
<td>50</td>
<td>ASRRAA</td>
</tr>
<tr>
<td>51</td>
<td>DOK3</td>
</tr>
<tr>
<td>52</td>
<td>CSF3R</td>
</tr>
<tr>
<td>53</td>
<td>AKAP6</td>
</tr>
<tr>
<td>54</td>
<td>HAPI</td>
</tr>
<tr>
<td>55</td>
<td>RRN1</td>
</tr>
</tbody>
</table>
56 Ryr2
57 Ryr3
58 Pnmt
59 Cc3
60 Kcnq4
61 Asfl
62 Eef1a1
63 Hmtn
64 Ajm1
65 Crmp2
66 Snhce
67 Adcy6
68 Snca
69 Tspan7
70 Atp6v1c2

<table>
<thead>
<tr>
<th>Gene</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>RyR2</td>
<td>L-type calcium channel</td>
</tr>
<tr>
<td>RyR3</td>
<td>L-type calcium channel</td>
</tr>
<tr>
<td>Pnmt</td>
<td>Protein N-acetyltransferase, mitochondrial</td>
</tr>
<tr>
<td>Cc3</td>
<td>Hypothalamic protein LOC15392</td>
</tr>
<tr>
<td>Kcnq4</td>
<td>Hypothalamic protein LOC3729</td>
</tr>
<tr>
<td>Asfl</td>
<td>Methionine aminopeptidase</td>
</tr>
<tr>
<td>Eef1a1</td>
<td>Elongation factor 1alpha</td>
</tr>
<tr>
<td>Hmtn</td>
<td>Hypothalamic tumor suppressor</td>
</tr>
<tr>
<td>Ajm1</td>
<td>Solute carrier family 9 member 1</td>
</tr>
<tr>
<td>Crmp2</td>
<td>Microtubule-associated protein 2</td>
</tr>
<tr>
<td>Snhce</td>
<td>Solute carrier family 3 member 4</td>
</tr>
<tr>
<td>Adcy6</td>
<td>Adenylyl cyclase 6</td>
</tr>
<tr>
<td>Snca</td>
<td>Synuclein</td>
</tr>
<tr>
<td>Tspan7</td>
<td>TSPAN7 protein</td>
</tr>
<tr>
<td>Atp6v1c2</td>
<td>ATPase, H+ transporting, v1c2 subunit</td>
</tr>
</tbody>
</table>

References:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Gene name</th>
<th>Chr.</th>
<th>Protein name (alternative name)</th>
<th>Summary of reported/proposed function*</th>
<th>Interacting BLOC-1 subunit</th>
<th>Human Ortholog</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCG2</td>
<td>2L</td>
<td>Drac4b-related family light chain 2</td>
<td>GTPase, rab-family-related, rab-related, rab-related</td>
<td>BLOC1</td>
<td>DYNLM1</td>
</tr>
<tr>
<td>2</td>
<td>end56</td>
<td>2R</td>
<td>end617</td>
<td>Membrane organization and biogenesis</td>
<td>BLOC2</td>
<td>DYNLM1</td>
</tr>
<tr>
<td>3</td>
<td>Hox (CG12293)</td>
<td>2L</td>
<td>Hox</td>
<td>Protein transport and storage</td>
<td>DYNLM2</td>
<td>ZIC3</td>
</tr>
<tr>
<td>4</td>
<td>HAPC (CG10026)</td>
<td>2L</td>
<td>GTPase-activating protein</td>
<td>Protein transport</td>
<td>Dynein</td>
<td>ARPC2</td>
</tr>
<tr>
<td>5</td>
<td>tanp (CG11177)</td>
<td>2R</td>
<td>Cdc42, GAP-10</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>6</td>
<td>CG03686</td>
<td>2L</td>
<td>FIP28</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>7</td>
<td>CG12940</td>
<td>2R</td>
<td>HIPK1</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>8</td>
<td>CG02774</td>
<td>2L</td>
<td>HIPK2</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>9</td>
<td>CG10063</td>
<td>2L</td>
<td>HIPK3</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>10</td>
<td>CG03662</td>
<td>2L</td>
<td>HIPK4</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>11</td>
<td>Fip2 (CG12967)</td>
<td>X</td>
<td>Fip2</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>12</td>
<td>CG12750</td>
<td>2L</td>
<td>Fip2</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>13</td>
<td>CG021313</td>
<td>2R</td>
<td>Fip2</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>14</td>
<td>CG02124</td>
<td>2L</td>
<td>Fip2</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>15</td>
<td>CG02124</td>
<td>2L</td>
<td>Fip2</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>16</td>
<td>CG02124</td>
<td>2L</td>
<td>Fip2</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>17</td>
<td>CG02124</td>
<td>2L</td>
<td>Fip2</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>18</td>
<td>RhoGAP925</td>
<td>2L</td>
<td>RhoGAP925</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>19</td>
<td>Strn (CG6821)</td>
<td>2L</td>
<td>Stnm (signal transducing adapter molecule)</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>20</td>
<td>CG12498</td>
<td>2R</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>21</td>
<td>CG03686</td>
<td>2R</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>22</td>
<td>CG12498</td>
<td>2R</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>23</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>24</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>25</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>26</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>27</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>28</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>29</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>30</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>31</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>32</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>33</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>34</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>35</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>36</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>37</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>38</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>39</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>40</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>41</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>42</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>43</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>44</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>45</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>46</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>47</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>48</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>49</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>50</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>51</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>52</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>53</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>54</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>55</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>56</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
<tr>
<td>57</td>
<td>CG02463</td>
<td>2L</td>
<td>Stnm</td>
<td>GTPase activation</td>
<td>Dynein</td>
<td>ARPC3</td>
</tr>
</tbody>
</table>
Supplementary Table 3

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>OSG1774A</td>
<td>3L</td>
</tr>
<tr>
<td>59</td>
<td>mbo (C58639)</td>
<td>2R</td>
</tr>
<tr>
<td>60</td>
<td>G72242</td>
<td>2R</td>
</tr>
<tr>
<td>61</td>
<td>C00861</td>
<td>2L</td>
</tr>
<tr>
<td>62</td>
<td>C00863</td>
<td>2R</td>
</tr>
<tr>
<td>63</td>
<td>C01565</td>
<td>2R</td>
</tr>
<tr>
<td>64</td>
<td>C024433</td>
<td>2L</td>
</tr>
<tr>
<td>65</td>
<td>Rps3D (C015961)</td>
<td>3R</td>
</tr>
<tr>
<td>66</td>
<td>Ppp1 (C01591)</td>
<td>2R</td>
</tr>
<tr>
<td>67</td>
<td>C64 (C016453)</td>
<td>2R</td>
</tr>
<tr>
<td>68</td>
<td>stt1 [C016730]</td>
<td>2R</td>
</tr>
<tr>
<td>69</td>
<td>C02866</td>
<td>X</td>
</tr>
<tr>
<td>70</td>
<td>TnpC4 (C014268)</td>
<td>2R</td>
</tr>
<tr>
<td>71</td>
<td>C03923</td>
<td>2R</td>
</tr>
<tr>
<td>72</td>
<td>C013434</td>
<td>2R</td>
</tr>
<tr>
<td>73</td>
<td>Spn8 (C005666)</td>
<td>3L</td>
</tr>
<tr>
<td>74</td>
<td>C06150</td>
<td>3R</td>
</tr>
<tr>
<td>75</td>
<td>C02796</td>
<td>3L</td>
</tr>
<tr>
<td>76</td>
<td>Argin (C021099)</td>
<td>X</td>
</tr>
<tr>
<td>77</td>
<td>C04630</td>
<td>3R</td>
</tr>
<tr>
<td>78</td>
<td>Argin (C021099)</td>
<td>3L</td>
</tr>
<tr>
<td>79</td>
<td>map5 (C013010)</td>
<td>2L</td>
</tr>
<tr>
<td>80</td>
<td>C011899</td>
<td>3R</td>
</tr>
<tr>
<td>81</td>
<td>C015065</td>
<td>X</td>
</tr>
<tr>
<td>82</td>
<td>C013667</td>
<td>3L</td>
</tr>
<tr>
<td>83</td>
<td>C013667</td>
<td>3L</td>
</tr>
<tr>
<td>84</td>
<td>C013667</td>
<td>3L</td>
</tr>
<tr>
<td>85</td>
<td>ccc (C018639)</td>
<td>2L</td>
</tr>
<tr>
<td>86</td>
<td>C014402</td>
<td>2L</td>
</tr>
<tr>
<td>87</td>
<td>C014402</td>
<td>2L</td>
</tr>
<tr>
<td>88</td>
<td>cm (C01243)</td>
<td>X</td>
</tr>
<tr>
<td>89</td>
<td>C01243</td>
<td>X</td>
</tr>
<tr>
<td>90</td>
<td>C003617</td>
<td>5L</td>
</tr>
<tr>
<td>91</td>
<td>C016305</td>
<td>3L</td>
</tr>
<tr>
<td>92</td>
<td>Pten (C020881)</td>
<td>2R</td>
</tr>
<tr>
<td>93</td>
<td>Anti (C020832)</td>
<td>2R</td>
</tr>
<tr>
<td>94</td>
<td>C011781</td>
<td>2R</td>
</tr>
<tr>
<td>95</td>
<td>Rho (C021246)</td>
<td>X</td>
</tr>
<tr>
<td>96</td>
<td>C01369</td>
<td>3R</td>
</tr>
<tr>
<td>97</td>
<td>C015052</td>
<td>2R</td>
</tr>
<tr>
<td>98</td>
<td>Rac (C012430)</td>
<td>X</td>
</tr>
<tr>
<td>99</td>
<td>C012430</td>
<td>X</td>
</tr>
<tr>
<td>100</td>
<td>C012430</td>
<td>X</td>
</tr>
<tr>
<td>101</td>
<td>rad51 (C016730)</td>
<td>2R</td>
</tr>
<tr>
<td>102</td>
<td>C012430</td>
<td>X</td>
</tr>
</tbody>
</table>

Footnotes:
* As reported on either GeneOntology or the Summary section of NOG Entrez Gene

References:

CHAPTER 3

IDENTIFICATION OF GENETIC MODIFIERS OF DROSOPHILA AP-3

USING THE BLOOMINGTON DEFICIENCY KIT
ABSTRACT

AP-3 is a heterotetrameric complex important for endosomal protein trafficking and lysosome-related organelle biogenesis. Defects in human AP-3 result in Hermansky-Pudlak syndrome (HPS) type 2. Mutations in the garnet gene encoding one component of Drosophila AP-3 cause eye pigmentation defects, due to abnormal biogenesis of LROs known as pigment granules. A large-scale screening to identify genetic modifiers of the function of AP-3 in the fly eye was performed. The hypomorphic g^2 mutant line was crossed to 213 lines carrying deficiencies covering most of chromosomes 2, 3 and 4 to screen for chromosomal regions that in hemizygous form modified g^2 pigmentation. Secondary screening and validation uncovered four distinct deletions in chromosomes 2 and 3, which in heterozygous form partially suppressed the g^2 phenotype by increasing red pigmentation by over 50%. Further experiments suggested that the Gap69C and Atg2 genes within two of these regions are modifiers of AP-3.
INTRODUCTION

Drosophila eye pigmentation results from a combination of red (pteridines/drosopterin) and brown (ommochromes/xanthommatin) pigments resulting in a bright red-eye color. The biosynthetic pathway that produces each pigment color is independent of each other. Multiple enzymes are involved. Mutation of a gene encoding an enzyme involved in the pteridines pathway will result in a fly with “brownish” eye color, because of impaired red pigmentation. In addition to eye pigmentation, flies display pigmentation in other tissues such as the malpighian tubules and testes [1]. Pigments are stored within pigment granules, which are lysosome-related organelles. The discovery and study of over 80 pigmentation mutants in flies have helped in elucidating the genes involved in the synthesis and storage of pigments [2]. The products of these genes are divided in three main categories depending on their mutant phenotype and biological function: (1) enzymes involved in the biosynthesis of red and brown pigments, (2) ABC transporters, and (3) proteins involved in the biogenesis of pigment granules [2]. Proteins encoded by genes such as *cinnabar*, *purple* and *vermilion*, are enzymes necessary for the formation of red or brown pigments. Mutations in these genes affect only one type of pigment and not the other. In the case of the ABC transporter *white*, mutations in this gene affect both red and brown pigment deposition, resulting in a white-eyed fly. The other two ABC transporters *scarlet* and *brown*, form separate hetero-dimers with *white* resulting in brown and red pigment formation, respectively [3,4]. Mutations in the genes comprising the last group, also known as the granule group (e.g. *garnet*, *pink*, *blos1*, *deep orange*, *lightoid*), affect both types of pigments, arguing against a direct role in pigment synthesis [2]. Nevertheless, for many of these genes their exact function in pigment granule biogenesis and potential role in other pathways remains to be elucidated.
One of the eye-color mutants within the granule group is garnet, which encodes the δ subunit of AP-3 [5]. Mutations in AP-3 result in HPS type 2 in humans, and in two strains known as pearl and mocha in mice [6]. Human, mice and flies with mutant AP-3 share the same phenotype of abnormal biogenesis of lysosome-related organelles, i.e. abnormal melanosomes in human and mice, and abnormal pigment granules in flies. Due to the amenability of working with fruit flies and the genetic tools available, Drosophila serves as a good model to study genetic modifiers of the phenotype (i.e. eye pigmentation defects) cause by AP-3 deficiency of the garnet hypomorphic mutant allele (\(g^2 \)). The identification of genetic modifiers of AP-3 may help to understand normal eye pigmentation and granule biogenesis.

