Title
Development of a Large-Field Cold Neutron Source at the University of California, Davis, McClellan Nuclear Radiation Center (UCD/MNRC)

Permalink
https://escholarship.org/uc/item/7t42r9bd

Authors
Flocchini, R.
Liu, H. B.
Boussoufi, M.

Publication Date
2006-06-30
1.0 Introduction

1.1 Significance of Cold Neutrons for Non-Destructive Testing

By comparison with thermal neutrons, cold neutrons are attenuated to a greater extent by elements such as H, O, N, B, Cd, Gd and to a lesser extent by metals such as Be, Al, Fe, Zr, Sn, W, Bi, Pb. Such unique nuclear properties to interact with materials enable to provide better non-destructive inspections.

There are only a few cold neutron sources based on research reactors in the U.S. (Texas, 1 MW; NIST, 20 MW) These cold neutron beams are typically few inches in diameter and primarily used for basic scientific research. Our development of a filtered cold neutron source offers the possibility of a much larger field, approximately up to 20” in diameter, besides competitive source quality. The attempt of such a cold neutron source will be unprecedented in the U.S. and the completed project would offer a great opportunity to accomplish more sophisticated tasks in the automotive, aerospace, and materials science areas, which were unable to investigate with our current neutron radiography facilities.

There is a great need in the aerospace industry for a technique of this type to investigate large and thick castings, which cannot be inspected by X-ray radiography. This is particularly true when the material causing the problem is a low atomic weight element such as hydrogen. NASA’s Solid Rocket Booster program has a number of large and thick structural members that would benefit from our intended development of a large-field cold neutron source for inspections. The increased sensitivity of cold neutrons to the presence of hydrogen (total neutron cross section about 30 barns at 0.1 eV to about 80 barns at 0.005 eV) provides a better method for finding very low levels of hydrogen embrittlement in jet engine blades. The U.S. Air Force and commercial airline companies would benefit from identifying this serious problem if our intended development would be made. The automotive industry would also benefit from our development to inspect the internal workings of thick transmission cases for low atomic weight materials, which can only be enhanced by inspections with cold neutrons.

Since the large-field cold neutron source would work synergistically with the rest of MNRC’s thermal neutron beams, it is possible to use the dynamic imaging capability to look at two-phase flow with higher contrast and resolution than present systems can accomplish. This capability can be used to investigate a number of valve flow conditions in nuclear reactors. In addition, the neutron tomography imaging system can also utilize cold neutrons to improve and study flow restriction conditions in very small passages.

1.2 Background of Cold Neutrons

The neutron source from existing graphite end plug inside so-called graphite insert consists of merely 1.70% cold neutrons (E_n < 0.005 eV, or 5 meV) and 98.3% non-cold thermal neutrons with energies up to 0.1 eV when thermal neutrons reach an equilibrium temperature around 295 °K. This is consistent with both the results calculated
from MCNP simulation using 300 °K continuous neutron cross-section data and the following equation¹.

\[
\frac{n_c}{n_{th}} = 1 - \left[1 + \left(\frac{\lambda_T}{\lambda_c} \right)^2 \right] \exp \left(-\frac{\lambda_T}{\lambda_c} \right)^2
\]

Where
- \(n_c \) = cold neutrons,
- \(n_{th} \) = all thermal neutrons,
- \(\lambda_c \) = cutoff wavelength for the filter (4.045 Å or 0.005 eV neutrons for Be, see Figure 1a/1b), and
- \(\lambda_T \) = wavelength at temperature T, \(\lambda = 0.286 / E_{eV}^{1/2} \) Å.

Figure 1a. Maxwell distribution of fluxes for low moderator temperatures.

It is quite clear that even a small leakage of unwanted, but much more numerous, non-cold thermal neutrons incident on a filter may result in more thermal neutrons than desired filtered cold neutrons in the final beam. The practical way to reduce the leakage of non-cold thermal neutrons through a filter is to increase the fraction of cold neutrons incident on the filter. This can be made by placing cryogenic moderator (liquid-hydrogen-cooled or low-temperature solid mesitylene source end) near the reactor core and installing cooled polycrystalline beryllium filter in the beam path.
Based on our existing facility configuration, we investigate and study these approaches to develop a large-field, filtered cold neutron source for ongoing research activities with neutron radiography at the MNRC’s Bay 3. With an optimal design, the resulting beam of cold neutrons should lead to a minimal leakage from the high-energy tail of thermal neutron spectrum to the final beam.

Table 1 lists the fraction \(\frac{n_c}{n_{th}} \) of cold neutrons below 0.005 eV \((\lambda_c = 4.045 \text{ Å}) \) in a thermal neutron beam at various equilibrium temperatures. For a liquid-hydrogen-cooled source end, the “theoretical” fraction of cold neutrons will reach 78.56\% while in reality, if an equilibrium temperature around 60 °K was achieved, this fraction is significantly reduced to 25.21\%. On the other hand, if a liquid-nitrogen-cooled source end was implemented and an equilibrium temperature around 100 °K was reached, the fraction is now dropped to 11.54\%. Though, this is still a much higher fraction compared to an equilibrium temperature at 295 °K under a normal operation condition, which only 1.700\% of cold neutrons are available for beam extraction.
Table 1. Fraction of cold neutrons at various equilibrium temperatures.

