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Identification of Sea Ice Types in Spaceborne 
Synthetic Aperture Radar Data 

RONALD KWOK, ERIC RIGNOT, AND BENJAMIN HOLT 

Jet Propulsion Laboratory, California Institute of Technology, Pasadena 

R. ONSTOTT 

Environmental Research Institute of Michigan, Ann Arbor 

An approach for identification of sea ice types in spaceborne synthetic aperture radar (SAR) image 
data is presented. The unsupervised classification approach involves cluster analysis for segmentation 
of the image data followed by cluster labeling based on previously defined look-up tables containing 
the expected backscatter signatures of different ice types measured by land-based scatterometer. The 
particular look-up table used for labeling a segmented image is selected based on the seasonal and 
meteorological conditions at the time of data acquisition. The extensive scatterometer observations 
and experience accumulated in field campaigns during the last 10 years were used to construct these 
look-up tables. These tables are expected to evolve as sea ice observations from the European ERS-1 
SAR become available. This paper presents the classification approach, its expected performance, the 
dependence of this performance on radar system performance, and expected ice scattering charac- 
teristics. Results using both aircraft and simulated ERS-1 SAR data are presented. The results are 
compared to limited field ice property measurements and coincident passive microwave imagery. An 
algorithm based on this experimental approach has been implemented in the geophysical processor 
system at the Alaska SAR Facility for classification of sea ice data in ERS-1 C band SAR data. The 
importance of an integrated postlaunch program for validation and improvement of this approach is 
discussed. 

1. INTRODUCTION 

The derivation of valuable information on sea ice proper- 
ties from radar imagery has increased steadily over the last 
decade [Carsey, 1989]. As examples, studies utilizing syn- 
thetic aperture radar (SAR) imagery have examined the 
kinematics and deformation of the ice field [e.g., Hall and 
Rothrock, 1981; Fily and Rothrock, 1990; Kwok et al., 1990], 
the comparison of active and passive microwave observa- 
tions of concentration and ice types [e.g., Burns et al., 1987; 
Martin et al., 1987], the variability of ice properties that 
affect the atmospheric drag coefficient [Burns, 1990], and ice 
signatures. Investigations of the radar signatures of sea ice 
types using data from SAR and scatterometer systems have 
shown that radar backscatter varies with ice types as a result 
of differences in both internal (salinity and subsequent 
dielectric properties, density, inhomogeneities such as air 
bubbles) and surface properties (roughness, snow cover, 
distribution of water). The radar signatures vary with fre- 
quency, incidence angle, and polarization [e.g., Ulaby et al., 
1986; Onstott et al., 1979, 1982; Kim et al., 1985; Livingstone 
and Drinkwater, 1991; Gray et al., 1982]. These ice proper- 
ties also vary significantly with seasonal temperature varia- 
tions [Onstott and Gogineni, 1985; Onstott et al., 1987; Holt 
and Digby, 1985; Livingstone et al., 1987a; Carsey, 1985; 
Cavalieri et al., 1990] and by region [Livingstone et al., 
1987b]. Several recent studies have compared theoretical 
scattering models based on ice properties to the observed 
radar ice signatures [Drinkwater et al., 1991; Winebrenner et 
al., 1989; Drinkwater, 1989; Kim et al., 1985]. Different 
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image analysis approaches have been applied to the ice 
signatures to examine the types of information available in 
the SAR imagery for the automatic extraction of ice types 
[e.g., Lyden et al., 1984; Wackerman et al., 1988]. 

These SAR studies of sea ice have examined imagery 
obtained from aircraft and spaceborne SAR systems, usually 
in combination with other sensors, in situ measurements of 
ice and snow conditions, and near-surface scatterometer and 
radiometer measurements. The radars have operated over a 
wide range of frequencies, incidence angles, and polariza- 
tions. During this decade, single-channel spaceborne S ARs 
are to be launched on the European ERS-1 in 1991, the 
Japanese ERS-1 in 1992, and the Canadian RADARSAT in 
1994. These satellites will provide the first opportunities for 
the extensive spaceborne monitoring of the polar regions 

with a SAR since Seasat (which operated for 3• months in 
1978). At the end of this decade, NASA has proposed to 
launch the EOS (Earth Observing System) SAR (a multifre- 
quency, multipolarization SAR) as an integral component of 
the Mission to Planet Earth, a comprehensive suite of 
satellite instruments designed to examine global climate 
change, of which sea ice is a key and supposedly dramatic 
indicator. 