This chapter presents the results obtained in a large-scale screening for genetic modifiers of AP-3 function using the Classic Bloomington Deficiency kit (Dk) and the new Bloomington Dk. At least four genomic regions that partially suppress the garnet red pigmentation defect were identified. Gap69C and Atg2, genes found within two of these regions were further evaluated and deemed to represent potential genetic modifiers of AP-3.
EXPERIMENTAL PROCEDURES

Fly stocks

Flies were raised using standard husbandry procedures [7] and all crosses were carried at 25˚C. The garnet (g2) and Canton-S fly lines were kindly provided by D.Krantz (UCLA). The ruby (rb1) fly line was obtained from Bloomington Stock Center at Indiana University (Bloomington, IN). Fly lines used in the screening carrying a deletion in either chromosome 2 or 3 are part of the Classic Bloomington Deficiency kit (Dk) (http://flystocks.bio.indiana.edu/Browse/df/dfkit_retired_July2009.htm), and fly lines carrying a deletion in chromosome 4 are part of the new Bloomington Dk (http://flystocks.bio.indiana.edu/Browse/df/dfkit-info.htm).

Quantification of eye pigments

Red (pteridines/drosopterin) and brown (ommochromes/xanthommatin) pigments were extracted from fly heads of adults 3-5 days after eclosion and quantified as previously described [8]. Each experiment had a minimum of two replicates per genotype and all controls were quantified in parallel. Results were expressed as percentage of Canton-S pigment content.

Statistical analyses

Statistical analyses were performed using GraphPad Prism 5.0b (GraphPad Software, San Diego, CA, USA).
RESULTS

Initial and secondary screening identified six deficiencies that in hemizygous form modified the AP-3 mutant eye color

A genetic screening was performed using a combination of two collections of fly lines carrying deletions (i.e. deficiencies) in chromosomes 2, 3 and 4. Since the garnet gene is located on chromosome X, fly lines carrying deficiencies in this chromosome were not analyzed. The cytologically-defined deficiencies in chromosomes 2 and 3 used in this screening were part of the Classic Bloomington Dk. On the other hand, the deficiencies in chromosome 4 used in the screening were part of the new Bloomington Dk, which only included molecularly-defined deficiencies. Because the Dk collection provided the minimum number of fly lines with the greatest genome coverage, it served as an excellent tool to screen for genetic modifiers that upon loss of one copy affect the AP-3 mutant phenotype (Table 3.1).

The AP-3 modifier screening was divided in three parts: initial screening, secondary screening, and validation (Figure 3.1). The initial screening consisted in setting-up a parental cross (P₀) between males carrying a deficiency (Df) over a balancer chromosome, and garnet (g²) females. The eye color of the progeny (F₁), g² carrying one copy of the Df, was analyzed under a dissecting microscope and compared to that of control flies, in this case g². If the eye color seemed different to that of g², the P₀ cross was repeated and subjected to a secondary screening involving quantification of red pigments. Arbitrary thresholds were for further analyzing deficiencies that had enhancer effects on g² pigments. A suppressor of g² would be selected based on an increase in red pigmentation of at least 50% (1.5-fold), and an enhancer of g² red pigmentation would be selected based on a decrease in pigmentation of at least 33%. The
validation was performed using molecularly-defined deficiencies that overlapped the region deleted in the original deficiency. The use of overlapping deficiencies had two important purposes. First, it allowed an independent validation of the modifying effect on garnet; and second, provided a simple way to fine-mapping the critical chromosomal region carrying the gene (or genes) capable of modifying \(g^2 \) when in hemizygous form.

Out of 213 lines screened, 20 lines were selected for the secondary screening (Figure 3.2). The red pigmentation of \(g^2 \) is \(~27\%\) of wild type flies known as Canton-S. I found that 7 lines were significantly different from \(g^2 (P < 0.001) \), but only 6 of these lines, \(Df(3L)eyg[C1], Df(2R)CB21, Df(3R)Exel6195, Df(3L)ED4978, Df(2L)XE-3801 \) and \(Df(3L)BSC23 \) passed the 1.5-fold threshold (Figure 3.2). AP-3 is a protein complex composed of the \(\delta, \sigma3, \beta3 \) and \(\mu3 \) subunits; in the fly genome these subunits are encoded by the genes \(garnet, orange, ruby \) and \(carmine \). I asked whether the suppression effect on red pigmentation of these 6 deficiency lines in \(g^2 \), replicated in the \(ruby (rb^1) \) mutant. As expected, all 6 hits exhibited a partial but statistically significant suppression of the \(rb^1 \) eye color phenotype \((P < 0.001)\) (Figure 3.3). Next, I investigated the effect on Canton-S red pigmentation. I found that two deficiencies, \(Df(3L)eyg[C1] \) and \(Df(2R)CB21 \) did not modify Canton-S eye color phenotype, while the other deficiencies did (Figure 3.4). Since the genes belonging to the pigment granule group affect both red and brown pigmentation, I asked whether I could detect an effect on \(g^2 \) brown pigmentation in the presence of a copy of each of the 6 deficiency hits. Brown pigmentation was also affected in flies carrying a copy of 5 out of the 6 deficiency hits. However, the relative effect sizes were smaller than those observed in red (Figure 3.5).
Validation and fine-mapping identified four genomic regions that modified g^2 eye color

For Df(3L)eyg[C1], four smaller deficiencies that overlap the initial deletion were tested (Figure 3.6A). Two overlapping deficiencies that replicated the suppression effect on g^2 red pigmentation ($P < 0.001$) were identified and the critical region was narrowed-down to 12 genes (Figure 3.6 B). Several of the genes in that region have unknown molecular functions, while two (i.e. eyg and toe) encode transcription factors involved in eye development [9], and one gene known as Gap69C encodes an ARF GTPase-activating protein (GAP). [10].

In the case of Df(2R)CB21, there were 6 available deficiencies that covered most of the original deletion, but red pigment quantification results showed that none of these deficiencies were able to validate the initial effect on garnet (Figure 3.7A). However, due to incomplete coverage of the overlapping deficiencies, there is a region of 19 genes that could not be tested (Figure 3.7B). Similarly, for Df(3R)Exel6195 two deficiencies that covered most of the entire region except one gene with unknown molecular function known as CG31145 were found (Figure 3.8). Because these two deficiencies failed to replicate the suppression effect on garnet eye color phenotype, additional experiments are required to test whether the initial observation was due to removing a copy of CG31145 (Figure 3.8).

For Df(3L)ED4978, two overlapping deficiencies that completely covered the initial deletion were found, yet red pigment quantification results failed to replicate the initial suppression effect (Figure 3.9). Analogously, Df(2L)XE-3801 failed to validate using 3 overlapping deficiencies (Figure 3.10).

The effect observed for Df(3L)BSC23 was successfully validated using two deficiencies that replicated the partial suppression on g^2 red eye color (Figure 3.11A). Using a total of seven
overlapping deficiencies, the critical region was successfully mapped to one containing 6 genes (Figure 3.11B). Among these genes is Autophagy-specific gene 2 (Atg2), which encodes a protein involved in autophagy [11].

The fact that two deficiency hits, Df(3L)ED4978 (Figure 3.9) and Df(2L)XE-3801 (Figure 3.10), carried a mini-white marker gene and the effects could not be validated using overlapping deficiencies (without mini-white); prompted me to ask whether the mini-white gene was responsible for the increase in red pigmentation observed initially, i.e., a false positive. Applying the same reasoning I asked the same question about the deficiency hit, Df(3R)Exel6195 (Figure 3.8) and those overlapping deficiencies used to narrow-down the critical regions for Df(3L)eyg[C1] (Figure 3.6) and Df(3L)BSC23 (Figure 3.11). To test the effect of the mini-white marker in each deficiency, I designed genetic crosses to obtain progeny carrying one copy of the deficiency in a white (w^{1118}) background. The w^{1118} gene mutation results in white-eyed flies because the lack of white protein prevents the production of red and brown pigments. Results of red pigment quantifications of these progeny are shown in Figure 3.12. I found that the mini-white of the Df hit Df(3L)ED4978 leads to the highest amount of red pigments (Figure 3.12, arrow). For the other deficiencies, I found that their mini-white gene activity promoted the production of various amount of red pigments ranging from 0% to 14% of Canton-S. These results suggest that at least for Df(3L)ED4978 the mini-white gene was responsible of the suppression effect observed on g2 red pigmentation, confirming our concern regarding a false positive.
Gap69C as a potential genetic modifier of AP-3

Gap69C emerged as an interesting candidate gene within the critical region of *Df(3L)eyg[C1]* (Figure 3.6). The product of this gene has homology to the human ADP-ribosylation factor (Arf) GTPase-activating protein (GAP) encoded by the *ARFGAP1* gene [10,12]. Therefore, *Gap69C* encodes a putative *Drosophila* Arf GAP. Arf GAPs inactivate Arf proteins by promoting GTP hydrolysis, which in turn regulates Arf function in membrane trafficking and actin remodeling [13]. In the case of Arf GAP 1, it shows higher substrate specificity towards Arf1 [13]. Interestingly, Arf1 was found to regulate the recruitment of AP-3 to membranes and of other adaptor protein complexes [5,14].

For the above reasons, I decided to test whether the partial suppression effect detected for *Df(3L)eyg[C1]* could be due to removing one copy of *Gap69C*. To this end, I took advantage of the existence of a loss-of-function allele, *Gap69C*^{G3-85} kindly provided by Dr. Vladimir Alatortsev [10]. This fly line was crossed to *g*², generating *g*² mutants with one copy of *Gap69C*^{G3-85} and then red pigment content was quantified (Figure 3.13). Removing one copy of *Gap69C* in the *g*² background, significantly (*P* < 0.0001) suppresses *g*² red pigmentation defect. This result suggests that *Gap69C* is a genetic modifier of AP-3.

Atg2 as a potential genetic modifier of AP-3

Among the 6 genes within the narrowed-down region of *Df(3L)BSC23* (Figure 3.11) lies an autophagy gene known as *Atg2*. Autophagy is a process used by cells to supply macromolecules under starvation conditions, to eliminate pathogens and to remove protein aggregates [15]. Several sequential steps are required for this process to occur, including
formation of a phagosome around the organelle or proteins to be eliminated, and fusion of the phagosome with the lysosome for degradation of the contents [15]. In humans, more than 30 proteins have been identified to have a role in autophagy and the overall organization of the pathway just started to be elucidated [16]. In yeast, Atg2 and Atg18 forms a complex that is essential for autophagic activity [11].

Unfortunately, a null allele for Drosophila Atg2 was unavailable. Instead I used the allele Atg2EP3697, which disrupts Atg2 by the insertion of the P-element EP3697, to test the effect on red pigmentation when Atg2 is disrupted. I found that the presence of one copy of the Atg2EP3697 results in a small but statistically significant suppression of \(g^2 \) red pigmentation (Figure 3.14). To exclude that the mini-white gene marker was responsible for the suppression effect observed for flies carrying the P-element, flies were crossed the \(w^{1118} \) background and red pigmentation of the progeny carrying a copy of the P-element was measured. These results exclude a mini-white gene effect on pigmentation (Figure 3.14).
DISCUSSION

Drosophila melanogaster serves as a good genetic tool for the screening of modifiers of AP-3. Using commercially available deficiencies, I screened most of *Drosophila* genome by crossing 213 fly lines to the AP-3 hypomorph mutant *g*^2^. The fact that 20 lines passed the initial screening, but only 6 lines passed the secondary screening threshold indicate that most lines were selected based on an eye color difference to *g*^2^ most likely due to affecting brown eye color. Therefore, this screening excluded those deficiencies that mainly affected brown pigmentation. The screening was done this way for two reasons: first, red pigment quantification is a faster and more robust technique than the one used for brown pigments, and second because this laboratory is interested in identifying possible genes involved in granule biogenesis. As it was discussed in the introductory section, genes within the granule group affect both types of pigments [2].

The deficiencies hits, *Df*(3L)eyg[C1], *Df*(2R)CB21, *Df*(3R)Exel6195, *Df*(3L)ED4978, *Df*(2L)XE-3801 and *Df*(3L)BSC23 also suppressed *ruby* red pigmentation indicating that the effect observed replicated in more than one AP-3 mutant fly. Two of these lines, *Df*(3L)eyg[C1] and *Df*(2R)CB21 did not modified Canton-S red pigmentation arguing in favor towards an AP-3-specific effect. Out of these two deficiencies only one, *Df*(3L)eyg[C1], also suppressed *g*^2^ brown pigmentation. The effect of *Df*(3L)eyg[C1] on both pigments of *g*^2^ were not equally strong. But this is also observed for genes involved in pigment granule biogenesis. For instance in *g*^2^, red pigments are ~27% Canton-S and brown pigments are ~60% of Canton-S.

Overlapping deficiencies were used as a validation tool and for fine-mapping the genomic region obtained for the six initial hits. This strategy resulted in two regions of 12 and 6 genes. Lack of available overlapping deficiencies did not allowed me to find the critical region
for Df(2R)CB21 and Df(3R)Exel6195. In the case of Df(3L)ED4978, I found that none of the overlapping deficiencies validated the initial observation and this was due to the mini-white red pigmentation resulting in a false-positive. For Df(2L)XE-3801 the failure of validation was not due to the mini-white red pigmentation since when this was measured the red pigment content was of 0% of Canton-S. The initial deletion was covered completely and two of the overlapping deficiencies, Df(2L)BSC291 and Df(2L)BSC233 even covered additional genomic region flanking the original deletion. One possibility is that the original effect in g^2 is due to a genetic interaction between removing one copy of multiple genes at a time. Owing to the fact that Df(2L)XE-3801 deletes 77 genes (as of Flybase FB12_04, released July 6th, 2012). This possibility was not tested with the overlapping deficiencies used and will need further investigation.