<table>
<thead>
<tr>
<th></th>
<th>20 °K</th>
<th>60 °K</th>
<th>77 °K</th>
<th>100 °K</th>
<th>295 °K</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_n (eV)</td>
<td>0.001723</td>
<td>0.005170</td>
<td>0.006635</td>
<td>0.008617</td>
<td>0.02542</td>
</tr>
<tr>
<td>λ_T (Å)</td>
<td>6.889</td>
<td>3.978</td>
<td>3.511</td>
<td>3.081</td>
<td>1.794</td>
</tr>
<tr>
<td>n_c/n_{th} (%)</td>
<td>78.56</td>
<td>25.21</td>
<td>17.46</td>
<td>11.54</td>
<td>1.700</td>
</tr>
</tbody>
</table>
2.0 Neutronic Design

Monte Carlo code MCNP2-5, version 5 with ENDF B/VI continuous neutron cross sections, is used for the neutronic design study of a large-field cold neutron source at the UCD/ MNRC. Two Pentium-IV PCs are used to run design simulations. Measurements with thermal and threshold activation foils are used to benchmark the integrated neutron flux intensities at the film or imaging location, i.e. 221” away from the beam aperture (2.21” in diameter) of existing beam tube at the MNRC’s Bay 3.

Firstly, a detailed simulation with a heterogeneous reactor core is made to include the in-tank and tank-wall sections of existing beam tube at the MNRC’s Bay 3. The neutron flux intensities and spectra, calculated from lengthy MCNP’s K_{eff} code runs, for the neutron source end, i.e. 1”-thick single crystal bismuth, inside graphite end plug are obtained. Once validated by measured results, these calculated data are used to simulate a fixed neutron source for Monte Carlo runs starting from graphite end plug for subsequent evaluations of beam parameters at the film location.

Secondly, the simulated neutron source is then used to assess a filtered cold neutron source with liquid-nitrogen-cooled polycrystalline beryllium filter placed in the beam tube section inside biological shielding. This is considered as the first design concept.

Thirdly, to further enhance the cold neutron source, the existing graphite end plug is redesigned and evaluated to include a liquid-hydrogen cold trap with polycrystalline beryllium filter. This is considered as the second design concept.

The following discussions will explain the findings and evaluations from both design concepts. Optimized designs for a large-field cold neutron source at the UCD/ MNRC are then proposed for further evaluations.

2.1 Benchmark Comparisons of Existing Beam Tube at Bay 3

Table 2 lists the thermal neutron beam intensity ($E_n < 0.1$ eV) at the center of the film position 221” away from the beam aperture. Beam quality is defined as the same as the fraction of cold neutrons and beam uniformity is defined as the percentage of flux intensity at 10” away when compared to the center as 100%.
Figure 2. Original design of the existing end plug inside graphite insert.

Table 2. Beam parameters at the film position of Bay 3, reactor at 2.0 MW operating power.

<table>
<thead>
<tr>
<th></th>
<th>Beam Intensity (n/cm².sec)</th>
<th>Beam Quality</th>
<th>Beam Uniformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td>1.80 x 10⁷</td>
<td>---</td>
<td>95%</td>
</tr>
<tr>
<td>Simulation</td>
<td>1.71 x 10⁷</td>
<td>1.71%</td>
<td>94%†</td>
</tr>
</tbody>
</table>

† At >90% probability (confidence) level.

The existing beam aperture for Bay 3 is 2.21” in diameter. Therefore, the L/D ratio (L/D, a measure of the beam path length divided by the aperture that defines the beam) is 100 at the 221”-away film position. Figure 2 illustrates the existing end plug inside graphite insert for Bay 3. Table 2 shows that the consistency between the Monte Carlo computations and the neutron flux measurements is established. Validated data are then used to simulate a fixed neutron source for Monte Carlo runs starting from graphite end plug for subsequent evaluations of beam parameters at the film location. Same approach is used for both of the design concepts in the following sections. All the flux intensity data in the following evaluations have an estimated statistical uncertainty of < 10%.
2.2 Cooled Polycrystalline Beryllium Filter/ Single Crystal Bismuth Shield for Existing Beam Tube at Bay 3

The existing flux intensity is 1.80×10^7 n/cm2.sec at L/D = 100 location. Considering only 1.70% of cold neutrons in the thermal spectrum at 295 °K, a perfect filter without any loss of cold neutrons would deliver a cold neutron source of intensity reaching a maximum value of 3.0×10^5 n/cm2.sec.

Polycrystalline beryllium filter6 (Figure 1a/1b) is believed to offer excellent filtration of a thermal spectrum with a cutoff energy of 0.005 eV. When polycrystalline beryllium of at least 8" in length is cooled to 77 °K (liquid-nitrogen temperature), it produces insignificant loss of cold neutrons but a substantial reduction in the unwanted, non-cold thermal neutron leakage. The total neutron cross section falls abruptly to about 0.6 b for neutrons with energy below 0.005 eV from a rather constant cross section of about 6.0 b for polycrystalline beryllium at room temperature. While 0.6 b is rather small, it is still large enough to limit the useful thickness of polycrystalline beryllium filter. However, when the polycrystalline beryllium is cooled down to 77 °K, the transmission of cold neutrons dramatically increases since the total neutron cross section falls further to about 0.06 b.

