Lawrence Berkeley National Laboratory
Recent Work

Title
SIMULTANEOUS TWO WAVELENGTH OUTPUT OF AN N2 PUMPED DYE LASER

Permalink
https://escholarship.org/uc/item/7sr090j5

Author
Schmidt, A.J.

Publication Date
1975-03-01
SIMULTANEOUS TWO WAVELENGTH OUTPUT OF AN N\textsubscript{2} PUMPED DYE LASER

A. J. Schmidt

March 1975

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SIMULTANEOUS TWO WAVELENGTH OUTPUT OF AN N₂ PUMPED DYE LASER

A. J. Schmidt

MARCH 1975
Simultaneous Two Wavelength Output of an N\textsubscript{2} Pumped Dye Laser

A. J. Schmidt

Department of Physics, University of California, and
Inorganic Materials Research Division,
Lawrence Berkeley Laboratory, Berkeley, California 94720

ABSTRACT

A simple method for generating a dual wavelength output of an N\textsubscript{2} laser pumped dye laser is described. A wedge placed in front of the tuning grating intersects only part of the cross section of the light beam. Therefore, feedback is provided for two different wavelengths simultaneously.
For a number of applications, like difference frequency generation, two-photon spectroscopy, excited state spectroscopy, two tunable lasers are required. In case both wavelengths are obtainable from the same lasing dye a number of systems have been developed to generate two frequencies in one laser [1-6]. We want to present a new method, which is extremely simple and easy to operate.

Figure 1 shows the setup used. The N_2 laser-pumped dye laser is of the usual design, consisting of a partial mirror, a transversely pumped dye cell, a telescope, and a grating [7]. We now place a rectangular glass wedge between the beam expanding telescope and the grating in such a way, that it intersects only the lower half of the beam. The angle of incidence is then different for the upper and lower half of the grating and the dye laser can operate on two wavelengths simultaneously. Note that the wedge divides the beam along a line normal to the ruling of the grating. Therefore, the laser line width should remain unchanged with the insertion of the wedge. Since a wedge (or prism) has its angle of reflection depend on the angle of incidence, this provides a means to tune the lasing frequency of the lower half beam with respect to the upper half of the beam.

The deflection of a prism can be written as (8):

$$\delta = \alpha + \arcsin \left[\sin \sqrt{n^2 - \sin^2 \alpha - \cos \varepsilon \sin \alpha} \right] - \varepsilon$$

whose α is the angle of incident, ε the apex of the prism and n the refractive index. Its minimum deflection is
\[
\delta_{\text{min}} = 2 \arcsin \left(n \sin \frac{\varepsilon}{2} \right) - \varepsilon.
\]

For a given \(\varepsilon \) the maximum deflection depends mainly on how large one can make \(\alpha \). Reflection losses and size considerations make it impractical to go much above 75°. The choice of \(n \) is of minor importance.

The angular dispersion of a diffraction grating in Littow mount is given by [8] as:

\[
\frac{d\phi}{d\lambda} = 2 \cdot \tan \phi / \lambda
\]

where \(\phi \) is the angle of incidence. With the blaze angle of the grating we used (61°10') and \(\lambda = 4700\,\text{Å} \). The value for \(\frac{d\phi}{d\lambda} \) is 0.45 (\(\text{mrad} / \text{Å} \)). With this dispersion and an \(\alpha_{\text{max}} = 75° \) one obtains a tuning range for the wavelength difference of the two beams from 50Å to 246Å with a wedge of 3 degrees (52 mrad). For a wedge of 8 mrad, the tuning range is 8Å to 50Å.

To verify these considerations, we inserted a wedge of optically polished glass (\(n = 1.55 \)) into the laser cavity. Its dimensions were about 1" × 2"; the wedge angle was 3 degrees. For tuning, the wedge was rotated around a vertical axis (labeled z in Fig. 1). As the vertical adjustment of the grating has to be better than 0.05 mrad, care has been taken to have no vertical wedge component. This was facilitated by rotational fine adjustment around the x-axis.

Simultaneous lasing at two wavelengths was easily obtained. The relation intensities of the two outputs could be changed by adjusting the position of the wedge in the z-direction. The tuning behavior
corresponded to the values given above.

In this setup, the polarizations of the two beams are the same. However, a variation of this method can provide orthogonal polarizations. A wedge of birefringent material with its optical axis parallel to the direction of the wedge intersects the whole beam cross section. The o- and e-ray, passing through the wedge, are deflected differently and therefore generate two orthogonally polarized outputs of different wavelengths. The relative intensities can be adjusted by a polarizer placed between dye cell and telescope.

ACKNOWLEDGEMENTS

I want to thank Professor Y. R. Shen for a critical reading of the manuscript.

This work was supported by the U.S. Energy Research and Development Administration.
REFERENCES

FIGURE CAPTION

Fig. 1. Schematic diagram of the setup.
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.