In response to these opportunities for examining the polar 
regions with high-resolution, all-weather spaceborne SARs, 
the Alaska SAR Facility (ASF) has been implemented at the 
University of Alaska, Fairbanks, to receive, process, and 
archive SAR data from these satellites and to generate sea 
ice geophysical products from the data [ASF Prelaunch 
Science Working Team, 1989]. To generate these products, 
algorithms have been developed which will reside in a 
geophysical processor system (GPS) to automatically and 
routinely generate maps of ice motion [Kwok et al., 1990], 
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ocean surface wave direction and length [Holt et al., 1990a] 
and ice type and concentration [Holt et al., 1990b]. 

This paper focuses on the ice classification algorithm 
which has been implemented at ASF to generate these maps 
of ice type and concentration, first from ERS-1 and the 
evolution of such an algorithm with the introduction of 
ancillary data sets (such as passive microwave observations) 
and the upcoming JERS-1 and RADARSAT. The ASF GPS 
ice classification algorithm has been designed to efficiently 
segment the ice into the major ice types, including multiyear 
(MY) and first-year (FY) ice, by using a clustering routine to 
isolate their SAR ice signatures. The clusters are labeled (as 
ice types) by comparison with tables of scatterometer- 
derived ice type signatures that have been compiled by 
season. The algorithm will account for these seasonal 
changes by utilizing separate look-up tables. The develop- 
ment status of this classification algorithm has been reported 
previously by Holt et al. [1989, 1990b]. 

As was mentioned previously, the ice classification algo- 
rithm has been designed to be used with ERS-1 SAR 
imagery. The ERS-1 SAR is a single frequency (C band, 5.3 
GHz), single polarization (vertical transmission and recep- 
tion, or VV) radar with a fixed look angle of 23 ø off nadir. 
The satellite, launched on July 14, 1991, into a sun- 
synchronous orbit at 98 ø inclination, will acquire extensive 
imagery of sea ice over the Arctic Ocean and peripheral 
seas. On the basis of aircraft SAR imagery obtained at C 
band VV, the imagery from ERS-1 is expected to be ex- 
tremely valuable for sea ice studies because of the high 
contrast in backscatter that exists between multiyear and 
first-year ice, particularly in the winter [Cavalieri et al., 
1991]. The GPS has been designed to take advantage of this 
brightness contrast. 

The GPS will utilize reduced resolution (•200 m) SAR 
data processed at the ASF. The low-resolution products are 
8- by 8-pixel-averaged scenes made from four-look ground 
plane, full resolution (25 m) images and are 1024 by 1024 
pixels in size. An advantage of using the lower-resolution 
image products is the low level of multiplicative noise or 
speckle that is present after the averaging process. Thus it is 
possible to avoid special segmentation techniques [Lyden, 
1984; Wackerman et al., 1988] which account for speckle 
statistics to minimize classification errors. This simplifies the 
task of the automated procedure to finding optimum thresh- 
olds for segmentation of the different ice types using the 
expected microwave responses at C band. The current 
algorithm is based entirely on mean backscatter coefficients 
and does not attempt to exploit the two-dimensional or 
statistical structure (e.g., texture, higher-order moments, 
etc.) of specific ice types. Although these features have been 
shown to be effective in some cases, there are insufficient 
observations at this time to support the implementation of 
such feature extraction schemes in an operational system. 

The seasonal evolution of the active microwave responses 
of sea ice are described in the work of Onstott and cowork- 

ers [Onstott et al., 1979, 1982, 1987; Onstott and Gogineni, 
1985; Onstott and Shuchman, 1988]. Preliminary assessment 
and comparison of SAR data with scatterometer data at 
C-band showed that there is a consistent contrast (of 5-6 dB) 
between MY and FY ice during winter conditions, which 
serves as an important discrimination feature. In the sum- 
mer, scatterometer measurements [Onstott et al., 1987; 
Onstott and Gogineni, 1985] have shown that reductions and 

even reversals in this contrast have been observed during 
warm, melt conditions due to changes in scattering charac- 
teristics caused by changes in surface conditions of the ice 
and snow cover. In this regime, the contrast between ice and 
water is still available for separation of the two classes for 
ice concentration calculations. Perhaps the most difficult 
time periods to evaluate are the seasonal transitions (spring 
and fall), when the most dramatic changes in the microwave 
backscatter from the ice are expected. The present plan is to 
implement a classification procedure for seasons when the 
surface conditions remain fairly stable and a high confidence 
can be placed on the classification results. Validation and 
extension of the procedure to other seasons and conditions is 
dependent on routine SAR observations from ERS-1 as well 
as correlative data (e.g., surface measurements) for adapting 
the classifier to these datasets. A significant factor affecting 
the number of ice types that can be effectively discriminated 
is the performance of the radar sensor and processing system. 
The percentage misclassification is directly dependent on the 
relative as well as absolute calibration of the sensor. 