Figure 3. Beam tube section inside biological shielding with cooled polycrystalline beryllium of various thickness and 2"-thick single crystal bismuth. An alternative design would be 24"-thick polycrystalline beryllium without any use of single crystal bismuth.
To validate the above observation, a specially prepared polycrystalline beryllium total neutron cross-section data set at 77 °K for code MCNP is obtained from Los Alamos National Laboratory. An evaluation is made to assess the impact of installing cooled polycrystalline beryllium of various thicknesses ranging from 8 to 16, then 24 inches in the beam tube section inside biological shielding as seen in Figure 3.

![Graph showing total neutron cross section for Bi (Polycrystal), Bi (Single crystal), and Si (Single crystal)](image1)

Figure 4a. Comparison of total neutron cross section between polycrystalline and single crystal bismuth at 300 °K.

The polycrystalline beryllium filter removes the majority of all neutrons with energies above 0.005 eV. On the other hand, to maintain beam quality of similar or lower
gamma contamination level, single crystal bismuth is needed to provide additional gamma shield. Figure 4a shows the total neutron cross section of both polycrystalline and single crystal bismuth at normal temperature 300 °K. There is a clear advantage of using single crystal bismuth for additional transparency to cold neutrons. It is also believed that “cooled” single crystal bismuth would further enhance such transparency for cold neutrons. Unfortunately, this specific data set is being studied and prepared by the Los Alamos group and will not be available for code MCNP soon due to more complex crystalline structures. Figure 4b shows the plot for Bi-209 (n, total) at 300 °K from ENDF B-VI (printout from National Nuclear Data Center at Brookhaven National Laboratory) and clearly indicates that the “uncorrected” total neutron cross section data for cold neutrons < 0.005 eV are near and climb above 10 b for lower neutron energies. This data set is apparently not suitable for design simulation and will cause a dramatic reduction of cold neutron transmission. Separate simulation studies show 2”-thick bismuth shield could cut flux intensity of cold neutrons down to a quarter. This is also verified by estimating cold neutron flux through one-dimensional transmission. If “corrected” data at 300 °K as seen in Figure 4a are used for estimate, the reduction becomes 14%. All the simulation results in the following ignore this reduction of flux intensity due to bismuth addition. It is noted that all the flux intensities of cold neutrons for designs including 2”-thick single crystal bismuth could be 14% overly estimated.

![Bi-209 (n, total)](image)

Figure 4b. Total neutron cross section for Bi-209 (n, total) reaction at 300 °K.
When cooled polycrystalline beryllium filter of various thicknesses and 2”-thick single crystal bismuth shield are added in the beam tube section inside biological shielding (Figure 3), the simulation results are shown in Table 3. The cold neutron flux intensity would be about 2.5×10^5 n/cm2.sec with a beam quality >84%. This flux intensity is about 83% of the maximum value without attenuation. Beam uniformity is considered to be close to what has been achieved for the existing facility.

Table 3. Beam parameters at the film position of Bay 3 for designs with cooled polycrystalline beryllium filter of various thicknesses and 2”-thick single crystal bismuth shield, reactor at 2.0 MW operating power.

<table>
<thead>
<tr>
<th>Filter Thickness</th>
<th>Beam Intensity (n/cm2.sec)</th>
<th>Beam Quality</th>
<th>Beam Uniformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>08” Be + 2” Bi</td>
<td>2.6×10^5*</td>
<td>~84%</td>
<td>~91%†</td>
</tr>
<tr>
<td>12” Be + 2” Bi</td>
<td>2.5×10^5*</td>
<td>~86%</td>
<td>~91%†</td>
</tr>
<tr>
<td>16” Be + 2” Bi</td>
<td>2.4×10^5*</td>
<td>~87%</td>
<td>~92%†</td>
</tr>
<tr>
<td>24” Be</td>
<td>2.1×10^5</td>
<td>~90%</td>
<td>~92%†</td>
</tr>
</tbody>
</table>

* Could be 14% overly estimated.
† At >90% probability (confidence) level.

Table 4. Comparison of beam parameters of cold neutron sources between DIDO and MNRC.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Beam Intensity (n/cm2.sec)</th>
<th>L/D Ratio</th>
<th>Beam Uniformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIDO</td>
<td>3.3×10^5</td>
<td>300</td>
<td>> 80%</td>
</tr>
<tr>
<td>MNRC</td>
<td>2.5×10^5*</td>
<td>100</td>
<td>> 85%†</td>
</tr>
</tbody>
</table>

* Could be 14% overly estimated.
† At >99% probability (confidence) level.
To validate the above design evaluation, a comparison (see Table 4) is made to a similar design over the partly decommissioned DIDO reactor\(^7\) in Harwell, U.K. The cold neutron beam over there installs 12”-thick polycrystalline beryllium inside a radial beam tube. The need for gamma contamination reduction is substantially higher for a radial beam tube, therefore 9”-thick single crystal bismuth is used as a gamma shield. Both beryllium filter and bismuth shield are cooled by liquid nitrogen. Their final beam has a flux intensity of \(3.3 \times 10^5\) \text{n/cm}^2\cdot\text{sec}\) and uniformity better than 20% over a 14” diameter. The L/D ratio is 300, which enables very high definition, large area radiographs to be obtained on both static and dynamic equipment.