The Df(3L)eyg[C1] region was narrowed-down to one carrying 12 genes. Within this region is Gap69C, encoding a putative Drosophila Arf GAP. This gene was an intriguing candidate owing to the role of Arf Gaps in membrane trafficking and actin remodeling [13]. Previous evidence indicates that ARF1, the protein inactivated by Arf Gap, is important in the regulation of AP-3 and other adaptor protein complexes [5,14]. Little is known about Gap69C function, and loss-of-function mutants have no apparent phenotype suggesting functional redundancy with other Arf Gaps [10]. My results demonstrating that removing one copy of Gap69C using the loss-of-function allele Gap69C^{G3-85} suppressed the g^2 red color phenotype are exciting. This would indicate that the original effect observed in Df(3L)eyg[C1] was pinpointed to one gene, therefore Gap69C emerges as modifier of AP-3.

Another genetic modifier of AP-3 is Atg2, encoding an autophagy gene. This gene was found within the narrowed-down region of Df(3L)BSC23. I found that garnet flies carrying a
copy of the P-element EP3697 mimicked the suppression effect of Df(3L)BSC23 on red pigmentation. I considered the possibility that the effect observed was due to the presence of the mini-white gene marker, but this was excluded since the mini-white red pigment levels were barely detectable. Autophagy requires multiple steps including the formation of a phagosome or isolation membrane, which have been proposed to fused with endosomes to provide the machinery needed for lysosome fusion [15]. AP-3 is involved in the protein transport from endosomes to lysosomes in fibroblasts, and to lysosome-related organelles in specialized cells [17]. Marino et al. found that AP-3 and BLOC-1 levels were reduced in tissue from Atg4b−/− and Atg5−/− knockout mice and in cells treated with an autophagy inhibitor, suggesting that disrupting autophagy affects the stability of these protein complexes [18]. Taking into account these findings and the results presented here, one potential mechanism in the Drosophila eye is that when you disrupt AP-3 there is misorting of one or many of the proteins involved in pigmentation, including white [4]. If we take white protein to exemplify this point, AP-3 mutations results in the misorting of white. The misorting of white, results in its abnormal accumulation at a compartment “X.” This white accumulation is removed from the cell by autophagy, resulting in a fly eye with pigmentation phenotype observed in g2 flies. When both AP-3 function and the autophagy pathway are impaired, the accumulation of white protein is not eliminated by autophagy. The misorted white proteins get delivered to the pigment granules by an alternative pathway resulting in the suppression the g2 pigmentation defect. A potential involvement between AP-3 function with the autophagy pathway deserves attention.
Table 3.1. General information about the Bloomington Deficiency kit (Dk) used and the initial screening hits.

As of July 20, 2009 (a year after this screening was done) this collection is denoted as the Classic Bloomington Dk which consists mostly of cytologically-defined, except for lines in chromosome 4 (^), which are molecularly-defined deletions.

<table>
<thead>
<tr>
<th>Chromosome arm</th>
<th>Number of euchromatic genes*</th>
<th>Number of bands</th>
<th>Minimum number of bands deleted</th>
<th>% of coverage minimum</th>
<th>Number of stocks available</th>
<th>Number of stocks screened</th>
<th>Initial screening hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2L</td>
<td>2,765</td>
<td>804</td>
<td>762</td>
<td>94.8</td>
<td>58</td>
<td>57**</td>
<td>7</td>
</tr>
<tr>
<td>2R</td>
<td>3,089</td>
<td>1132</td>
<td>1053</td>
<td>93</td>
<td>53</td>
<td>44**</td>
<td>6</td>
</tr>
<tr>
<td>3L</td>
<td>2,845</td>
<td>884</td>
<td>817</td>
<td>92.4</td>
<td>56</td>
<td>53</td>
<td>4</td>
</tr>
<tr>
<td>3R</td>
<td>3,535</td>
<td>1178</td>
<td>1113</td>
<td>94.5</td>
<td>56</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
<td>N/A^</td>
<td>N/A^</td>
<td>94.3^</td>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>12,322</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>230</td>
<td>213</td>
<td>20</td>
</tr>
</tbody>
</table>

*Number of euchromatic genes in Drosophila genome as of March 26, 2011, Bloomington Stock Center, Indiana University.

**An initial Dk screening on chromosome 2 was done by Veronica T. Cheli, former postdoctoral fellow in this laboratory.

N/A, not applicable
Figure 3.1. Schematic representation of the AP-3 modifier screening using the Dk collection of fly lines. (1) The initial screening consisted in setting-up parental (P₀) crosses between males carrying a deficiency (Df) over a balancer (Bal) chromosome, and females garnet (g²). A total of 213 lines with Df’s in chromosome (Chr) 2, 3 or 4 were screened. (2) The eye color of the progeny (F₁) g² carrying one copy of the Df was analyzed under a dissecting microscope. (4) If the eye color seemed different from that of g², the P₀ cross was repeated a subjected to a secondary screening involving quantification of red pigments. (5) Validation was done for those lines with quantitative differences in red color compared to g². If in the original deficiency (blue lines) a group of genes (black and red arrows) was deleted and this caused an effect on g² red color, then overlapping deficiencies (gray and red lines) were used to identify the gene(s) causing this effect.
Figure 3.2. **Secondary screening using Dk lines selected from the primary screen.** Dk screening resulted in 20 lines that when in heterozygous form exhibit a distinct eye color compared to *garnet* (*g*²). When the effect in red pigmentation was measured, only 6 lines were suppressing the *garnet* eye color phenotype by at least 50% (upper dashed line). No enhancer below 33% of *g*² red pigment was identified (lower dashed line). Bars represent mean+SD. One-way ANOVA followed by Dunnett’s test comparing flies heterozygous for the *Df* to *g*² control: ***P < 0.001.
Figure 3.3. Effects of deficiency lines resulting from the secondary screen on ruby eye color. The effect in ruby (rb̂₁) red pigmentation was measured for the 6 lines that suppressed garnet eye color phenotype and found that they also exhibited a significant suppression in ruby eye color phenotype. Bars represent mean+SD. One-way ANOVA followed by Dunnett’s test comparing flies heterozygous for the Df to rb̂₁ control: ***P < 0.001.
Figure 3.4. Effects of deficiency lines resulting from the secondary screen on wild-type eye color. The effect on wild-type (Canton-S) red pigmentation was measured for the 6 lines that suppressed garnet and ruby eye color phenotype. Bars represent mean+SD. One-way ANOVA followed by Dunnett’s test comparing flies heterozygous for the Df to Canton-S control: * $P < 0.05$, **$P < 0.01$, and ***$P < 0.001$. ns, not significant.
Figure 3.5. Five deficiency lines hits also modified garnet brown eye color. The effect in g^2 brown pigmentation was measured for the 6 lines that suppressed garnet and ruby red eye color phenotype. Bars represent mean+SD. One-way ANOVA followed by Dunnett’s test comparing flies heterozygous for the Df to g^2 control: * $P < 0.05$, **$P < 0.01$, and ***$P < 0.001$. ns, not significant.
Figure 3.6. Validation and fine-mapping of the critical region mediating the modifier effect first observed for \(Df(3L)\)eyg\([C1]\). (A) Scheme representing a normal chromosome 3L (black line), the deficiency \(Df(3L)\)eyg\([C1]\) obtained in the screening (blue lines), and four overlapping \(Df\)s (red and gray lines). Dashed lines represent the deleted segment (cytological location is indicated), and \# symbol represents a molecularly defined deletion. Red pigment of garnet flies with one copy of the indicated deficiency was quantified. Bars represent Mean+SD. One-way ANOVA followed by Dunnett’s test comparing flies heterozygous for the \(Df\) to \(g^2\) control: \(* * * P < 0.001\). Two \(Df\) validated the initial observation (red lines) whereas two others did not (gray lines). The critical region was thus narrowed-down to 12-genes (depicted as a dashed box). (B) Scheme adapted from FlyBase (version FB2012_04, released July 6th, 2012) [19] of the 12 genes located at chromosome 3L from \(-12.284056\text{Mb}\) to \(12.461121\text{Mb}\).
Figure 3.7. Attempts to validate the modifier effect first observed for Df(2R)CB21. (A) Scheme representing a normal chromosome 2R (black line), the deficiency Df(2R)CB21 obtained in the screening (blue lines), and six overlapping Dfs (gray lines). Dashed lines represent the deleted segment (cytological location is indicated), and # symbol represents a molecularly defined deletion. Red pigment of garnet flies with one copy of the indicated deficiency was quantified. Bars represent Mean+SD. One-way ANOVA followed by Dunnett’s test comparing flies heterozygous for the Df to g² control: ***P < 0.001. None of the Df validated the initial observation (gray lines). (B) However, a 19-gene region (depicted as a dashed box in A) shown here using a scheme adapted from FlyBase [19], located at chromosome 2R from ~8.070144Mb to 8.146157Mb remains to be tested, because it was not covered by any of the deficiency lines available.
Figure 3.8. Attempts to validate the modifier effect first observed for \textit{Df(3R)Exel6195}.

Scheme representing a normal chromosome 3R (black line), the deficiency \textit{Df(3R)Exel6195} obtained in the screening (blue lines), and two overlapping \textit{Dfs} (gray lines). Dashed lines represent the deleted segment (cytological location is indicated), and # symbol represents a molecularly defined deletion. Red pigment of \textit{garnet} flies with one copy of the indicated deficiency was quantified. Bars represent Mean+SD. One-way ANOVA followed by Dunnett’s test comparing flies heterozygous for the \textit{Df} to \textit{g}^2 control: \textit{**} \(P < 0.01 \). None of the \textit{Df} validated the initial observation (gray lines). However, a region containing gene \textit{CG31145} (depicted as a dashed box) located at chromosome 3R from 19.431473Mb to 19.495,378Mb remains to be tested.
Figure 3.9. Failure to validate the effects observed for Df(3L)ED4978. Scheme representing a normal chromosome 3L (black line), the deficiency Df(3L)ED4978 obtained in the screening (blue lines), and two overlapping Dfs (gray lines). Dashed lines represent the deleted segment (cytological location is indicated), and # symbol represents a molecularly defined deletion. Red pigment of garnet flies with one copy of the indicated deficiency was quantified. Bars represent Mean+SD. One-way ANOVA followed by Dunnett’s test comparing flies heterozygous for the Df to g2 control was used as statistical analysis. ***P < 0.001.
Figure 3.10. Failure to validate the effects observed for \(Df(2L)XE-3801 \). Scheme representing a normal chromosome 2L (black line), the deficiency \(Df(2L)XE-3801 \) obtained in the screening (blue lines), and three overlapping \(Dfs \) (gray lines). Dashed lines represent the deleted segment (cytological location is indicated), and \# symbol represents a molecularly defined deletion. Red pigment of garnet flies with one copy of the indicated deficiency was quantified. Bars represent Mean+SD. One-way ANOVA followed by Dunnett’s test comparing flies heterozygous for the \(Df \) to \(g2 \) control: ***\(P < 0.001 \).
Figure 3.11. Validation and fine-mapping of the critical region mediating the modifier effect first observed for Df(3L)BSC23. (A) Scheme representing a normal chromosome 3L (black line), the deficiency Df(3L)BSC23 obtained in the screening (blue lines), and seven overlapping Dfs (red and gray lines). Dashed lines represent the deleted segment (cytological location is indicated), and # symbol represents a molecularly defined deletion. Red pigment of garnet flies with one copy of the deficiency indicated was quantified. Bars represent Mean+SD. One-way ANOVA followed by Dunnett’s test comparing flies heterozygous for the Df to g² control: **P < 0.01, ***P < 0.001. Two Df validated the initial observation (red lines) whereas four others did not (gray lines). The critical region was narrowed-down to 6 genes (depicted as a dashed box). (B) Flybase.org scheme of the 6 genes located at chromosome 3L from ~2.656263Mb to 2.821245Mb.
Figure 3.12. Red pigment levels of the mini-white gene marker carried by deficiencies was compared to garnet. The three screening hits carrying mini-white Df(3R)Exel6195, Df(3L)ED4978, and Df(2L)XE-3801; and four overlapping Dfs used to validate hits Df(3L)eyg[C1] and Df(3L)BSC23; were crossed to white flies to obtain white-eyed progeny with one copy of the Df carrying mini-white. The red eye pigmentation was quantified and compared to that of g². Bars represent Mean+SD. Note that the mini-white marker of Df(3L)ED4978 produces ~10% more pigment than g² (arrow).
Figure 3.13. Removal of one copy of Gap69C partially suppressed garnet red color pigmentation. A genetic cross was designed to obtain flies g^2 carrying one copy of a null allele of Gap69C (Gap69C^{G3-85}). Red pigmentation was quantified and compared to g^2. Bars represent Mean+SD. Student t-test: ***$P < 0.0001$.
Figure 3.14. Red pigmentation phenotype of *garnet* flies was modified by one copy of the insertion mutant allele Atg^{EP3697}_2. A genetic cross was generated to obtain g^2 or $white^{1118}$ flies with one copy of the Atg^{EP3697}_2 allele (indicated as Atg^{EP}_2). Red pigmentation was quantified and compared to g^2. Bars represent Mean+SD. Student t-test comparing *garnet* carrying or not one copy Atg^{EP}_2: ***P < 0.0001.
REFERENCES