In this paper we will examine the factors which affect the 
performance of the classification system: (1) system factors 
(radar sensor and processing system performance), (2) inter- 
nal factors (classifier parameters), and (3) external factors 
(seasonal variations in backscatter signatures). The next 
section presents the classification procedure with a discus- 
sion of each element in the algorithm flow. Section 3 
summarizes the simulation procedure and the dataset used 
for evaluation of the classification products. Results and 
observations are included in section 4. Finally, the key 
observations are presented with a brief discussion of the 
importance of an integrated effort required to validate the 
performance and quality of such an algorithm. 

2. CLASSIFICATION APPROACH 

This section provides a description and analysis of each of 
the elements within the algorithm flow. The flow diagram of 
the classification procedure is shown in Figure 1. The three 
subsections describe the major components and processes of 
the classification scheme: (1) radar data calibration, (2) 
image segmentation and labeling, and (3) the critical look-up 
tables used to label the ice type of individual pixels. These 
subsections represent logical grouping of the topics rather 
than the order in which they appear in Figure 1. 

2.1. Radar Data Calibration 

Data calibration. Since this is an unsupervised intensity- 
based classification procedure, the labeling of individual 
pixels is dependent on the overall system calibration. In the 
case of the radar system, pixel values are mapped into their 
corresponding backscatter coefficients. The process of cali- 
bration involves two steps: (1) the removal of the system 
noise bias to the digital sample, and (2) the mapping of the 
resultant value into a backscatter coefficient. The data 

required for calibration is available from the processing table 
associated with each image frame produced by the ASF 
systems. This table establishes the proportionality between 
the pixel values and the backscatter coefficients, tr 0. The 
sensitivity of the classification procedure to the accuracy of 
the data calibration is discussed in the following sections. 

Residual antenna pattern correction. Incorrect compen- 
sation of the antenna pattern in SAR image data (causing 
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Fig. 1. Sea ice classification approach. 

range intensity gradients) is frequently a problem when there 
are uncertainties in antenna pointing and preflight pattern 
measurements. Even though the ERS-1 antenna gain pattern 
approximates that of a ramp (which takes into account the 
expected R 3 range dependence), thus reducing the sensitiv- 
ity to pointing errors, residuals could still occur. Here the 
residuals are modeled as a linear ramp; however, higher- 
order polynomials could be used if postlaunch measure- 
ments indicate such strategy is necessary. To estimate the 
parameters of the linear error model, 16 windows of 100 by 
100 pixels each uniformly distributed within the image frame 
are selected for cluster analysis. The dominant bright clus- 
ters identified at each window location are selected, and the 
ones not within the tolerance of the expected residuals are 

discarded. The remaining cluster centroids are then used for 
regression analysis to determine the parameters (slope) of 
the linear model. The simulation results for four cases are 

shown in Table 1. The ramp is measured before and after the 
addition of a l-riB range ramp. On the basis of the results, 
the procedure can determine a linear ramp to approximately 
0.5-rib accuracy. This step will also remove any natural 
incidence angle-dependent variations of sea ice (approxi- 
mately 0.5 dB across the range of FRS-1 for multiyear ice) in 
the backscatter cross sections as well. The expected re- 
sponse at the center of the image is used as a reference. 
Thus, the relative calibration (consistency in the pixel value 
of the same ice type within an image frame) requirements of 
the pixel samples can be relaxed. 
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TABLE 1. Performance of Estimation of a 1-dB Ramp 

Ramp, dB 

Original Expected Error, 
Image Image Estimated Ramp, dB dB 

1 0.54 1.05 1.54 0.49 
2 -0.1 0.46 0.9 0.44 

3 -0.36 0.15 0.64 0.49 
4 -0.84 0.18 0.16 -0.02 

of the ice types, or else there could be ambiguity in the 
labeling procedure. For example, if the contrast between FY 
and MY ice is 5 dB, then the absolute calibration (consis- 
tency in the estimated cross section between one image 
frame and another) accuracy should be better than ---2.5 dB 
to avoid this labeling ambiguity. 

Location of other ice types. The centroids of all the other 
ice types are located by using the expected contrast between 
different ice types stored in the look-up table. For example, 
if MY ice is identified as the reference cluster, then the 
relative locations of the other ice types i are 