DIDO reactor is operated at 25 MW operating power compared to MNRC’s 2.0 MW operating power. This major operating power difference, together with the advantage of using heavy water as a reflector over at DIDO, adequately accounts for a much better L/D ratio (300 vs. 100) and a higher flux intensity (\(3.3 \times 10^5\) vs. \(2.5 \times 10^5\) \text{n/cm}^2\cdot\text{sec}\)) of their cold neutron beam. This direct comparison provides credible validation of the design computations.

The loss of beam intensity from the current level of \(1.80 \times 10^7\) to \(2.5 \times 10^5\) \text{n/cm}^2\cdot\text{sec}\) is a factor of 72. The combined shield of 12”-thick polycrystalline beryllium and 2”-thick single crystal bismuth will provide a shielding factor of 90 for 2 MeV gamma rays. Therefore, the ratio of gamma contamination level to useful neutron flux intensity would be somewhat reduced and improved for the final beam.

As an alternative for additional gamma shielding requirement to maintain the beam quality, an option is to increase polycrystalline beryllium filter to 24” in thickness without any use of single crystal bismuth. In this case, the shielding factor for 2 MeV gamma rays becomes 85, which is still quite adequate for the design. Table 3 shows the results for this alternative design and the flux intensity of cold neutrons is reduced to \(2.1 \times 10^5\) \text{n/cm}^2\cdot\text{sec}\). However, thicker polycrystalline beryllium filter improves beam quality (fraction of cold neutron) to near 90%.
2.3 Cold Trap and Polycrystalline Beryllium Filter/ Single Crystal Bismuth Shield for Existing Graphite Insert at Bay 3

To obtain a cold neutron fluence of 1×10^9 n/cm2 reaching a film for an optical density of around 2.5 in our current practice as an estimate, it will take an imaging time of 67 minutes, or over an hour, for a beam intensity of 2.5×10^5 n/cm2.sec. To further enhance such a cold neutron source, the existing graphite end plug must be redesigned to include a cryogenic cold trap. A liquid-hydrogen cold trap that would provide the near-maximum cold neutron fraction is evaluated with polycrystalline beryllium filter and single crystal bismuth shield in the following. Other designs of different cryogenic agents can be substitutes with lesser performance simply due to a higher equilibrium temperature, i.e. a smaller fraction of cold neutrons.

Figure 5 illustrates such a design to replace existing graphite end plug. Various thicknesses of polycrystalline beryllium ranging from 8 to 16 inches are evaluated although up to 12” in thickness is about the maximum length existing graphite insert can accommodate. The thicknesses across the beam tube’s 6” diameter are 1/16” (Al) + 2/16” (vacuum) + 1/16” (Al) + 11/16” (LH$_2$) + 1/16” (Al) + 4” (void or Be) + 1/16” (Al) + 11/16” (LH$_2$) + 1/16” (Al) + 2/16” (vacuum) + 1/16” (Al) as seen in Figure 5. Liquid hydrogen (LH$_2$) has a physical density of 0.07 g/cm3, 50/50 ortho/para content chosen, and both polycrystalline beryllium and single crystal bismuth are cooled by liquid hydrogen.

![Figure 5](image_url)

Figure 5. Modified design for the end plug to accommodate a liquid-hydrogen cold trap with 8”-12” thick polycrystalline beryllium filter and 2”-thick single crystal bismuth shield inside graphite insert. An alternative design would be 14”-thick polycrystalline beryllium without any use of single crystal bismuth.

The simulation results are seen in Table 5. Based on the K_{eff} code computations, the designed graphite insert with a LH$_2$ cold trap, compared to the existing one, would impose an operation reactivity loss of about $8 \pm 3 \text{ f}$, which is quite insignificant.
The cold neutron flux intensity would be about 4.0×10^6 n/cm2.sec with a beam quality >85%. Beam uniformity is considered to be close to what has been achieved for the existing facility. Both beam quality and uniformity are competitive to the first design. For an intensity of 4.0×10^6 n/cm2.sec, it takes about < 5 minutes to reach a cold neutron fluence of 1×10^9 n/cm2 on a film, which is a significant increase of flux intensity by a factor of 16 compared to the previous design.

The loss of beam intensity from the current level of 1.80×10^7 to 4.0×10^6 n/cm2.sec is a factor of 4.5. The combined shield of 12”-thick polycrystalline beryllium and 2”-thick single crystal bismuth (though, 1” additional to the existing design) will provide a shielding factor of 28 for 2 MeV gamma rays. Therefore, the ratio of gamma contamination level to useful neutron flux intensity would be significantly reduced and improved. By increasing the thickness of polycrystalline beryllium to 14” without any us of single crystal bismuth, the reduction for 2-MeV gamma shield becomes a factor of 4.2, which is still quite competitive to current level.

Table 5. Beam parameters at the film position of Bay 3 for designs with liquid-hydrogen cold trap, polycrystalline beryllium filter of various thicknesses and 2”-thick single crystal bismuth, reactor at 2.0 MW operating power.