CHAPTER 4

ROLE OF DROSOPHILA RABEX-5 IN TISSUE ORGANIZATION AND
THE IMPORTANCE OF ITS RAB5-ACTIVATION FUNCTION
ABSTRACT

Endocytosis regulates many important ligand-induced signaling events that control cell proliferation and tissue growth. Vesicles formed by this process are moved, docked and fused to an acceptor membrane with the aid of multiple proteins. Of particular interest is the family of small GTPases known as Rabs. By acting as molecular switches, Rabs “label” the membranes where effectors and other proteins bind to promote vesicle docking and fusion. Rab5 is crucial in the early endosomal trafficking events. To exert its role, Rab5 needs to be activated by GEFs (Guanine nucleotide exchange factors) such as Rabaptin-5-associated exchange factor for Rab5 (Rabex-5). This chapter describes the generation of a loss-of-function allele of Drosophila melanogaster Rabex-5 (Rbx5ex1). Homozygous mutant flies do not survive to adulthood, have an extended larval period, and eventually die as abnormal prepupae. Growth abnormalities in brain and wing imaginal discs were uncovered. Increased Mmp1 levels were detected in mutant wing imaginal discs as an indication of tissue neoplastic transformation. In the brain, abnormalities in the number of neuroepithelial cells and neuroblasts of the outer optic anlage were found. The mutant phenotype was rescued by ubiquitous expression of wild-type Rabex-5 but not of a catalytically inactive Rabex-5 variant, suggesting that the adult lethality observed is due to impaired Rab5 activation. These results demonstrate that Drosophila Rabex-5 is encoded by a neoplastic tumor suppressor gene.
INTRODUCTION

The canonical view of how endocytosis regulates signal transduction is by signal attenuation, involving the internalization and transport of ligand-bound receptors to the lysosome for degradation [1,2]. Recent evidence suggests that, after a ligand-bound receptor has been internalized, signaling may persist within the endosomal compartment in what is termed as the “signaling endosome” [3]. Beyond the idea of the signaling endosome, additional roles of endocytosis and endosomal protein trafficking on signal propagation and amplification have emerged. For instance, the number of receptors found at the plasma membrane, and the transport to specific regions of the cell achieving polarized functions, are controlled by recycling of the receptors to the plasma membrane. Additionally, in the case of epidermal growth factor receptor (EGFR) and transforming growth factor-β (TGF-β) receptor, clathrin-mediated internalization promotes receptor recycling thus signal sustainment, whereas non-clathrin-mediated endocytosis promotes receptor degradation resulting in signal attenuation [1,3]. In other cases, such as in the Notch signaling pathway, endocytosis of Delta, Serrate and LAG-2 is necessary for ligand activation and thus Notch signaling [1,4].

Endosomal protein trafficking is controlled and regulated by the action of Rabs, proteins of a large family of small GTPases [5]. Rabs are reversibly associated to membranes by C-terminal geranylgeranyl groups and localize to distinct membranes. These proteins exert their function by acting as molecular switches, going from an active (GTP-bound) to an inactive (GDP-bound) state. Conversion between states is achieved by a Guanine nucleotide exchange factor (GEF), which catalyses the exchange of GDP by GTP, and by a GTPase-activating protein (GAP), which stimulates GTP hydrolysis. When active, Rabs “label” the membrane where effectors and other proteins get recruited to exert their function in docking and fusing vesicles.
Rab proteins are highly conserved across species; there are 60 described Rabs in human and 31 in flies [5,6].

Rab5 has been shown to be the master regulator of early endosomal biogenesis [7]. In vivo Rab5-knockdown in mouse liver below a critical level resulted in reduction of the number of early endosomes, late endosomes, and lysosomes [7]. Additionally, Rab5 mutations were associated with lung and liver cancer [3]. In mammals, there are three isoforms of Rab5 (Rab5A, Rab5B, and Rab5C) with at least seven different GEF proteins and over 20 different effectors, some of which are shared among other Rabs [8]. The common structural feature of Rab5 GEFs is the presence of the VPS9 domain, which contains the GEF catalytic core [5,8]. The fruit fly, Drosophila melanogaster, contains only one Rab5 and four different VPS9-domain-containing proteins [8]. In Drosophila, a null mutation in Rab5 results in early larval lethality and tissue-specific null ablation resulting in tissue overgrowth [9,10].

This laboratory is interested in understanding the physiological role of Rabaptin-5-associated exchange factor for Rab5 (Rabex-5), which is one of the GEF of Rab5 [11]. Preliminary evidence from Marta Starcevic, a former graduate student in the laboratory, suggested a potential physical interaction between BLOC-1 and Rabex-5. Later, Veronica T. Cheli, former postdoctoral fellow, found a potential genetic interaction between the gene encoding the σ3-subunit of AP-3 and Rabex-5 in flies. The current model of how Rabex-5 functions in endosomal docking/fusion events is defined as follows: (1) Rab5-GDP (inactive state) is delivered to the membrane where Rabex-5 activates Rab5 by facilitating nucleotide exchange to Rab5-GTP, which is stabilized by the Rabex-5/Rabaptin-5 complex. (2) Activated Rab5 recruits a tethering factor and Rab5 effector, known as EEA1, which mediates vesicle docking by interacting with syntaxin-13. (3) Syntaxin-13 association with other SNARE proteins
results in vesicle fusion [12]. In addition to the VPS9 domain, Rabex-5 has a ZnF domain that displays ubiquitin ligase activity. It has been shown that Rabex-5 binds ubiquitin, and this binding is essential for the recruitment of Rabex-5 to endosomal membranes [13]. In this chapter, results demonstrating that Rabex-5 is a neoplastic tumor suppressor gene are presented.
EXPERIMENTAL PROCEDURES

Fly stocks

Flies were raised using standard husbandry procedures [14]. Crosses were carried at 25°C except when stated otherwise. The Drosophila lines used in this study are listed in Table 4.1. Two control lines were used based on the genetic background of the experimental lines: yw or Ub-Gal4.

Mutagenesis by imprecise excision

To generate mutant alleles of the Rabex-5 gene in Drosophila, imprecise excision mutagenesis was done using the fly line EP681. Both P-elements carried in the EP681 fly line (P{EP}CG9139EP681a and P{EP}slmbEP681b) were excised using the Δ2-3 transposase as previously described [15,16]. All lines were analyzed by PCR followed by agarose gel electrophoresis. Deletion in Rabex-5 was analyzed by PCR and sequencing. Precise excision of P{EP}slmbEP681b was verified by PCR and sequencing of only those lines that had an apparent deletion in Rabex-5. Genomic DNA of heterozygous fly lines (excision chromosome over a TM6 balancer chromosome) was analyzed by PCR using a set of primers in which the forward primer (5’-AGCTGTAAGAGTTGAACGC-3’) was unable to hybridize to the expected genomic region in the balancer chromosome likely due to sequence mismatches.
Larvae staging

All larvae staging was done in a set-up designed and established together with Veronica T. Cheli. Experiments were performed using either of two methods: (1) placing the parents in a plastic beaker attached to a food plate (Falcon 60 mm diameter x 15 mm height) or (2) placing the parental cross on a plastic vial glued to a modified petri dish lid and placed on a food plate (Falcon 35 mm diameter x 10 mm height). Fly parental crosses (known as P₀) were placed on the set-up used during a period of 48-72 h of acclimatization and then passed to a new food plate. For each new food plate, egg-laying was allowed for 4-6 h before removing the parental flies. Freshly hatched larvae were collected during a window of 2 h and placed on a new food plate (“day 0” time-point) and staged until the desired age. All experiments were staged together to its control and placed in 25°C temperature-controlled room or incubator.

Immunostaining

Staged larvae were dissected in phosphate-buffered saline (PBS), fixed using 3.7% formaldehyde in PBS for 30 min at room temperature, and then washed three times with PBS. Tissues (e.g. brain, salivary glands and imaginal discs attached to the larva mouth-hooks) were blocked for 1 h at room temperature in 10% Goat Serum (GS) in PBST [PBS with 0.4% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA)]. Primary antibody was diluted in PBST and incubated with the tissues for 2 h at room temperature or overnight at 4°C. After four 15 min washes with PBST, tissues were incubated for 2 h at room temperature or overnight at 4°C with secondary antibodies diluted in 10% GS in PBST. Tissues were washed for 15 min four times with PBST and then washed once with PBS. If DNA staining was used, then after the last PBS wash tissues were
incubated for 10 min in Hoechst 33342 (trihydrochloride, trihydrate; Molecular Probes, Eugene, OR, USA) diluted 1:1000 in PBS and washed with PBS for 15 min before mounting. All tissues were whole-mounted in Vectashield (Vector Laboratories, Burlingame, CA, USA) using two coverslips (0.17-0.25mm thick) covered by a third coverslip on top (as a “bridge”) to prevent flattening the three-dimensional structure.

Primary antibodies were used at the following concentrations: mouse anti-Mmp1 1:50 (1:1:1 mixture of 5H7B11, 3B8D12, 3A6B4 antibodies ([17], Developmental Studies Hybridoma Bank, University of Iowa, Iowa City, IA, USA; mouse anti-tubulin 1:20 (Developmental Studies Hybridoma Bank); guinea pig anti-Dpn 1:1000 (kind gift from A. Brand, University of Cambridge, Cambridge, UK) and rat anti-DE-Cadherin 1:200 (DCAD2, Developmental Studies Hybridoma Bank). The following conjugated secondary antibodies were used at a 1:400 dilution: donkey anti-mouse-Cy3; Donkey anti-rat-Alexa488 and rabbit anti-mouse Alexa488 (Molecular Probes). Donkey anti-guinea pig-Cy3 antibody was used in a 1:1000 concentration (Jackson ImmunoResearch Laboratories West Grove, PA, USA).

Fluorescence and confocal microscopy

Immunostained Drosophila tissues were visualized using fluorescence microscopy using an Olympus Spinning Disc Confocal Inverted Microscope (IX81), equipped with a CCD camera (Hamamatsu ORCA-ER) and analyzed with the SlideBook™ 4.1 image analysis software (Intelligent Imaging Innovations, San Diego, CA).
Confocal images of whole brain hemispheres and optic lobes were captured using a Zeiss LSM 700 Imager M2 (40x Oil objective with Zoom: 0.5) and analyzed using the ZEN 2009 software (Carl Zeiss Inc.). Z-stacks were taken at 2 µm intervals.

Neuroepithelial cell and neuroblast quantification

Series of confocal Z-stacks images from control and Rbx5^{ext} brain hemispheres were saved using a “blind-code” and given to a experienced observer (unaware of the code); this observer then saved these images using another “blind-code” and gave these new files to a second observer to analyze (also unaware of the code). The analysis was done using ImageJ (National Institutes of Health) and consisted of the following steps: (1) Only one brain hemisphere was counted per brain; (2) from each Z-stack the “best” optical slice was selected, based on the ability of detecting the neuroepithelium (NE) to neuroblast (NB) transition; (3) all quantifications were done on 2 separate slices, the one before and the one after the considered “best” slice; (4) the number of NE and NB (from each side of the optic lobe) were counted using the ImageJ Cell Counter plug-in (National Institute of Health); and (5) NE thickness was measured in these two slices by drawing a straight line from the apical to basal side of the cell using the DE-Cadherin staining as guide using the ImageJ measurement tool. Measurements obtained by these two blind-observers were pooled, averaged per brain, and then de-codified and analyzed. Statistical analyses were done using GraphPad Prism 5.0b (GraphPad Software, San Diego, CA, USA).
Immunoblotting and densitometry analysis

For Mmp1 immunobloting analysis, larvae were dissected on a Sylgard plate on top of ice using the following procedure: one larva at a time was placed in cold PBS, cut at ¾ of its length (from anterior side) and dissected to remove the gut and extra fat. Per genotype, 10 dissected larvae were homogenized in 100 µl of Laemmli sample buffer, and the resulting lysate was incubated at 65°C and 95°C for 5 min each and cleared by centrifugation at 13,000 x g. Monoclonal antibody against Mmp1 (described above) was used in a 1:100 dilution. Monoclonal Anti β-actin antibody (1:10000, Clone AC-15, Sigma-Aldrich) was used as loading control.