2.2. Image Segmentation and Labeling 

Cluster analysis. This step is used to identify the domi- 
nant or reference (cluster with the largest sample population) 
cluster within the image frame with the goal of labeling this 
cluster as an ice type in the next step of the procedure. 
Clustering is performed in the intensity domain and not in 
the normalized logarithm representation. The selection of 
the dominant cluster is to insure that the mean backscatter of 

that ice type is reasonably estimated. For example, this step 
would avoid selection of the cluster which is dominated by 
brighter ridge pixels from a smaller population. An efficient 
cluster analysis technique called ISODATA is used to iden- 
tify the natural intensity clusters. This iterative technique is 
characterized by the addition of heuristics to group, elimi- 
nate, and/or split clusters on the basis of parameters 
specified by the user. The input parameters for clustering are 
simply the desired number of classes and the expected within- 
class scatter and between-class scatter. This method is based 

on the minimization of the sum of squared Euclidean distance 
between the sample and cluster center. A detailed description 
of ISODATA is given by Ball and Hall [1967] and Tou and 
Gonzalez [1974]. The technique assumes that the user has a 
certain degree of familiarity with the data for optimal perfor- 
mance. As stated earlier, the knowledge of the significant 
contrast between FY and MY ice in winter C band VV data has 

been incorporated into our scheme for mechanizing this unsu- 
pervised clustering technique. Tests have shown that only a 
small subset of the image (3 to 5% in area) is needed to obtain 
stable clustering results, i.e., cluster centroids vary little after a 
sufficient number of pixels representative of the ice types in the 
image are sampled. The rationale for choosing a small sample 
population is that the clustering procedure becomes inefficient 
as the sample population increases in size, which is due to the 
number of distance computations per iteration. Uniformly 
distributed data samples are selected for cluster analysis. An 
ice type with small areal extent would obviously not contribute 
to the analysis, but small populations will be accounted for 
later when individual pixels are labeled. Sensitivity studies 
based on varying the clustering parameters (using available 
data) have shown that this technique can consistently locate 
the cluster centroids to within 0.5 dB. 

Cluster labeling. The backscatter value of the centroid 
of the dominant cluster does not necessarily correspond to a 
reference backscatter coefficient of an ice type stored in a 
look-up table (see section 2.3). The cluster is labeled as 
belonging to that ice type with the backscatter coefficient 
closest (absolute distance) to that in the look-up table. This 
is equivalent to identification of an radiometric tie point 
when there exists a radiometric misregistration between the 
measured and expected measurements. This uncertainty in 
data calibration should be less than the expected separation 

Rhy = 
o- i 

rr MY 

This step locates the small populations within the image 
which were omitted in the cluster analysis. This approach 
assumes certain amount of stability in the separation be- 
tween the backscatter responses of different ice types. One 
factor that should be considered is the effect of uncompen- 
sated system noise bias which would shift the relative 
location of the ice types in the intensity histogram relative to 
the reference cluster, 

Rhy = 
o-i+n 

o'My q- n 

Here the effect of the uncompensated system noise power n 
is a mislocation of the ice types which affects the final 
classification accuracy. 

Pixel labeling. The final step is to give each image pixel 
an ice type label. Two alternative methods for pixel classi- 
fication are: minimum distance and Bayes. The first is a 
simple one-dimensional thresholding of the intensity values 
based on the cluster locations C i, where 

X '• Ci ]X -- Ci = minimum 

where x is the backscatter value, and - is the assignment 
operator. The second is a more optimal approach if there are 
large differences in the expected natural variability of the 
different ice types. Simply, 

x • C i P(Ci)p(x/Ci) = maximum 

The advantage of this method is that it accounts for differ- 
ences in the density functions. For example, if the FY ice 
has a larger variance than MY ice, then the error rate would 
be minimized if such an approach is taken. The disadvantage 
of the Bayes approach is that the distribution densities 
p(x/Ci) and the a priori probabilities P(Ci) of the ice types 
as well as parameters describing their distributions have to 
be estimated. Also, the spatial and temporal dependence of 
these statistical parameters is probably quite high (owing to 
snow cover, ice deformation and surface temperature vari- 
ations), and therefore the use of this technique is difficult to 
evaluate. However, both classifiers will be available to the 
user in the operational system. Only the minimum distance 
classifier has been evaluated thus far. 

Additionally, we expect the observed variability of an ice 
type to be more dependent on resolution than the mean 
backscatter. The location uncertainty of the cluster centroid 
during cluster analysis (0.5 dB as pointed out earlier) obvi- 
ously affects classification accuracy. The sensitivity is ana- 
lyzed by varying the centroid location about a reference 
point and assessing the percentage of misclassified pixels. 
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Fig. 2. Sensitivity of classifier: dependence of classification accu- 
racy on errors in the location of the cluster centroids. 

Figure 2 shows the percentage of misclassified pixels as a 
function of the uncertainty in the location of the cluster 
centroid. The results based on evaluation of four aircraft 

images showed that we can expect a 5% to 10% error given 
the 0.5-dB uncertainty in the location of the cluster cen- 
troids. It should be noted that this analysis considered only 
the classifier parameters and excluded all the other factors 
which might affect classification accuracy. These errors are 
acceptable for many sea ice studies [ASF Prelaunch Science 
Working Team, 1989]. For example, the ambiguity between 
deformed FY and MY ice (i.e., in that thickness regime) 
would have very little effect on regional flux calculations. 