<table>
<thead>
<tr>
<th>Filter Thickness</th>
<th>Beam Intensity (n/cm2.sec)</th>
<th>Beam Quality</th>
<th>Beam Uniformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>08” Be + 2” Bi</td>
<td>4.2×10^6*</td>
<td>~85%</td>
<td>~91%†</td>
</tr>
<tr>
<td>12” Be + 2” Bi</td>
<td>4.0×10^6*</td>
<td>~87%</td>
<td>~91%†</td>
</tr>
<tr>
<td>16” Be + 2” Bi</td>
<td>3.9×10^6*</td>
<td>~88%</td>
<td>~92%†</td>
</tr>
</tbody>
</table>

* Could be 14% overly estimated.
† At >90% probability (confidence) level.

Study continues to examine a design with two separate systems, i.e. the cold trap in existing graphite insert and cooled filter/ shield in existing beam tube inside biological shielding. The simulation results yield no significant improvement compared to the second design with both the cold trap and the cooled filter/ shield in existing graphite insert.

Figure 6 shows the thermal spectra of both designs at their source ends (bismuth for the first design and void for the second design). The fraction of cold neutrons with a cutoff energy of 0.005 eV, based on the simulation with or without liquid hydrogen, is 1.71% and 29.2%, respectively. For the second design with a 29.2% fraction of cold
neutrons, this implicates that an equilibrium temperature of about 50-60 °K (see Table 1) is reached for the designed system. The ratio of 29.2% vs. 1.71% is a factor of 17, which approximately explains the difference of extracted flux intensities of cold neutrons (a factor of 16) with or without a liquid-hydrogen cooled source end.

Figure 6. Simulated neutron source spectra of both current (thermal) and modified (cold, LH₂) graphite insert.

Table 6. Flux intensity of cold neutrons based on different cryogenic agents, reactor at 2.0 MW operating power.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°K)</td>
<td>60</td>
<td>100</td>
<td>228</td>
<td>295</td>
</tr>
<tr>
<td>n_c/n_th (%)</td>
<td>25.2</td>
<td>11.5</td>
<td>2.74</td>
<td>1.70</td>
</tr>
<tr>
<td>Flux Intensity (n/cm².sec)</td>
<td>4.0 x 10⁶</td>
<td>1.8 x 10⁶</td>
<td>4.1 x 10⁵</td>
<td>2.5 x 10⁵</td>
</tr>
</tbody>
</table>

A cryogenic system using solid mesitylene as cold moderator, which freezes at 228 °K, is implemented at the University of Texas. The system is definitely safer and simpler but it has a much lower fraction of cold neutrons to start with. At 228 °K, the cold fraction is calculated to be 2.74%, which is 60% higher than the equilibrium value at normal temperature 295 °K but only 11% of a liquid-hydrogen cooled system. The low
neutron efficiency for a mesitylene-cooled system is obvious compared to a cryogenic system with liquid hydrogen or nitrogen.

By using the fraction of cold neutrons at various equilibrium temperatures to interpolate for flux intensities of cold neutrons with the same filter and shield design, Table 6 lists the estimate flux intensity of cold neutrons for a system using liquid nitrogen or solid mesitylene as a cryogenic agent. Due to the limitation of computing speed with PCs, spectral evaluation of different cryogenic agents becomes unrealistic within reasonable run times. Therefore, integrated flux intensities of cold neutrons are used to compare for the neutron efficiency of each design.
3.0 Heat Load Evaluation

3.1 Monte Carlo Evaluation

MCNP is then used to estimate the energy deposited in the designed graphite insert as seen in Figure 5. The code directly tallies the prompt contributions, i.e. fast neutrons, fission and prompt gamma rays, to the heat load. A separate evaluation was made to assess the heat load added to the graphite insert for the second design concept while the heat load added to the cooled filter in the first design concept can be easily managed. The energy deposited in the graphite insert are summarized in Table 7. The calculated total heat load is about 270 watts based on 2 MW operating power.

Table 7. Nuclear heating in watts in the designed graphite insert seen in Figure 5.

<table>
<thead>
<tr>
<th></th>
<th>LH₂ (220 g)</th>
<th>Al (3000 g)</th>
<th>Be (4500 g)</th>
<th>Bi (4000 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Neutrons</td>
<td>58</td>
<td>2</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>Gamma Rays</td>
<td>9</td>
<td>70</td>
<td>75</td>
<td>27</td>
</tr>
<tr>
<td>Total (Watt)</td>
<td>67</td>
<td>72</td>
<td>104</td>
<td>27</td>
</tr>
</tbody>
</table>

3.2 Conclusion

In summary, to enhance the neutron radiography capability at the UCD/MNRC, a neutronic design study for a large-field cold neutron source is made for MNRC’s Bay 3. Two optimized designs are concluded from the above sections.

The first design is based on cooled either 12”-thick polycrystalline beryllium filter and 2”-thick single crystal bismuth shield or 24”-thick polycrystalline beryllium filter alone for existing beam tube at Bay 3. This conservative design to generate a filtered cold neutron source would deliver a flux intensity of cold neutrons about $2.1 \sim 2.5 \times 10^5$ n/cm2.sec at L/D =100 location.

To significantly increase the source of cold neutrons for the second design, a cold trap together with either 12”-thick polycrystalline beryllium filter and 2”-thick single crystal bismuth shield or 14”-thick polycrystalline beryllium alone is designed for existing graphite insert at Bay 3. Based on using liquid hydrogen as a cryogenic agent to achieve an equilibrium temperature around 60 °K, the cold neutron flux would increase to 4.0×10^6 n/cm2.sec at L/D = 100 location. Both designs would offer the possibility of a much larger field, approximately up to 20” in diameter, besides competitive source quality, i.e. high fraction of cold neutrons and beam uniformity.