Mmp1 levels normalized to actin levels were analyzed by densitometry analysis using ImageJ. Briefly, three films were scanned, one for actin expression and two for Mmp1 levels (long and short exposures). Each β-Actin and Mmp1 band was measured using the same area in both yw and Rbx5ex1 samples lanes. Each band was measured a minimum of two times and corrected by its respective averaged background. Mmp1 levels were calculated within an immunoblot-set containing one lane for yw, three lanes for Rbx5ex1 (5, 10 and 12 days old) larvae extracts, by calculating the ratio of the signal in each lane to the sum of all signals. The same was done to calculate β-Actin signal. In order to normalize Mmp1 signal to actin signal, a ratio of Mmp1 signal to actin signal per sample was calculated. These ratios were analyzed by 1-way ANOVA using GraphPad Prism 5.0b.
Larvae counting and statistical analysis

Larvae were staged as previously explained with the following exceptions: (1) the parental cross was not discarded but was passed to fresh food plates (35 mm diameter x 10 mm height) every 24 h a maximum of eight times and (2) to facilitate this process the lid of a small dish (with a hole made) was glued to a vial, this allowed changing the food plate easily without anesthetizing the P₀ cross. Because we found that larvae expressing Rab5(S43N) were sensitive to food dryness, mostly resulting from under-crowding conditions, large P₀ crosses (e.g. 25 females and 24 males) were set-up in smaller food plates. Crosses were designed to yield larvae with the same w; ub-Gal4 genetic background and to have 50% or ~67% of the population carrying the TM6B, p XP Tb¹ balancer chromosome (observed in larvae by a Tubby phenotype). Total number of larvae were counted at day 1 and day 4. The observed/expected ratio was calculated per cross by taking the number of larvae (non-Tubby) at day 4 and dividing it by the total number of larvae at day 1 (Tubby and non-Tubby). Then, that value was multiplied to 2 (if the expected frequency of non-Tubby larvae was 50%) or by 3 (if the expected frequency of non-Tubby larvae was 33%). A minimum of 12 independent plates were generated per cross. Observed/expected ratios were analyzed by a 2-way ANOVA using GraphPad Prism 5.0b.
RESULTS

Generation of a loss-of-function allele for Rabex-5

To better understand the physiological function of Rabex-5, a reverse-genetics approach was undertaken. Taken advantage of the availability of the \(EP^{681}\) fly line, which carries the \(EP^{681a}\) P-element inserted at the 5’-untranslated region (5’-UTR) of \(Rbx5\), mutagenesis by imprecise excision was performed. However, this fly line carried a second P-element (\(EP^{681b}\)) inserted at the 5’-UTR of the \(slmb\) gene. Using the \(\Delta2-3\) transposase [15,16], both \(EP^{681a}\) and \(EP^{681b}\) were excised to generate 165 fly lines that showed no activity of mini-white, an eye-color marker carried by both P-elements. Initial screening for Rabex-5 deletions was done by PCR using primers flanking the \(EP^{681a}\) insertion site (Figure 4.1A, blue arrows). One hundred and fifty-eight lines homozygous for the excision chromosome displayed no change in \(Rbx5\) genomic DNA, indicating that the \(EP^{681a}\) P-element excised in a precise manner. Only 7 out 165 lines were lethal in homozygous form and kept as heterozygous lines. After PCR and gel electrophoresis analysis, I found that the heterozygous line 37A, herein called \(Rbx5^{ex1}\), amplified a smaller genomic region (less than 1.65 kb) than expected (2.164 kb) (Figure 4.1B). This suggested a deletion caused by imprecise excision. Precise excision of the second P-element \(EP^{681b}\) was verified by PCR.

Because line \(Rbx5^{ex1}\) was lethal in homozygous form, the imprecise excision chromosome was kept over the \(TM6B, p^{Xp} T^{b1}\) balancer chromosome (short name: TM6). Contrary to expected for PCR analysis of genomic DNA extracted from heterozygous lines, only one DNA fragment (<1.65 kb) was amplified using the combination of primers R1 and R3 and no wild-type DNA fragment was amplified. I designed a fly cross to obtain offspring carrying this TM6 chromosome over the \(Df(3L)ED202\) deficiency (a 0.5-Mb deletion that includes the
mRbx5 gene) and confirmed that no DNA fragment was amplified from the TM6 chromosome. This unexpected finding allowed me to quickly sequence the Rbx5 genomic region in the Rbx5^{ex1} chromosome using the line in heterozygous form (i.e. over TM6). DNA sequencing revealed that the Rbx5^{ex1} imprecise excision line carries a 32-bp insertion and a 793-bp deletion that removes 2 exons and a portion of the third, including the start codon. The 32-bp insertion represented a remaining fragment of the P-element. Because Rbx5^{ex1} carries a deletion that removes the start codon, this fly line is considered a loss-of-function mutant of Rabex-5.

The Rbx5^{ex1} mutation results in early adult lethality

Viability of homozygous Rbx5^{ex1} flies was determined by quantifying the number of adult flies 24 h after eclosion. Genetic crosses between Rbx5^{ex1} heterozygous flies (one copy Rbx5^{ex1} over TM6) were designed to yield 66.7% heterozygous and 33.3% homozygous Rbx5^{ex1} flies based on prior knowledge of the early lethality of homozygous TM6 flies. To test whether temperature could have an effect on adult viability, experiments were done using 18°C and 25°C as rearing temperatures. Crosses reared at 18°C yield a total of 290 heterozygous flies and no homozygous. Similarly, crosses reared at 25°C yield a total of 257 heterozygous flies and no homozygous. Therefore, under the conditions tested, Rbx5^{ex1} homozygous flies do not survive to adulthood (Figure 4.2).

To test whether adult lethality was caused by affecting Rabex-5 function or by a second-site mutation, the viability of flies carrying one copy of the Rbx5^{ex1} allele over the deficiency Df(3L)ED202 (described above) was assayed. In this case, I designed a cross expected to yield 50% flies hemizygous Rbx5^{ex1} carrying one copy of the deficiency (ex1/Df), and 50% flies heterozygous over the TM6 balancer (TM6/Df) (Figure 4.3). At 25°C, all adults were TM6/Df.
To document the stage at which $Rbx5^{ex1}$ mutants were dying, control and mutant flies were examined through development, starting from newly-hatched larvae. Normal development of *Drosophila melanogaster* is a well documented process, and the number of days that it takes an embryo to grow into an adult fly depends on the rearing temperature [14]. Under the experimental conditions used, controls flies reared at 25°C had a life cycle of about 10 days. After egg-hatching, the larval stage lasted ~5 days divided into 1st, 2nd and 3rd instar. Then larvae transformed into pupae for ~4 days and after which adult eclosed from the pupal case (Figure 4.4).

Rbx5^{ex1} mutant flies at 3 days old (2nd instar larvae) and 5 days old (late 3rd instar larvae) seemed morphologically normal. (Figure 4.2A-B). At 7 days, control flies entered the pupal stage but *Rbx5^{ex1}* mutants were still in larval stage. Two days later, *Rbx5^{ex1}* mutants displayed a “giant larvae” phenotype (Figure 4.2C). Eventually, 13-day-old *Rbx5^{ex1}* mutants died as abnormal prepupae (Figure 4.2E). The formation of melanotic tumors seen as dark spot under the pupal case was also noticed (Figure 4.2F)

$Rbx5^{ex1}$ adult lethality can be rescued by ubiquitous transgenic expression of Rabex-5

To rescue *Rbx5^{ex1}* early adult lethality, Veronica Cheli, a former postdoctoral fellow in the laboratory generated three independent transgenic lines (*UAS-Rbx5* Line1, Line 3 and Line 5) for expression of wild type Rabex-5 using the yeast GAL4/UAS system. Briefly, the Upstream Activator Sequence (*UAS*) is an enhancer to which the transcription factor GAL4 binds to activate transcription. The expression of a gene of interest (cloned downstream of *UAS*) can be controlled in a temporal and spatial fashion depending on the expression pattern of *GAL4* [18]. Ubiquitin-Gal4 (*Ub-Gal4*) was used to drive ubiquitous expression of Rabex-5 from *UAS-Rbx5*
lines 1, 3 and 5, in genetic crosses designed to yield 33.3% homozygous $Rbx5^{ex1}$ mutant flies (Figure 4.5). Viability of adult flies was quantified within 24 h of eclosion and expressed as an observed/expected ratio of $Rbx5^{ex1}$ flies normalized by the total number of progeny. The ubiquitous expression of all three transgenes rescued $Rbx5^{ex1}$ adult lethality (Figure 4.5A). No overall morphological defect was observed in rescued adult flies as compared to control (Figure 4.5B). Together with the results shown in Figures 4.2 and 4.3, these results indicate that the lethality observed in $Rbx5^{ex1}$ flies is due to the absence of Rabex-5 and not due to a second-site mutation.

$Rbx5^{ex1}$ mutant larvae show tissue abnormalities

When the internal morphology of the $Rbx5^{ex1}$ mutant larvae was examined, multiple tissues were found to be affected, including the wing imaginal discs. Wing imaginal discs are epithelial sacs found in larvae that eventually develop into the adult fly wing [19]. From 20-50 cells set aside during embryogenesis, proliferation occurs during larval stages giving rise to 20,000-50,000 cells. This proliferation stops as hormonal changes promote entry into the pupal stage [20]. Wing imaginal discs serve as a good model for studying the mechanisms behind tissue size determination and growth control [19,20,21].

To study the overall morphology of $Rbx5^{ex1}$ mutant wing imaginal discs, tissues were dissected from staged larvae at 5, 10 and 12 days after larvae hatching and stained for DNA (Figure 4.6A-D). Five-day-old mutant wing discs were noticeably smaller than age-matched controls (Figure 4.6B). Ten- and 12-day old mutant wing discs showed an increase in tissue size, particularly becoming a “spherical” tissue (instead of a flat tissue like in control larvae) with an apparent loss of the normal organization (Figure 4.6C-D). I next tested the possibility that these
mutant wing discs could be expressing the Matrix Metalloproteinase 1 (Mmp1), which is a known neoplastic transformation marker in flies (Figure 4.6E-H) [17,22]. Based on published Northern Blot analysis, Mmp1 expression is normally restricted to a small band of cells in the wing imaginal discs [17]. The immunostaining did not show detectable levels of Mmp1 protein in controls wing discs (Figure 4.6E). In contrast, mutant wing discs from 5-, 10- and 12-day old larvae displayed high levels of Mmp1 (Figure 4.6F-H). To examine this observation further, I analyzed Mmp1 expression by immunoblot analysis of larval extracts (Figure 4.7). Five-day-old control and 5-, 10- and 12-day-old mutant larval extracts were prepared as explained in the Experimental Procedures section; normalization was first done using Coomassie staining and then by β-actin signal. Mmp1 was detected in all samples with the highest levels in the mutant larval extracts (Figure 4.7A). To quantify these effects, three immunoblots were subjected to densitometry analysis. Statistical analysis showed a significant increase in Mmp1 levels for 5-day-old ($P < 0.0001$) and 10-day-old ($P < 0.05$) mutant larval extracts, but not for the 12-day-old time point (Figure 4.7B).

Another tissue considerably affected in the $Rbx5^{ex1}$ mutant larvae was the brain (Figure 4.8). Whole-mount bright-field images of five-day-old mutant larvae revealed a significant smaller brain compared to age-matched controls (Figure 4.8A-B). At later stages (10 and 12 days) mutant brains were larger and, like in the case of the wing imaginal discs, there was a loss of tissue organization (Figure 4.8C, B). At the latest staged examined (12 days) mutant brains were harder to dissect due to their irregular shape (e.g. brain lobes of different sizes, big brain lobes, longer ventral ganglion) and their apparent “fusion” with the imaginal discs surrounding them.
The small size of the Rbx5^{ex1} brain hemispheres at 5 days of age suggested a potential developmental delay. One possibility was that at earlier larval stages Rbx5^{ex1} mutants had immature but morphologically normal brains; and later in their development the brains became abnormal, particularly the optic lobe. The Drosophila optic lobe is the structure of the brain that in the adult fly will integrate the primary visual information coming from the compound eye [23]. The optic lobe is a highly organized and complex structure composed of two distinct epithelial proliferation centers: outer optic anlage (also known as the outer proliferation center) and the inner optic anlage (also known as the inner proliferation center) [24]. These centers give rise to distinct neuronal layers known as the medulla, lamina and lobula [23,24]. Of particular interest is the region of neuroepithelial to neuroblast (NE-NB) transition (or NE-NB conversion) which is found within the medial outer optic anlage and is important for the formation of the distal medulla. Briefly, NE-NB transition occurs during the 2nd instar larva stage when symmetrically dividing neuroepithelial cells transition into asymmetrically dividing medulla neuroblasts [23,24]. These neuroblasts will give rise to a self-renewing neuroblast and one ganglion mother cell that divides again into two medulla neurons [25]. Late in larval and early pupal stages, the pools of neuroepithelial cells get depleted as a consequence of the formation of neuroblasts [23].

To examine the optic lobe structure of Rbx5^{ex1} mutant, particularly at the NE-NB transition zone, I decided to do an immunostaining of brains at 5, 7, 8 and 9 days of age with anti-DE-cadherin (a marker for neuroepithelial cells) and anti-Dpn (a marker for neuroblasts) [24]. As shown in Figure 9A, G, in a normal 5-day-old (late 3rd instar) brain the NE-NB transition could be clearly identified using these two markers. At 5 days, mutant optic lobes seemed morphologically normal but derived from a younger larva (perhaps at the end of 2nd/early
3rd instar) with a neuroepithelium capable of transitioning into neuroblasts (Figure 9B, H).

Nevertheless, the thickness of the neuroepithelium was larger than expected (Figure 9N). At 7 days, mutant optic lobes had grown considerably. Additionally, a great number of neuroblasts were observed without a decrease in the number of neuroepithelial cells, and the neuroepithelium thickness remained abnormally large (Figure 9C, I, O). At 8 days, I observed the same phenotypes seen at 7-day-old (Figure 9D, J, P). Mutant brains at 9 days of age showed the highest variability of phenotypes, including the number of neuroblasts and neuroepithelial cells per brain as well as overall morphology. Figures 9E-R shows examples of two mutant brains. Although the size of both brains was similar, Brain 1 had fewer neuroblasts than Brain 2; both brains had abnormally high number of neuroblasts compared to control. Differences in the number of neuroepithelial cells, neuroblasts and neuroepithelial thickness were quantified (Figure 4.10). Quantitative differences are in agreement with the observations made for the immunostaining experiment. Note that the increased thickness of the neuroepithelium (based on Z-stacks images) suggests that there were multiple layers of NE cells in contrast to a single layer in control brains; therefore, the number of these cells was probably underestimated.