2.3. Look-up Tables: Description 

The design of the scatterometer-derived look-up tables 
used in the ice type labeling process is described here. Each 
individual ice type and its associated backscatter coefficient 
are included in each of these tables. The dependence of the 
backscatter signature of the principal ice types on season 
and environmental conditions are coded in different look-up 
tables. Table 2 illustrates the conditions for selecting the 
different look-up tables as well as the principal ice types 
which are likely to be discriminable based on these condi- 
tions. This table serves as a basis for further improvements as 

ERS-1 data become available. It is anticipated that an exten- 
sive data base will be constructed that will enable better 

quantification and characterization of the spatial, temporal, and 
meteorological dependence of the microwave signatures of sea 
ice. It is important to note that the goal, based on our current 
knowledge, is not only to identify all the conditions and factors 
which affect these look-up tables but also to identify conditions 
when different approaches to ice classification have to be 
considered. Some of the knowledge incorporated into the 
current set of look-up tables is described below. 

Seasonal dependence and transitions. The general time 
spans of the different "seasons" listed in the Table 2 are 
based on the climatology of sea ice. The actual timing of the 
transitional periods will be narrowed down by evaluating the 
correlations between local meteorological conditions and 
backscatter responses of the ice, a task that will be under- 
taken when routine ERS-1 observations become available. 

The initial validation effort will focus on the performance of 
the classifier under winter Arctic conditions using data 
processed at the ASF. Sea ice undergoes seasonal transi- 
tions from the winter, when growth and snow accumulation 
occur; through the spring period of snow and ice surface 
melting and refreezing; into the summer period, when exten- 
sive snow and ice melt forms ponds which eventually drain; 
and finally into fall, when the temperatures drop and ice 
growth and snowfall begins. These seasonal cycles are 
distinguishable in active microwave data and have distinct 
signatures (see Onstott et al. [1987] for overview). 

The look-up tables. There are a total of six look-up tables 
(winter to early spring, late spring, early summer, midsum- 
mer, late summer, and fall; Table 3) corresponding to the 
time spans which have definitive characteristics relative to 
microwave responses of sea ice. The range of thickness, the 
normalized backscatter coefficient, the natural variability, 
and the incidence angle behavior of the principal ice types 
are shown in these tables. The ice types with backscatter 
coefficients below the system noise performance of -18 dB 
are indicated in the table. As was mentioned before, the 
backscatter signatures in the look-up tables are based on 
scatterometer measurements. Only the best available cali- 
brated scatterometer measurements were included. An ice 

type with a specific backscatter signature has been verified 
with in situ measurements of the physical properties, and the 
environmental conditions during which the measurements 
were taken have been well documented. Entries in the 

look-up tables represent years of observations and experi- 
ence acquired during field campaigns and are based exten- 
sively on the work of Onstott et al. [1979, 1982, 1987] and 

TABLE 2. Seasonal and Temperature Dependence of Active Microwave Sea Ice Signatures 
at C Band VV 

Climatology 
General Ambient Principal 

Season Time Span Temperature Ice Types* 

Winter to early spring Oct.-May T < - 10øC MY, FY, NI/OW 
Late spring May-June -10øC < T < 0øC ice, water 
Early summer June T = 0øC ice, water 
Midsummer July T -> 0øC ice, water 
Late summer August T -> 0øC ice, water 
Fall Sept.-Oct. -10øC < T < 0øC MY, FY, NI/OW 

*Ice types that are most likely to be separable in C-VV ERS-1 data. Abbreviations are MY, 
multiyear ice; FY; first-year ice; NI/OW, new ice/smooth open water. 
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TABLE 3. Seasonal Dependent Scatterometer-Derived 
Backscatter (C Band VV at 25 ø Incidence) Look-up Tables 

for Classification of Sea Ice Types in SAR Data 

Thickness, 
Ice Type cm rr 0, dB STD, dB Slope, dB 

Winter to Early Spring 
MY >220 -8.6 2.2 -0.08 
FY 20-220 - 14.0 2.1 -0.24 
NI/OW 0-20 < - 18 ...... 

Late Spring 
MY >220 - 10.7 2.1 -0.27 
FY 70-220 -13.2 1.1 -0.22 

NI/OW 0-20 <- 18.0 ...... 

Early Summer, Midsummer, Late Summer 
MY/FY >20 >- 16.0 '" 
NI/OW 0-20 <- 18.0 "' 

Fall 

MY >150 -10.5 1.7 

FY 30-120 -12.5 1.9 
NI/OW 0-30 <- 18.0 '" 

-0.04 

-0.21 
... 