By using the fraction of cold neutrons at various equilibrium temperatures to interpolate for flux intensities of cold neutrons with the same filter and shield design, a
number of other cryogenic agents are evaluated for their cold neutron production efficiency, including liquid nitrogen and solid mesitylene. Since using liquid hydrogen would offer the best beam parameters in the second design concept, we continue to evaluate its engineering issues based on the calculated heat load of about 270 watts. The actual equilibrium temperature and the fraction of cold neutrons are heavily dependent on the performance of a specific cryogenic system and the mechanical design.
4.0 References

5.0 Appendix

Partial MCNP input file:

```
MNRC cold neutron source
  c
  A1- 20/20
  c
  1  1 -6.51 -1  719 -723
  2  22 -6.3 -201  719 -723
  3  4 -1.6  717 -725 (-719:723)
  4  4 -8.032  717 -725
  5  5 -4.516 -401  711 -731 (-717:725)
  c
  .......
  Heterogeneous core configuration
  c
  ***** ***** ***** ***** ***** ***** ***** ***** ****
  Reflector side; Modification volume
  c
  Al compensator; Al and H2O
  c
  721  8 -2.7  715 -727  781 -783 (-971:974) $ Al 8 -2.7
  722  8 -2.7  971 -974  781 -782 (-972:973) $ Al 8 -2.7
  723  7 -1  972 -973  781 -782
  724  7 -1  971 -974  782 -783
  c
  731  12 -2.7  921 -924 -951 (-922:923:941) $ Al can, water gap 2 mm
  732  12 -2.7  921 -924 -952 (-922:923:942) $ Al can
  733  12 -2.7  921 -924 -953 (-922:923:943) $ Al can
  734  12 -2.7  921 -924 -954 (-922:923:944) $ Al can
  735  12 -2.7  921 -924 -955 (-922:923:945) $ Al can
  736  12 -2.7  921 -924 -956 (-922:923:946) $ Al can
  737  12 -2.7  921 -924 -957 (-922:923:947) $ Al can
  738  12 -2.7  921 -924 -958 (-922:923:948) $ Al can
  c
  ***** ***** ***** ***** ***** ***** ***** ***** ****
  741  14 -2.42  922 -923
  742  14 -2.42  922 -923
  743  7 -1  922 -923
  744  7 -1  922 -923
  745  9 -0.0013  922 -923
  746  9 -0.0013  922 -923
  747  7 -1  922 -923
  748  7 -1  922 -923
  c
  751  14 -2.42  922 -923  931 -941
  752  14 -2.42  922 -923  932 -942
  753  7 -1  922 -923  933 -943
  754  7 -1  922 -923  934 -944
  755  9 -0.0013  922 -923  935 -945
  756  9 -0.0013  922 -923  936 -946
  757  7 -1  922 -923  937 -947
  758  7 -1  922 -923  938 -948
  c
  761  7 -1 -951  715 -727 (-921:924)
  762  7 -1 -952  715 -727 (-921:924)
  763  7 -1 -953  715 -727 (-921:924)
  764  7 -1 -954  715 -727 (-921:924)
  765  7 -1 -955  715 -727 (-921:924)
  766  7 -1 -956  715 -727 (-921:924)
  767  7 -1 -957  715 -727 (-921:924)
  768  7 -1 -958  715 -727 (-921:924)
  c
  771  8 -2.7  600 965 -966 783 -786 715 -727 951 -952
  772  8 -2.7  600 965 -966 786 -787 715 -727 951 -952
  773  7 -1  600 966 968 783 -787 715 -727
  774  8 -2.7  599 967 -968 783 -786 715 -727 953 -954
  775  8 -2.7  599 967 -968 786 -787 715 -727 953 -954
  776  7 -1  600 966 967 783 -787 715 -727
  777  8 -2.7  600 965 -966 783 -786 715 -727 955 -956
  778  8 -2.7  600 965 -966 786 -787 715 -727 955 -956
  779  7 -1  600 965 967 783 -787 715 -727
  780  8 -2.7 -599 967 -968 783 -786 715 -727 957 -958
```
781 8 8.27 -599 967 968 786 -787 715 -727 957 958
782 7 -1 600 968 965 783 -787 715 -727
c
783 7 -1 715 -727 787 -791
c
c reflector top H2O
784 7 -1 727 -741 781 -791
c
c reflector bottom H2O
785 7 -1 705 -715 781 -791
c ***** ***** ***** ***** ***** ***** ***** ***** *****
c TNR cold neutron source term
c
791 9 -0.0013 983 -984 993
792 8 -2.7 982 -984 992 #791
793 16 -0.07 981 -984 991 #791 #792
794 17 1.85 984 -985 993
795 8 -2.7 984 -985 992 993
796 16 -0.07 984 -985 991 992
797 10 -9.8 985 -986 994
798 8 -2.7 985 -986 994 -991
799 9 -0.0013 986 -987 995