Structure-function analysis of Rabex-5 reveals that its Rab5-activation activity is important for fly viability

An interesting question was regarding which domain or domains in Rabex-5 protein were necessary for rescuing the Rbx5^{ex1} adult lethality, and tissue abnormalities observed. To address this question, Veronica Cheli (former postdoctoral fellow in this laboratory) made the following transgenic constructs: (a) Rabex-5 wild type (WT); (b) Rabex-5 ΔZnF, containing a deletion in amino acids 1-47 that includes the Zinc-finger (ZnF) domain, which binds ubiquitin and displays
Ub protein ligase (E3) activity; (c) Rabex-5 EET-VPS9, a truncated protein containing amino acids 81-400 harboring the Early endosomal targeting domain (EET) that includes a helical bundle (HB) and the VPS9 domain that, together with the HB domain, forms the Rab5/Rab21Guanine nucleotide exchange factor (GEF) catalytic core; (d) Rabex-5 ΔCT, a deletion of the C-terminal (CT) region that includes a proline-rich motif (LPxPLxPxV); (f) Rabex-5 Δ[L-CH-CT]), a deletion of the linker (L) region and the C-terminal helical (CH) containing the Rabaptin-5-binding site, and CT; and (g) Rabex-5 (D316A), Rabex-5 with substitution of aspartic acid 316 to alanine resulting in a GEF inactive mutant (Figure 4.11, Top). The design of these constructs was mostly based on experiments done using the human counterpart of Rabex-5 by the group of Juan S. Bonifacino and data from Zhu et al. [13,26]. Each transgenic construct was inserted at the same chromosomal position 58A using the ΦC31-based integration system [27].

Using the GAL4/UAS system, the ability of these constructs to rescue the homozygous Rbx5^{ex1} adult lethality was tested after driving their expression ubiquitously using <i>Ub-Gal4</i> driver. Genetic crosses were designed to yield 33.3% of homozygous Rbx5^{ex1} flies carrying one copy of the transgene and one copy of the driver. Ubiquitous transgenic expression of Rabex-5 WT, ΔZnF and ΔCT constructs rescued adult lethality; while Rabex-5 variants EET-VPS9, Δ[L-CH-CT] and D316A did not rescue (Figure 4.11).

Genetic interactions between Rbx5^{ex1} and Rab5-dominant-negative transgenic expression

The results described above suggested that Rbx5^{ex1} adult fly lethality was likely due to decreased Rab5 function. To further investigate this, it was pertinent to ask whether the
ubiquitous expression of Rab5(S43N)-dominant-negative construct would phenocopy the absence of Rabex-5. Genetic crosses were designed to obtain progeny carrying the ubiquitous driver (Ub-Gal4) and one copy of the Rab5(S43N) transgene. Adult flies ubiquitously expressing the Rab5(S43N) transgene were lethal. Staged larvae were dissected; tissues stained for DNA and compared side-by-side to control and Rbx5ex1 homozygous mutants (Figure 4.12). Bright field images revealed that a 5-day-old Rab5(S43N) transgenic larva has a slightly smaller brain compared to an age-matched control but bigger in size than an Rbx5ex1 brain (Figure 4.12C). Similar to Rbx5ex1 mutant brains, 10- and 12-day-old Rab5(S43N)-expressing larvae showed an increased size compared to control (Figure 4.12D-E). Higher magnification of the boxed region in Figures 4.12A-E, shows that the structure of the brain hemispheres in Rab5(S43N)-expressing larvae is similar to Rbx5ex1 mutant, particularly when they are 5 days old (Figure 4.12F-J).

Similarly to the experiment showed on Figure 4.6A-D, the overall morphology Rab5(S43N)-expressing larvae wing imaginal discs at 5, 10 and 12 days after larvae hatching was analyzed (Figure 4.13). The wing imaginal discs of 5-day-old Rab5(S43N)-expressing larvae were smaller in size compared to control, but the normal shape was preserved; in contrast to the 5-day-old Rabex-5 mutant in which the wing disc was small and highly disorganized Figure 4.13A-C). Interestingly, the wing imaginal discs of these transgenic mutants at 10 and 12 days were seemingly unaffected (Figure 4.13D-E).

To test for genetic interactions between the Rbx5ex1 allele and over expression of Rab5(S43N), six genetic crosses were generated. These crosses produced progeny carrying one copy of the ubiquitous Gal4 driver (Ub-Gal4); none, one or two copies of Rbx5ex1, and none or one copy of the Rab5(S43N) transgene (Figure 4.14). The total number of larvae at day 1 and 4 was counted, and the results were expressed as observed/expected ratio of the larvae survivors.
(with the desired genotype) at day 4 relative to the total counted at day 1. Statistical analysis by two-way ANOVA showed significant differences between the mean larvae counts having the $Rbx5^{ex1}$ allele ($F = 35.70, P < 0.0001$), Rab5(S43N) expression ($F = 484, P < 0.0001$), and the interaction ($F = 3.70, P < 0.03$). No significant difference in the ratio was found when comparing larvae with wild type (+/+) alleles to larvae carrying one copy of $Rbx5^{ex1}$ (ex1/+)(Bonferroni post-test: $P > 0.05$). Similarly, no significant difference was observed for these same genotypes (+/+ vs. ex1+/+) expressing the Rab5(S43N) transgene (Bonferroni post-test: $P > 0.05$).

Interestingly, significant differences were found when comparing larvae with two normal copies (+/+) versus two $Rbx5^{ex1}$ copies (ex1/ex1) in the absence and presence of the Rab5(S43N) a transgene (Bonferroni post-test: $P <0.001$ for both). When comparing $Rbx5^{ex1}$ heterozygous versus homozygous mutants with or without Rab5(S43N) expression, statistically significant differences were found (Bonferroni post-test: $P <0.001$ for both). In addition to the noticeable reduced viability of larvae overexpressing Rab5(S43N) construct in a homozygous $Rbx5^{ex1}$ background (black arrow in Figure 4.14A), these larvae were particularly small at 5 days old (white arrows in Figure 4.14B). These observations suggest a functional interaction between Rab5(S43N) and Rabex-5.
DISCUSSION

Experiments described in this chapter provide evidence for an important role of Rabex-5 in tissue growth and organization. I found that homozygous loss-of-function mutation in Rbx5 results in lethality before reaching adulthood. Detailed analysis of the life cycle revealed that Rbx5^{ex1} mutants undergo an extended larval period, resulting in a “giant larvae” phenotype, after which they reach an abnormal prepupal stage and die. These phenotypes were rescued by transgenic expression of Rabex-5. Two additional alleles for Rbx5, generated in a separate imprecise excision mutagenesis carried out by Kevin D. Blau (a former undergraduate student researcher in this laboratory), displayed identical phenotypes, including abnormal morphology of wing imaginal discs and brain.

At 3rd instar, Rbx5^{ex1} larvae exhibited growth abnormalities in tissues such as the wing imaginal discs and brain. At 5 days, mutant wing discs were smaller, and at later days (10 and 12 days) they became abnormally larger, “spherical” and disorganized. Immunostaining of mutant wing imaginal discs demonstrated an increased in the levels of Mmp1, a metalloproteinase which is normally expressed at low levels in wings discs but expressed at high levels in neoplastic tissue [17,22,28]. Mmp1 was detected in larval extracts prepared from control genotype and analyzed by immunoblotting; this was likely because these extracts were prepared from ¾ of the larvae and included not only wing imaginal discs but also other tissues where Mmp1 is normally expressed. Nevertheless, increased Mmp1 levels were detected by immunoblot analysis of extracts prepared from Rbx5^{ex1} larvae.

In the last decade, Drosophila has emerged as a model for the study of tumor formation due to the discovery of tumor suppressor genes (TSGs) that when mutated, result in excessive
tissue growth [19,20]. Albeit the first TSG was discovered in the late 1960’s [29], recent advances in the field have provided evidence for the relevance of studying these genes in understanding the mechanisms behind human cancer [20]. *Drosophila* TSGs are divided into two groups, hyperplastic TSGs and neoplastic TSGs. Mutations in hyperplastic TSGs are characterized by tissue overgrowth with, in the case of imaginal discs, retaining epithelial structure and being capable of differentiation into adult structures. Over a dozen of hyperplastic TSGs have been identified; mutations in these genes affect cell size (e.g. *pten, Tsc1, Tsc2*), increased growth rate combined with defects in apoptosis (e.g. *hippo, Salvador, mats, warts*) and growth-regulation pathways (e.g. *archipielago*) [19]. On the other hand, mutations in neoplastic TSGs are characterized by overgrown tissue with disrupted epithelial structure, inability to differentiate into adult structures, and invasive characteristics (i.e. metastasis) [19,20]. Thus far, seven neoplastic TSGs and at least seven other complementation groups have been identified [19,22]. Three of these genes, *lethal giant larvae (lgl), discs-large (dlg)* and *scribble (scrib)* are classified as “junctional scaffolding” neoplastic TSGs given that each gene encodes a protein that forms a complex important for epithelial polarity [19,20]. Four others, *Rab5, avalanche, tsg101* and *vps25* are classified as “endocytic” neoplastic TSG since the products of these genes are involved in the endocytic machinery [19]. Interestingly, zygotic mutants of *lgl, dlg* and *scrib* are able to survive to late 3rd instar larvae, where they develop into “giant larvae.” Instead, *Rab5, avalanche, tsg101* and *vps25* homozygotes die before 1st instar larval stage [10,22]. Just recently, several studies have revealed some of the mechanism resulting in tumor growth for some of these mutants (reviewed in [19,20]). Due to the similarities between the known neoplastic TSGs and the *Rabex-5* mutant phenotype described in this chapter, in addition to the known function of its product in endosomal trafficking, *Rabex-5* may be classified as “endocytic” neoplastic TSG.
In 2010, Yan et al. proposed that increased body size, extra posterior cross veins in adult wings, and overgrown eyes of Rabex-5 knockdown mutant flies were due to the ubiquitin ligase activity in the ZnF domain and not the GEF activity of the Rabex-5 protein [30]. They suggested a mechanism in which Rabex-5 controlled Ras signaling by direct ubiquitination, resulting in its translocation to endosomal compartments [30]. Simultaneously, Xu et al. showed in COS-1 cells that activated Rab5 and Rin1 (another GEF for Rab5) are required for Rabex-5-dependent Ras ubiquitination [31]. They showed that Ras ubiquitination was independent of a functional Rabex-5 GEF domain. Their data suggested a possible model in which Rab5 is activated by RIN1, and GTP-bound Rab5 recruits Rabex-5/Rabaptin-5 complex to endosomal membranes. In the endosome, Rabex-5 ubiquitinates Ras, and this modification retains the Ras pool at this location, culminating in another level of regulation [31]. Evidence from the rescue experiments using Rabex-5 constructs presented in this chapter suggests that at least for adult viability the ZnF domain is dispensable. Moreover, it is shown that Rabex-5 with a catalytically inactive GEF was unable to rescue adult viability. In a separate set of experiments, Veronica T. Cheli showed in this laboratory that brains from transgenic Rabex-5 ΔZnF-expressing larvae have normal morphology compared to the abnormal brain of a Rabex-5 D316A-expressing larvae. This suggests a possible model in which Rabex-5 has tissue-specific functions that could be either dependent on the effectors available in certain types of cells or the activation of specific signaling pathways, or both. For example, in the brain Rabex-5 could have a non-redundant role in Rab5 activation, while in the wing its main role could be the regulation of the Ras-ERK signaling pathway via its ubiquitin ligase function (and the Rab5 activation function could be compensated by other GEFs). In support of this idea, it is shown that Rab5(S43N)-expressing larvae had overgrown brains with normal-shape wing imaginal disc.
Genetic interaction experiments using \(Rbx5^{esl}\) mutants and Rab5(S43N)-expressing flies, showed that, while only a fraction of Rab5(S43N)-expressing mutants are able to reach late larval stage; the combination of both the mutation and the dominant-negative approach was more severe, with not only increased larvae lethality but also drastically reduced larval size. This suggests a potential compensatory mechanism in the Rabex-5 mutant, whereby additional GEFs (i.e. VPS9-containing proteins) are capable of activating Rab5 in other tissues including the brain. In addition to Rabex-5, the \textit{Drosophila} genome contains at least three additional genes encoding VPS9-domain containing proteins, \textit{CG1657}, \textit{sprint} and \textit{CG7158} [8]. Thus far, no mutant fly is available for \textit{CG1657}. Sprint is the fly counterpart of the human proteins RIN1, RIN2, RIN3 and RINL. RIN1 activates Rab5 and interacts with EGFR stimulating its endocytosis [32]. Interestingly, Jekely \textit{et al.} found that sprint loss-of-function mutants are viable and fertile with a phenotype in border cell migration only when EGFR was overexpressed [32]. CG7158-PA is recognized as the counterpart for the human protein Alsin, associated to a neurodegenerative disorder, but so far no mutant fly has been generated [33].