The columns indicate ice types, ice thickness, normalized back- 
scatter cross section, standard deviation of the backscatter, and the 
expected incidence angle dependence of the backscatter. (There are 
gaps where no scatterometer measurements are available in certain 
thickness ranges). Ice types are MY, multiyear; FY, thick first-year; 
NI/OW, new ice/smooth open water. 

Onstott and Gogenini [1985]. Because of the disparity in the 
resolution of the scatterometer observations and the SAR 

measurements, it is expected that the SAR backscatter 
measurements will be modulated to a higher degree by 
mixture distributions (of ice types) compared with scatter- 
ometer samples. Comparison of the DC-8 SAR measure- 
ments and the scatterometer winter look-up table showed 
the mean backscatter and the separation between ice types 
to be similar (section 4). We anticipate that the mixture 
distribution of ice types will tend to affect the expected 
variability more than the mean statistic. The actual pixel 
classifier (minimum distance versus Bayes) which will be 
utilized in the algorithm will be based on these results. 

Effect of wind. The normalized radar cross section of 
open water is dependent on wind speed and direction. 
Currently, we do not have a strategy for classification of 
open water with its varying radar cross section. The limited 
fetch of leads may also result in significant backscatter 
variability within a single lead. The classification products 
will indicate the wind velocity at the time of data acquisition. 
Wind velocity and air temperature fields (discussed below) 
used in the algorithm will be extracted from the numerical 
data products distributed by the National Meterological 
Center (NMC). These analyzed NMC fields are available 
twice (0000 UT and 1200 UT) daily. 

Air temperature. The scattering characteristics of sea ice 
are highly dependent on air temperature. If the ice surface 
temperature (in response to air temperature) rises to a point 
where significant moisture in the ice from melt increases the 
complex dielectric constant, the sea ice response would 
cause ambiguity in the classification. It is obvious that the 
availability of air temperature measurements would help in 
identifying such conditions. The accuracy of the NMC 
temperature fields in the Arctic is currently being investi- 
gated (R. Colony, personal communication, 1991). 

Effectively, the look-up table selected to classify a specific 
image will be a function of the season and ambient air 
temperature. To account for all the possible conditions, the 
decision table shown in Table 4 will be used. It is apparent 
that other factors (surface air pressure, geographic location, 
etc.) could be used in the decision table, and the software 
system which will be implemented will have the capability 
for future enhancement of this decision table based on 

available ancillary data. For example, passive microwave 
data could potentially be used synergistically with backscat- 
ter data for achieving a more precise identification of sea- 
sonal change, and therefore more accurate sea ice classifi- 
cation would result from the SAR imagery. 

3. DATA SET AND SIMULATION 

Data set. For realistic evaluation of the classification 

scheme, simulated ERS-1 image data approximating the 
expected quality of that processed at the ASF were gener- 
ated. The NASA Jet Propulsion Laboratory (JPL) DC-8 
SAR C band VV high-resolution data were used to generate 
four-look square-root intensity imagery of sea ice of sizes 
1024 by 750 azimuth and range samples, respectively. The 
set of aircraft SAR imagery used in the algorithm evaluation 
was acquired during the March 1988 NASA DC-8 special 
sensor microwave imager (SSM/I) algorithm validation pro- 
gram [Cavalieri et al., 1991]. That dataset provided exten- 
sive data from the Alaskan Beaufort, Chukchi, and Bering 
seas. The aircraft SAR, designed and built at JPL, operates 
at C, L, and P bands with quad-polarization capability. Only 
the C-band VV data were used here. Another data set avail- 

able, used here mainly for verification of the classification 
procedure, is from the K a band scanning imaging radiometer 
(KRMS) operated on a Navy P-3 aircraft [Eppler et al., 1986] 
that was flown coincidentally with the NASA DC-8. 

Data simulation. To simulate the ASF ERS-1 image 
product which will be used in the classification scheme, the 
four-look aircraft data were convolved with an 8 by 8 box 
filter which is identical to the procedure used to generate the 
low-resolution (100-m pixel spacing) imagery at ASF. The 
key differences between the aircraft and ERS-1 data are 
shown in Table 5. The noise-equivalent normalized cross 
section NEcr 0 (or the equivalent cross-section of the system 
noise level), approximately -30 dB in the aircraft data, is 
considerably better than the ERS-I's expected performance 
of - 18 dB, so additional noise power was introduced (before 
the averaging process) in the aircraft data to more closely 
simulate the ERS-1 data. This effectively reduces our ability 
to detect ice types with backscatter coefficients less than 
-18 dB. Based on the backscatter coefficient of multiyear 
ice, typically -9 dB at C band VV, a noise level was added 
such that the expected signal-to-noise ratio of multiyear 