800 11 -2.49 986 -987 995 -991
801 9 -0.0013 987 -988 996 -779 -725
802 13 -10.0 987 -988 996 -991 -779 -725
803 9 -0.0013 988 -991 -779 -725
c ***** ***** ***** ***** ***** ***** ***** ***** *****
c Central Al tube: Irradiation facility
c CIF..... w/ graphite plug
c
831 7 -1 902 -903 705 -711
832 23 -1.66 902 -903 711 -731
833 7 -1 902 -903 731 -741
834 7 -1 901 -902 705 -711
835 8 -2.7 901 -902 711 -741
836 7 -1 -900 705 -822
837 7 -1 -900 822 -823
838 7 -1 -900 823 -824
839 7 -1 -900 824 -719
c
841 7 -1 -900 719 -800 $
812 7 -1 -900 800 -801 $ -7
813 7 -1 -900 801 -802 $ -6
814 7 -1 -900 802 -803 $ -5
815 7 -1 -900 803 -804 $ -4
816 7 -1 -900 804 -805 $ -3
817 7 -1 -900 805 -806 $ -2
c 7 -1 -900 806 -807 $
818 7 -1 -900 806 -809 $ Center
c 7 -1 -900 808 -809 $
819 7 -1 -900 809 -810 $ 2
820 7 -1 -900 810 -811 $ 3
821 7 -1 -900 811 -812 $ 4
822 7 -1 -900 812 -813 $ 5
823 7 -1 -900 813 -814 $ 6
824 7 -1 -900 814 -815 $ 7
825 7 -1 -900 815 -723 $
826 7 -1 -900 723 -741
827 7 -1 900 -901 705 -741
888 8 -2.7 903 -905 711 -731
999 0 (-705:741:791)
1 c/z -22.61616 -8.70712 0.3175 $ Zr rod
.....
c
705 pz -80
707 pz -76.2
709 pz -73.66
711 pz -37.465
713 pz -34.29
715 pz -28.8925
717 pz -27.94
719 pz -19.05
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.05</td>
<td>pz</td>
</tr>
<tr>
<td>27.94</td>
<td>pz</td>
</tr>
<tr>
<td>28.8925</td>
<td>pz</td>
</tr>
<tr>
<td>29.845</td>
<td>pz</td>
</tr>
<tr>
<td>33.02</td>
<td>pz</td>
</tr>
<tr>
<td>41.32</td>
<td>pz</td>
</tr>
<tr>
<td>80</td>
<td>pz</td>
</tr>
<tr>
<td>15.24</td>
<td>cz</td>
</tr>
<tr>
<td>26.37</td>
<td>cz</td>
</tr>
<tr>
<td>26.67</td>
<td>cz</td>
</tr>
<tr>
<td>27.305</td>
<td>cz</td>
</tr>
<tr>
<td>60.0075</td>
<td>cz</td>
</tr>
<tr>
<td>60.96</td>
<td>cz</td>
</tr>
<tr>
<td>62.1125</td>
<td>cz</td>
</tr>
<tr>
<td>63.265</td>
<td>cz</td>
</tr>
<tr>
<td>69.615</td>
<td>cz</td>
</tr>
<tr>
<td>76.6</td>
<td>cz</td>
</tr>
<tr>
<td>106.68</td>
<td>cz</td>
</tr>
<tr>
<td>54.61</td>
<td>pz</td>
</tr>
<tr>
<td>3.81</td>
<td>pz</td>
</tr>
<tr>
<td>57.15</td>
<td>cz</td>
</tr>
<tr>
<td>-43.18</td>
<td>pz</td>
</tr>
<tr>
<td>-26.67</td>
<td>pz</td>
</tr>
<tr>
<td>11.43</td>
<td>cz</td>
</tr>
<tr>
<td>49.53</td>
<td>pz</td>
</tr>
<tr>
<td>65.96</td>
<td>pz</td>
</tr>
<tr>
<td>-19.04</td>
<td>pz</td>
</tr>
<tr>
<td>-16.50</td>
<td>pz</td>
</tr>
<tr>
<td>-13.96</td>
<td>pz</td>
</tr>
<tr>
<td>-11.42</td>
<td>pz</td>
</tr>
<tr>
<td>-8.88</td>
<td>pz</td>
</tr>
<tr>
<td>-6.34</td>
<td>pz</td>
</tr>
<tr>
<td>-3.80</td>
<td>pz</td>
</tr>
<tr>
<td>-1.26</td>
<td>pz</td>
</tr>
<tr>
<td>1.26</td>
<td>cz</td>
</tr>
<tr>
<td>3.80</td>
<td>pz</td>
</tr>
<tr>
<td>6.34</td>
<td>pz</td>
</tr>
<tr>
<td>8.88</td>
<td>pz</td>
</tr>
<tr>
<td>11.42</td>
<td>pz</td>
</tr>
<tr>
<td>13.96</td>
<td>pz</td>
</tr>
<tr>
<td>16.50</td>
<td>pz</td>
</tr>
<tr>
<td>19.04</td>
<td>pz</td>
</tr>
<tr>
<td>-46.99</td>
<td>pz</td>
</tr>
<tr>
<td>-26.68</td>
<td>pz</td>
</tr>
<tr>
<td>-21.59</td>
<td>pz</td>
</tr>
<tr>
<td>1.3813</td>
<td>cz</td>
</tr>
<tr>
<td>2.3813</td>
<td>cz</td>
</tr>
<tr>
<td>2.54</td>
<td>cz</td>
</tr>
<tr>
<td>5.08</td>
<td>cz</td>
</tr>
<tr>
<td>5.36</td>
<td>cz</td>
</tr>
<tr>
<td>5.61</td>
<td>cz</td>
</tr>
<tr>
<td>11.30808</td>
<td>c/z</td>
</tr>
<tr>
<td>11.30808</td>
<td>c/z</td>
</tr>
<tr>
<td>11.30808</td>
<td>c/z</td>
</tr>
<tr>
<td>69.615</td>
<td>cz</td>
</tr>
<tr>
<td>69.615</td>
<td>c/z</td>
</tr>
<tr>
<td>5.8928</td>
<td>c/z</td>
</tr>
<tr>
<td>-5.8928</td>
<td>c/z</td>
</tr>
<tr>
<td>-69.615</td>
<td>c/z</td>
</tr>
<tr>
<td>-69.615</td>
<td>c/z</td>
</tr>
</tbody>
</table>
937 c/z -5.8928 -69.615 2.54
938 c/z 5.8928 -69.615 2.54