An important role for \textit{Rabex5} in optic lobe development is shown. Optic lobe development has been shown to be affected in others neoplastic TSGs mutants such as \textit{lgl} [20,29]. However, most of the studies focused on the central brain neuroblasts. Lee \textit{et al.} showed that \textit{lgl} and \textit{pins} regulate larval neuroblast self-renewal [34]. In their studies with zygotic mutants, they saw an increased number of neuroblasts in \textit{lgl} mutant and a decrease in \textit{pins} mutants [34]. Alteration in the number of neuroblasts in these mutants was due to altering asymmetric division in central brain neuroblasts [34]. This is different from \textit{Rabex-5} mutant brains because I did not detect any striking difference in central brain neuroblasts (when immunostained using anti-Dpn) but detected a difference in the optic lobe neuroblasts.
The switch from symmetrically dividing neuroepithelial cells to asymmetrically dividing neuroblast is a complex process regulated by several polarity proteins [35], proneural genes [25], and signaling pathways including Notch, JAK/STAT, Fat-Hippo and EGFR/Ras [25,36,37,38,39]. At the moment of writing this chapter, I could not identify in the literature any other mutant affecting symmetric and/or asymmetric division that phenocopied the abnormalities observed in Rabex-5 mutant optic lobe [34,36,37,38,39,40]. For instance, mutations in lethal(3) malignant brain tumor (L(3)mbt) result in increased number of Dpn-positive cells in the central brain, similarly to lgl mutants, and severe overproliferation of neuroepithelial cells (shown by DE-Cadherin staining) but unaffected localization of polarity determinant in the neuroblasts. All these phenotypes were due to affecting Salvador-Warts-Hippo pathway [40]. These are not necessarily the phenotype observed in Rbx5^{ext} brains. I found that the optic lobe was the main structure within the brain that continuously growed compared to the central brain. This growth was due to abnormal number of neuroepithelial cells and neuroblasts. I found that neuroepithelium thickness was increased in the mutant at all the stages studied. Based on my observations, a hypothetical model that could explain the brain phenotype is that the neuroepithelial cells and NB are unable to stop dividing, resulting in additional mitose, but because the machinery that promotes the NE-NB transition is presumably unaffected, NB gives rise to progeny eventually becoming neurons. In turn, because the abnormally increased number of cells tries to fit in the same area, the optic lobe enlarges. This model is supported by the observation that, in older mutant brains, the neuroepithelium sometimes fold in unexpected ways and its large size overwhelms the size of the central brain. A modification of this hypothetical model would be that mutant neuroepithelial cells fail to divide normally on the other side of the neuroepithelium, which divides to form lamina progenitors. This would suggest that Rabex-5
function could be involved in the delivery of a signal or signals to stop proliferation in both neuroepithelial cells and neuroblast from the outer optic anlage of the optic lobe and not the central brain.

My observations allow me to speculate against an increase in the growth rate. Younger Rabex-5 mutants could have a relative normal number of neuroepithelial cells comparable to a younger than 5 days control larva, but because this “normal” number of neuroepithelial cells is trying to fit in a smaller optic lobe area, neuroepithelium thickness is increased. Nevertheless, the number of neuroblasts at this stage is similar to control. Because larval period is extended, this could allow additional mitoses that in a normal fly are avoided due to the entry to the pupal stage. Thus, I propose that it is not that the mutant neuroblasts and neuroepithelial cells divide faster but that they never stop dividing during an extended larval stage.

Recently, in vivo experiments done in mouse liver have shown Rab5 to be the main Rab GTPase in endolysosome compartments [7]. Because results shown here demonstrate that the Rabex-5 GEF domain is important for Rab5 function, at least in viability and brain development, it is not outrageous to think that certain signaling pathways may be affected in Rabex-5 mutants. Overall, this chapter shows experiments suggesting a very interesting mechanism in which Rabex-5 is crucial for viability and tissue organization and, because of its distinctive domain architecture, could have tissue-specific functions ranging from a “general” role in the activation of Rab5 at endosomal compartments to the involvement in a very specific signaling pathway controlling proliferation of neuroepithelial cells and neuroblasts of the optic lobe. Future experiments should focus on understanding the contribution of each Rab5 GEF in tissue organization and growth, and whether these roles are dependent on Rab5 function or independent of the VPS9 domain.
Table 4.1. *Drosophila* lines used in Chapter 4 experiments.

<table>
<thead>
<tr>
<th>Short name</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>yw</td>
<td>yw</td>
<td>D.Krantz (UCLA)</td>
</tr>
<tr>
<td>(\Delta 2-3)</td>
<td>(y^{1} w^{*}; ry^{506} Sb^{1} P[\Delta 2-3]99B / TM6)</td>
<td>Bloomington #3664*</td>
</tr>
<tr>
<td>(Df(3L)ED202)</td>
<td>(w^{1118}; Df(3L)ED202, P[3';RS5+3.3']ED202 / TM6C, cu^{l} Sb^{1})</td>
<td>Bloomington #8051*</td>
</tr>
<tr>
<td>(Rbx5^{exl}) (TM3)</td>
<td>(yw; Rbx5^{exl} / TM3, Sb^{l})</td>
<td>This study</td>
</tr>
<tr>
<td>(Rbx5^{exl}) (TM6)</td>
<td>(yw; Rbx5^{exl} / TM6B, p^{XP} Tb^{l})</td>
<td>This study</td>
</tr>
<tr>
<td>(UAS-Rbx5) (Line 1)</td>
<td>(yw; P[Car-y-UAS-Rbx5]1)</td>
<td>V.Cheli (this lab)</td>
</tr>
<tr>
<td>(UAS-Rbx5) (Line 3)</td>
<td>(yw; P[Car-y-UAS-Rbx5]3)</td>
<td>V.Cheli (this lab)</td>
</tr>
<tr>
<td>(UAS-Rbx5) (Line 5)</td>
<td>(yw; P[Car-y-UAS-Rbx5]5)</td>
<td>V.Cheli (this lab)</td>
</tr>
<tr>
<td>(Ub)-(GAL4)</td>
<td>(w,ub)-(Gal4)</td>
<td>M.Guo (UCLA)</td>
</tr>
<tr>
<td>(Ub)-(Gal4); (Rbx5^{exl}) / TM6</td>
<td>(w,Ub)-(Gal4); (Rbx5^{exl} / TM6B, p^{XP} Tb^{l})</td>
<td>This study</td>
</tr>
<tr>
<td>(WT)</td>
<td>(yw; UAS-Rbx5WT; Rbx5^{exl} / TM6B, p^{XP} Tb^{l})</td>
<td>V.Cheli (this lab)</td>
</tr>
<tr>
<td>(\Delta ZnF)</td>
<td>(yw; UAS-Rbx5\Delta ZnF; Rbx5^{exl} / TM6B, p^{XP} Tb^{l})</td>
<td>V.Cheli (this lab)</td>
</tr>
<tr>
<td>(EET-VPS9)</td>
<td>(yw; UAS-Rbx5 EET-VPS9; Rbx5^{exl} / TM6B, p^{XP} Tb^{l})</td>
<td>V.Cheli (this lab)</td>
</tr>
<tr>
<td>(\Delta CT)</td>
<td>(yw; UAS-Rbx5\Delta CT; Rbx5^{exl} / TM6B, p^{XP} Tb^{l})</td>
<td>V.Cheli (this lab)</td>
</tr>
<tr>
<td>(\Delta [L-CH-CT])</td>
<td>(yw; UAS-Rbx5\Delta [L-CH-CT]; Rbx5^{exl} / TM6B, p^{XP} Tb^{l})</td>
<td>V.Cheli (this lab)</td>
</tr>
<tr>
<td>(D316A)</td>
<td>(yw; UAS-Rbx5D316A ; Rbx5^{exl} / TM6B, p^{XP} Tb^{l})</td>
<td>V.Cheli (this lab)</td>
</tr>
</tbody>
</table>

* Bloomington # refers to fly lines available from the Bloomington Drosophila Stock Center at Indiana University (Bloomington, IN).
Figure 4.1. Imprecise excision mutagenesis resulted in a null allele for Rabex-5. (A) Scheme depicting the structure of the Rabex-5 (Rbx5) gene. Gray boxes represent untranslated regions (UTRs), red boxes represent the coding sequence and a diamond-shape represent the P-element (EP681a) inserted at position -29 from the initiation of transcription site. Rbx5^{ex1} is a mutant allele that contains a 32-bp insertion (half-diamond) and a 793-bp deletion (dashed lines) removing the start codon. (B) Genomic DNA extracted from adult flies of the indicated genotypes, was PCR-amplified using the primers depicted as blue arrows in A. Gel electrophoresis of the PCR products shows the expected size (2,164 bp) for wild type genomic DNA, no band for EP681 line (due to the P-element size of ~8 kb), a smaller band for the heterozygous line Rbx5^{ex1}/TM6 indicative of a deletion (black arrow) and 2,164-bp band for a precise excision line.
Figure 4.2. *Rbx5^{ex1}* flies do not survive to adulthood. Total number of adult offspring coming from a sibcross between flies carrying *Rbx5^{ex1}* allele over a TM6 balancer chromosome (TM6) was counted. One third (33.3%) *Rbx5^{ex1}* homozygous flies (*ex1/ex1*) was expected but no adult was observed (represented by an X) compared to *Rbx5^{ex1}* heterozygous siblings (*ex1/TM6*). Similar results were obtained using different rearing temperatures (18°C and 25°C) and between male (gray bars) and female (orange bars) flies.
Figure 4.3. Flies heterozygous for Rbx5^{ex1} over a large deletion, do not survive to adulthood.