TABLE 4. Algorithm Decision Table 

Ambient Temperature Winter LSp ES MS LS Fall 

T < -10øC 1 1 2 4 5 6 

-!0øC< T<0øC 1 2 2 4 5 6 
T _> 0øC 1 2 3 4 5 5 

Numbers denotes tables as follows: 1, Winter to spring look-up 
table; 2, late spring (LSp) look-up table; 3, early summer (ES) 
look-up table; 4, midsummer (MS) look-up table; 5, late summer 
(LS) look-up table; 6, fall look-up table. 
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pixel samples was degraded to 9 dB (for an NErr 0 of - 18 dB) 
and accordingly for the other ice types. The SAR image 
model used for this simulation is 

I = (• + •q)r N 

Here, I is the image intensity, /x is the mean backscatter 
power, r/is the total system noise power contribution, F N is 
the fading random variable which modulates the expected 
backscatter, and N is the number of looks of a SAR pixel 
sample. The fading modulation is a consequence of the 
coherent nature of the imaging system and is caused by the 
interference of the various scatterers within the resolution 

element. It is characterized by a chi-square distribution with 
2N degrees of freedom [Ulaby et al., 1986]. The incidence 
angle diversity in the aircraft data is much higher than that of 
ERS-1; hence only the near-range swath (with incidence 
angles between 23 ø and 38 ø ) of the aircraft imagery is used. 

A distinct bimodal histogram of the simulated SAR data 
can be observed in Figure 3, a result of the spatial averaging 
of the data which suppresses the fading modulation of the 
signal. There is significant separation between multiyear and 
first-year ice, and the next section describes how the auto- 
mated approach exploits this contrast in the two ice types. 
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Fig. 3. Example histogram of a simulated ERS-1 64-1ook sea ice 
image. The peaks of the different ice types are well separated (MY, 
multi-year ice; FYR, rough deformed first-year ice; FYS, smooth 
first-year ice; NI, new ice/open water). 

4. RESULTS 

This section shows results of sample simulations and 
comparison of the aircraft imagery with KRMS and the 
limited surface measurements obtained from a field camp 
that was overflown by the DC-8 during March 1988. 

Classification of the modified DC-8 data. Plate 1 shows a 
sample DC-8 image with the image quality (noise floor, 
number of looks) modified to simulate the low-resolution 
(100-m pixel spacing) ERS-1 data generated at the Alaska 
SAR Facility. The incidence angle range within the strip is 
200-38 ø. The C band VV data were acquired in the central 
Beaufort Sea on March 11, when the air temperature was 
below -10øC. Based on the season and the conditions, the 
particular look-up table selected for the classification proce- 
dure was the winter look-up table (top section of Table 3). 
The contrast between the MY and FY ice was approximately 
5 dB, similar to that predicted by the scatterometer measure- 
ments in the look-up table. The ice type map generated by 
the classification scheme is shown in Plate 1, indicating that 
the MY and FY ice are correctly classified (on the basis of 
visual classification of the image frame). The region that is 
coded in red has a very low backscatter cross section (less 
than -18 dB) which is indicative of new ice or open water 
and which is close to the noise floor of the sensor. The 

TABLE 5. Differences Between the Image Quality of the Low- 
Resolution ASF ERS-1 Data and the JPL DC-8 C Band VV Data 

Low-Resolution DC-8 C 
E-ERS- 1 Band VV 

Number of looks 8 x 8 averaged from 4-look 
four-looks 

Resolution (ground range) m 100-200 12 x 18 
Noise equivalent rr 0, dB - 18 - 30 
Look angle,* deg 20-26 20-60 
Swath width, km 100 7-10 

*The aircraft data collected in the 20-38 ø range were used in the 
algorithm evaluations. 

principal thick ice types could be easily separated within 
these images. Such is also the case for tests with aircraft 
SAR images (from the NASA DC-8) from the Chukchi Sea as 
well. A total of 10 SAR images from the Beaufort and 
Chukchi seas were classified and evaluated. This classifica- 

tion procedure has not been evaluated with C band VV SAR 
image data from other seasons owing to the lack of availabil- 
ity of SAR data from these seasons. 

Comparison of field camp ice and environmental observa- 
tions with aircraft SAR imagery. An overflight of an ice 
camp in the Beaufort Sea was made on March 19, 1988. The 
ice camp was located approximately 350 km north of Prud- 
hoe Bay and supported underwater acoustic propagation 
studies [Wen et al., 1989]. The camp was located on the edge 
of a multiyear floe, adjacent to a refrozen lead which served 
as an aircraft landing strip. 