941 c/z 69.615 -5.8928 3.81 $ 3.0" I.D. Stuff (Si, H2O, Air)
942 c/z 69.615 5.8928 3.81
943 c/z 5.8928 69.615 3.81
944 c/z -5.8928 69.615 3.81
945 c/z -69.615 5.8928 3.81
946 c/z -69.615 -5.8928 3.81
947 c/z -5.8928 -69.615 3.81
948 c/z 5.8928 -69.615 3.81

951 c/z 69.615 -5.8928 5.715
952 c/z 69.615 5.8928 5.715
953 c/z 5.8928 69.615 5.715
954 c/z -5.8928 69.615 5.715
955 c/z -69.615 5.8928 5.715
956 c/z -69.615 -5.8928 5.715
957 c/z -5.8928 -69.615 5.715
958 c/z 5.8928 -69.615 5.715

965 py -12.6078
966 py 12.6078
967 px -12.6078
968 px 12.6078

971 pz -13.97
972 pz -8.89
973 pz 6.35
974 pz 11.43

c

981 3 px 0
982 3 px 1.74625
983 3 px 2.54 $ 1/16 Al + 1/8 void +
984 3 px 7.62 $ 1/16 Al + (11/16 LH) + 1/16 Al
985 3 px 38.10 $ 12" Be
986 3 px 43.14 $ 2" Bi
987 3 px 45.72 $ 1" B4C
988 3 px 48.26 $ 1" Pb-Cd

c

991 3 cx 7.62 $ 3" radius
992 3 cx 5.87375 $ 3 - 11/16
993 3 cx 5.08 $ 2"
994 3 cx 6.35 $ 2.5"
995 3 cx 2.8067 $ 2.21" beam aperture
996 3 cx 3.1623 $ 2.49" beam aperture

Transformation 30 degrees
*tr3 0 -34.93 0 30 90 60 90 0 90 120 90 30 1

c

Tally computations

c
f4:n 818 791
fm4 1.5e17
f6:n 796 795 794 797
fm6 2.4e4

c
1.5e17 * 1.6e-13 (w/g)

f16:p 796 795 794 797
fm16 2.4e4

c
m1 40000.66c 1
m2 1001.66c -0.01500
40000.66c -0.85500
92235.66c -0.01275
92238.66c -0.06800
mt2 h/0.04t h/0.04t
m22 1001.66c -0.01400
40000.66c -0.79800
92235.66c -0.03000
92238.66c -0.16000
68166.00c -0.00114
68167.00c -0.00077
mt22 zr/h.01t h/zr.01t
m3 6000.66c 1
mt3 grph.01t
m23 6000.66c 1
mt23 grph.01t
m33 6000.66c -0.8469 $ -1.49
13027.66c -0.1531 $ -0.27
mt33 grph.01t
m4 26000.55c -0.7012
14000.60c -0.0050
24000.50c -0.1900
25055.60c -0.0100
28000.50c -0.0925
m5 26000.55c -0.7012
14000.60c -0.0050
24000.50c -0.1900
25055.60c -0.0100
28000.50c -0.0925
1001.66c -0.0138
8016.66c -0.1105
mt5 lwtr.01t
m6 1001.66c -0.1111
8016.66c -0.8889
mt6 lwtr.01t
m7 1001.66c -0.1111
8016.66c -0.8889
mt7 lwtr.01t
m8 13027.66c -0.9755
12000.66c -0.0100
14000.60c -0.0060
24000.50c -0.0020
26000.55c -0.0035
29000.50c -0.0030
m9 7014.66c 0.8
8016.66c 0.2
m10 83209.66c 1
m11 6000.66c -0.216
5010.66c -0.156
5011.66c -0.628
m12 13027.66c -23
1001.66c -0.1111
8016.66c -0.8889
mt12 lwtr.01t
m13 82000.50c -0.5673
48000.42c -0.4327
m14 14000.60c 1
m15 6000.66c 0.3333
1001.66c 0.6667
mt15 poly.01t
m16 1001.66c 1
m16 hortho.01t
m17 4009.66c 1
mt17 be.00t $ be77k
phys:p j 1 1

End of File.