Heterozygous flies carrying Rbx5^{ex1} allele over a TM6 balancer chromosome (TM6) were crossed to a line carrying the deficiency Df(3L)ED202 over a balancer chromosome. For those flies carrying the deficiency, I expected to have 50% of each genotype as follows: hemizygous for Rbx5^{ex1} carrying one copy of the deficiency (ex1/Df); and flies with a single copy of the deficiency over a TM6 balancer chromosome (TM6/Df). No ex1/Df flies survived to adulthood (represented by an X) compared to TM6/Df flies. Flies were reared at 25˚C and no difference between male (gray bar) and female (orange bar) counts was observed.
Figure 4.4. *Rbx5*^{ex1} flies die as an abnormal prepupa. (A-E) *Rbx5*^{ex1} larval development was analyzed side-by-side to control to determine at which stage they were dying. (A) 3-day-old *Rbx5*^{ex1} larvae looked very similar to control and (B) the same occurred at 5 days old. (C) At 9 days old, *Rbx5*^{ex1} was at a larval stage whereas control flies entered the pupae stage. (D) Control flies eclosed from the pupal case become an adult fly, but *Rbx5*^{ex1} still remained at a larval stage. (E) *Rbx5*^{ex1} died as abnormal prepupae. (F) Melanotic tumors were observed in many *Rbx5*^{ex1} prepupae. Shown here is an example of melanotic tumors detected as dark spots under the larval cuticle (dashed box is magnified). Scale bar represents 1 mm.
Figure 4.5. Rescue of the lethality of $Rbx5^{ext}$ flies by ubiquitous expression of a Rabex-5 transgene. (A) Ubiquitin-GAL4 (Ub-GAL4) was used to drive ubiquitous expression of Rabex-5 from three independent genomic insertions lines (UAS-$Rbx5$ Line 1, Line 3 and 5). All crosses were designed to yield 33.3% $Rbx5^{ext}$ homozygous flies. For each genotype, at least 500 adult flies were counted. Counts were normalized to the total number of progeny obtained per parental cross) and are shown as the observed/expected ratio of $Rbx5^{ext}$ adult flies. $Rbx5^{ext}$ flies carrying a copy of Ub-GAL4 do not survive to adulthood (represented by an X). Ubiquitous expression of the three UAS-$Rbx5$ transgenes rescued the lethality. (B) Example of two rescued male flies next to yellow white (yw) male flies (here used as a control). Except from the difference in genetic backgrounds (yellow and tan body color), these flies seemed apparently healthy with no obvious developmental defect. Scale bar represents 1 mm.
Figure 4.6. *Rbx5*^ex1^ larvae have abnormal wing imaginal discs with detectable levels of a neoplastic transformation marker. (A-H) Mutant and control larvae were dissected at the days indicated, and the wing imaginal discs immunostained for the neoplastic transformation marker, Matrix Metalloproteinase 1 (Mmp1) and DNA (Hoechst). (A) A control wing disc showed the characteristic shape of this tissue. (B) A 5-day-old *Rbx5*^ex1^ wing imaginal disc appeared smaller than the age-matched control in (A). (C-D) Ten- and 12-day-old mutant larvae developed wing discs that increased in size but showed a loss in tissue organization (E) Mmp1 expression was normally low in control wing discs. (F-H) Five-, 10- and 12-day-old *Rabex*-5 mutant imaginal discs expressed high levels of Mmp1 as detected by immunostaining. Scale bars represent 100 μm.
Figure 4.7. Five and ten-day-old Rbx5^{ex1} larvae expressed relatively high Mmp1 levels as detected by immunoblot analysis. (A) To assess Mmp1 levels, larval extracts were prepared and analyzed by immunoblot. β-actin was used as loading control. Highest Mmp1-expression was observed for larval extracts prepared from 5-day-old Rbx5^{ex1} mutants. (B) Mmp1 and β-actin levels from three immunoblots experiments were analyzed by densitometry. Bars represent Mmp1 levels normalized to β-actin levels. A significant difference in Mmp1 levels was observed for 5- and 10-day-old mutant larvae. One-way ANOVA followed by Dunnett’s test comparing mutants to control: *P < 0.05 and ***P < 0.001.
Figure 4.8. *Rbx5*^{ex1} mutant larvae displayed brain abnormalities. (A-L) Staged larvae on the days indicated were dissected, and their brains immunostained with an antibody against tubulin and Hoechst (to visualize DNA). Bright-field and fluorescence images were taken on whole-mount brains. (A) A normal larval brain at 5 days of age was ~500 µm long and the diameter of each brain hemisphere (found within boxed region) was ~200 µm. (B) Mutant brains at 5 days were significantly smaller, particularly the brain hemispheres (found within boxed region) which were <100 µm in diameter. (C and D) At 10 and 12 days, mutant brains reached a similar size to control, but became highly disorganized. (E-L) Higher magnification of boxed region in (A-D) shows the structure of a normal 5-day-old and mutant larval brain hemispheres using DNA staining (E-H) and merged images of tubulin and DNA (I-L). Scale bars represent 100 µm.
(Figure 4.9 continues on next page)
Figure 4.9. Abnormal optic lobe development in Rbx5ext1 larvae. (A-F) Brain hemispheres of control and Rbx5ext1 mutant larvae were immunostained using antibodies against DE-Cadherin to allow the visualization of the optic lobe structure, in particular the neuroepithelium (NE). (G-L) Dpn staining was used for the visualization of neuroblasts (NB). Boxed regions in (A-L) are magnified in panels (M-R) to show DE-cadherin staining in red, Dpn staining in cyan, the NE-NB transition zone (white arrow) and outlined NE (white lines). (A/G boxed regions; and M) Control brain at 5 days showed a relatively small neuroepithelial region (outlined) and ~10 neuroblasts (cyan). (B/H boxed regions; and N) Five-day-old mutant NE was capable of transitioning into NB, but notice the increased NE thickness. (C/I and D/J boxed regions; and O-P) Mutant brains at 7 and 8 days of age showed a thick NE and many NB. (E/K and F/L boxed regions; and Q-R) Brains from two 9-day-old larvae showed high variability in NB and NE numbers. Scale bars represent 100 µm (A-L) or 10 µm (M-R).
Figure 4.10. *Rbx5*mutant larvae have abnormal number of neuroepithelial cells and neuroblasts in the optic lobe. (A) Quantification of neuroepithelial (NE) cells, (B) neuroblasts (NB), (C) NE+NB and (D) neuroepithelium thickness from two separate cross-section per brain of 5-day-old (5d) control larvae (*N*=5), 5d *Rbx5*mutant larvae (*N*=5), 7-day-old (7d) *Rbx5*mutant larvae (*N*=4), 8-day-old (8d) *Rbx5*mutant larvae (*N*=5) and 9-day-old (9d) *Rbx5*mutant larvae (*N*=5). Bars represent Mean ± SD. One-way ANOVA followed by Dunnett’s test comparing each mutant to control: * P < 0.05, ** P < 0.01 and *** P < 0.001.
Figure 4.11. Lethality of Rbx5ex1 flies is likely due to impaired Rab5-activating function of Rabex-5. (Top) Schematic representation of human and Drosophila Rabex-5 proteins. Domain names are based on the human protein after amino acid sequence alignment. (Bottom) Transgenic Rabex-5 constructs, inserted at the same position of chromosome 2, were generated to express wild type Rabex-5 (WT), truncated forms (∆ZnF, EET-VPS9, ∆CT and ∆[L-CH-CT]); and a catalytically dead Rabex-5 with substitution of aspartic acid 316 to alanine (D316A). The ability of these constructs to rescue the lethality of homozygous Rbx5ex1 flies was tested upon driving their expression ubiquitously using the Ub-Gal4 driver. Plotted is the observed/expected ratio of a genetic cross designed to yield 33.3% of homozygous Rbx5ex1 flies. WT (n = 1255), ∆ZnF (n = 940) and ∆CT (n = 1095) transgenic expression was able to rescue adult lethality. Whereas the expression of EET-VPS9 (n = 585), ∆[L-CH-CT] (n = 647) and D316A (n = 717) did not rescue (represented by an X). n represents the total number of adult flies counted.
Figure 4.12. Larvae expressing a Rab5 dominant-negative construct displayed brain abnormalities similar to those of Rbx5^{ex1} homozygotes. (A-J) Brains from staged larvae with the indicated genotypes were stained with Hoechst to visualize DNA. Bright-field and fluorescence images were taken on whole-mount brains. (A-B, F-G) Images of control and Rbx5^{ex1} brains, shown in Figure 4.8, are shown again for comparison since they were obtained in the same experiment as those shown in the rest of the panels. (C) A 5-day-old larvae ubiquitously expressing the Rab5(S43N)-dominant-negative transgene had a slightly smaller brain compared to an age-matched control brain. (D-E) Brains from 10- and 12-day-old Rab5(S43N)-expressing larvae were bigger than control brains. (F-J) Higher magnification of the boxed region in (A-E) stained with DNA shows the structure of the brain hemispheres. Scale bars represent 100 µm.
Figure 4.13. Larvae expressing a Rab5 dominant-negative construct displayed normal wing imaginal disc morphology. (A-E) Wing imaginal discs from staged-larvae with the indicated genotype were stained with Hoechst to visualize DNA. Fluorescence images were taken on whole-mount tissues. Arrows in panels point at wing discs. (A and B) Morphology of the wing imaginal disc from control (A) and a Rabex-5 mutant (B). (C) Five-day-old transgenic larvae ubiquitously expressing Rab5(S43N driven by Ub-Gal4, had a smaller but normally shaped wing discs as compared to an age-matched control. (D-E) Wing discs from 10- and 12-day-old Rab5-DN transgenic larvae had normal morphology. Scale bars represent 100 μm.
Figure 4.14. Synthetic lethal interaction in Rbx5^{ex1} flies overexpressing a dominant-negative Rab5 transgene. (A) Six parental crosses were designed to obtain offspring carrying a copy of the ubiquitous Gal4 driver (Ub-Gal4) and the additional combination of alleles: none, one or two copies of Rbx5^{ex1}, and with or without one copy of a Rab5(S43N)-dominant-negative transgene. Offspring were staged side-by-side, and the number of larvae at day 1 and 4 was quantified. \(n = \) number of individual plates counted. At day 1, each cross generated an average of 1,421 ± 253 larvae. Bars represent the mean ±SD of the observed/expected ratio of the number of larvae (not carrying TM6) at day 4 relative to the total observed at day 1. Notice the reduced viability of larvae overexpressing Rab5-(S43N) construct in a homozygous Rbx5^{ex1} background (black arrow). Statistical analysis by two-way ANOVA are described in the Results section. (B) Groups of 5-day-old larvae with the indicated genotypes. Notice the strikingly small size of larvae ubiquitously expressing a Rab5(S43N)-dominant-negative with two copies of Rbx5^{ex1} (white arrows). Scale bar represents 1 mm.
REFERENCES

CHAPTER 5

CONCLUSIONS
In eukaryotic cells, endosomal protein trafficking is a highly complex and regulated process. Absence of proteins such as BLOC-1 and AP-3, results in hypopigmentation and prolonged bleeding. In some cases, altering normal trafficking routes have implications in cell proliferation and tissue growth. The overall goal of this dissertation was to identify genetic interactions involving components of the endosomal protein trafficking machinery. Two chapters focus on BLOC-1 and AP-3, which have important roles in the biogenesis of LROs, and another chapter is devoted to characterizing the Rab5 GEF protein, Rabex-5.

The data-mining approach discussed in Chapter 2, turned out to be an efficient method to prioritize candidate binding partners for both human and fly BLOC-1. This approach takes advantage of the availability of data derived from large-scale studies of protein-protein interactions. I found a way to efficiently gather high-quality information about each candidate and to represent this information in a friendly and manageable manner. The top candidate in the ranking of binding partners of BLOC-1 was found to be the RabGTPase Rab11. Rab11 has been found to be associated to recycling endosomes and to have important roles in development. Prior evidence coming from the study of lightoid, the fly ortholog of Rab38 and Rab32, Rab32 (which are involved in the biogenesis of melanosomes [1]), suggested that due to its relatively “mild” pigmentation defect additional Rabs could be implicated in the biogenesis of LROs [2]. Therefore, the fact that Rab11 ranked at the top of the BLOC-1 ranking was exciting. Experiments using flies carrying mutations in the orthologs of Rab11 and Rab32/38, the later encoded by the lightoid gene, uncovered a synthetic lethal genetic interaction [3]. This unexpected finding suggests that lightoid may have a general role in development in addition to its specific role in LROs biogenesis.
In the ranked table of binding partners for human BLOC-1, three genes encoding exocyst subunits, *EXOC7*, *EXOC3*, and *EXOC4*, ranked #4, #9 and #11, respectively. Similarly, ranking #7 in the table of binding partners for *Drosophila* BLOC-1 was the *CG2095*, which is the ortholog of *EXOC4*. Recently Gokhale *et al.* used a combination of proteomic approaches that resulted in the identification of various BLOC-1 binding partners, including two exocyst subunits [4]. This data validates my data-mining approach as a good strategy to select for follow-up experiments, “real” binding partners of BLOC-1. Another advantage provided by this approach is that is a customizable method, which can be potentially applied to other types of “omics” data.

Since the publication of the reprint shown in Chapter 2, at least six scientific papers have been published that describe different approaches to curate, rank or annotate large-scale data of protein-protein interactions [5,6,7,8,9,10]. Due to the difficulty presented at the moment of searching for protein-protein interactions, efforts have been made to develop tools to facilitate this process [11] [12].

Chapter 3 focuses on using a genetic screening strategy to identify genetic modifiers of the function of AP-3 in flies. Validation and fine-mapping identified four genomic regions that partially suppressed the *g2* eye color phenotype. Two interesting candidate genes, *Gap69C* and *Atg2* localized within two separate genomic regions were further investigated, and were shown to be genetic modifiers of AP-3.

Gap69C encodes the *Drosophila* ortholog of the human ARF GAP 1, encoded by the *ARFGAPI* gene [13]. ARF GAP 1 activates ARF1, which has been shown to regulate the recruitment of AP-3 to membranes and other adaptor complexes, and to bind GGAs (Golgi-localized, γ ear-containing, ARF-binding proteins) [14]. GGAs are another type of adaptors with...
homology to the AP subunit domains and capable of binding clathrin. My findings describing a partial suppression of the g^2 eye color phenotype by removing a copy of Gap69C, suggests several possibilities that will be worth explaining in the future. Is the conversion between active and inactive Arf1 important for the trafficking of specific cargo to the pigment granule? Is this through the interaction with other adaptor complexes such as GGAs or AP-1? Or is the suppression effect on g^2 is results from the mislocalization of AP-3?

Another modifier of AP-3 arising from the screening is Atg2, a gene encoding an autophagy protein. Thus far, only one scientific article has been published linking AP-3 and BLOC-1 to autophagy [15]. In this article, Marino et al. showed that AP-3 and BLOC-1 levels in autophagy mutant mice are reduced. The mice displayed a sense of balance problem that was attributed to abnormal development of the otoconia in the inner ear. Abnormalities in the inner ear otoliths have also been noted in mocha, muted and pallid [16]. Therefore, they suggested that autophagy could be related to a potential role of AP-3 and BLOC-1 in the development of this structure [15]. My results provide another piece of evidence linking autophagy to AP-3 function.

Chapter 4 demonstrates that Drosophila Rabex-5 is a tumor suppressor gene. Rabex-5 null mutations resulted in lethality before reading adulthood. Inspection of larval tissue revealed growth abnormalities in the brain and wing imaginal discs. Lethality and abnormal brain development was due to affecting normal Rab5 function. Particularly interesting is the phenotype observed in the optic lobe of Rabex-5ext mutant larvae. The fact that the neuroepithelial cells and neuroblasts in the optic lobe, and not those in the central brain, were affected is interesting and deserves attention.
Rabex-5 contains a VPS9 domain providing the catalytic activity necessary for Rab5 activation, a ZnF domain that contains ubiquitin ligase activity and binds ubiquitin and other domains that are important for the interaction with other proteins such as Rabaptin-5 [17,18,19]. Rescue experiments presented here, suggest that at least for adult viability the ZnF domain is dispensable, while the GEF domain is necessary. Yan et al. reported that abnormal growth in eye, wings and body size in Rabex-5 knockdown mutants were due to the ZnF domain and not the GEF domain [20]. The fact that the ubiquitous expression of Rab5(S43N)-transgene affects brain size suggest that Rab5 function is important for brain growth. On the contrary, wing imaginal discs seemed unaffected in flies overexpressing Rab5(S43N). Thus, data presented here and from other laboratories [20,21], suggest that Rabex-5 may have tissue-specific function, and at least in the brain depends on Rab5 function.

The synthetic lethal interaction observed for homozygous Rbx5^{ex1} flies overexpressing Rab5(S43N), suggest that additional Rab5 GEFs may be functionally compensating Rabex-5. Based on published results by Xu et al. showing that RIN1 was needed for Ras ubiquitination by Rabex-5; RIN1 (another Rab5 GEF) emerges as a potential candidate to have redundant function with Rabex-5 [21]. In flies, sprint is the only fly counterpart for human RIN1, RIN2, RIN3 and RINL. Loss-of-function mutants for sprint are viable and fertile with a mild phenotype only when EGFR is overexpressed [22]. Therefore, a possibility could be that sprint has redundant roles with Rabex-5 in some tissues, while in others Rabex-5 is essential. However, the role in tissue growth and viability of the others VPS9-domain-containing proteins, encoded by the genes CG1657 and CG7158 remains to be elucidated. Overall, these findings provide additional evidence regarding the role of the endosomal protein trafficking pathway in tissue growth and cell signaling [23].

125
REFERENCES