The environmental and ice data that were collected pro- 
vide the only known surface information obtained during the 
period of the aircraft campaign and confirm the winter 
conditions and the identification of FY and MY ice in the 

imagery. The environmental conditions were monitored at 
semiregular intervals at the camp (Figure 4). From March 11 
to March 19, the dates of the aircraft flights in the Beaufort 
and Chukchi seas, the air temperatures were generally below 
-10øC except on March 11 and 13, when they rose to about 
-7øC. Before and after these dates, the air temperatures 
were well below -20øC. The wind speeds were less than 7 
m/s and often less than 3 m/s. However, before March 17, 
both the air temperatures and wind measurements were 
obtained by hand-held instruments, so some inaccuracies in 
the measurements can be expected. From March 17 onward, 
an automated meteorological station was in place. Neverthe- 
less, the air temperatures were not high enough for any 
moisture to be expected in the snow cover. The drift of the 
ice camp was determined by satellite positioning. On March 
10 and 12 the drift speed rose rapidly to about 32 and 20 
cm/s, respectively, due to winds of about 7 m/s. After March 
14, the drift speed reduced to less than 5 cm/s as the wind 
decreased to less than 3 m/s. The day of the SAR overflight, 
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C-BAND VV INCIDENCE ANGLE 23-38 ø 

RED = NEW ICE 
DARK BLUE = FIRST YEAR ROUGH 
LIGHT BLUE - FIRST YEAR SMOOTH 
WHITE = MULTI-YEAR ICE 

Plate 1. Classification maps of simulated 8 by 8 averaged ERSI SAR data. White is multiyear ice; dark blue, smooth 
first-year ice; light blue, rough first-year ice' red, new ice/open water. 

March 19, fell during a period of quiescence with little or no 
ice motion and air temperatures below -20øC, reducing the 
likelihood of open water being present in any recently 
opened leads. 

Measurements of the sea ice in the area [Wen et al., 1989] 
provide some key information on the understanding of the 
radar signatures in Plate 2. Most of the measurements were 
made of the refrozen lead rather than the multiyear floes. 
The lead was approximately 1.4 m thick and had a snow 
cover of about 15 cm, although the snow cover was unevenly 
distributed into sastrugi .or windrows. The lead was sur- 
rounded by multiyear floes with a recently formed rubble 
field to the north containing large ice chunks. Fissures 
several centimeters in width were contained within the lead. 

Two ice cores were taken from the lead from which salinity, 
temperature, and density were measured and brine volume 
calculated (Figure 5). The ice was observed to be largely 
columnar in structure. Salinity profiles have values and a 
"C" shape characteristic of first-year ice of that thickness 
[Weeks and Ackley, 1982]. The temperature profiles are also 
characteristic of winter FY ice. No measurements of surface 

roughness of the ice and variable snow cover depth were 
made on the lead, but it is presumed to be relatively 
undeformed, since the lead was used as a landing strip and is 
referred to as "flat." The large multiyear floe where the ice 
camp was located was 6 by 6 km in size and contained 
hummocks as high as 6 m. In Plate 2, the ice camp was 
identified by knowledge of its location and by hand-held 
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photography and sketch maps of the camp itself [Wen et al., 
1989]. In the SAR image, the building of the camp appears as 
a bright point target situated on the less bright multiyear ice. 
Adjacent to the camp is the uniformly dark refrozen lead. 
These limited but important data enable exact identification 
of these two major ice types and provides an indication of the 
general ice types and conditions and corresponding signatures 
in the region. As can be seen in the classification image, the 
algorithm successfully delimits the MY and FY ice. E 

Comparison with KRMS data During the March 1988 ß 

SSM/I validation, a Ka band scanning radiometer (KRMS) 
was flown along with the JPL SAR [Cavalieri et al. 1991' , , 100 

Eppler et al., 1986]. It provided some coincident coverage of 
the same ice fields. The passive microwave data were 
spatially registered to the SAR data for comparison of the 
active and passive signatures of the sea ice to assess the 

150 
performance of the classification scheme. Plate 3 shows the 
coregistered SAR and KRMS data and their corresponding 
classification maps. The comparisons are admittedly more 
qualitative than quantitative owing to the lack of surface 
measurements in the area and also to the relative difficulty of 
geometrically registering the KRMS data to the SAR data 
(due to the poorer resolution performance of the KRMS). 
The KRMS data were also segmented into two regions, one 
corresponding to the brightness temperature of MY ice 

5O 

(white) and the other FY ice (dark). The MY fraction of each 
classified image was calculated and compared, the difference 
in the MY fraction between the two classification maps being 
less than 2%. Two other data sets comparing the classified 
KRMS data and SAR data acquired in the Beaufort have 100 
yielded comparable results. 

The results are encouraging in that the ice type signatures 
derived from the limited SAR data set are similar to those in 
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Fig. 4. Weather conditions at the ice camp [after Wen et al., 1989]. 

5O 

TEMPERATURE 

(øC) 
-30-20-10 0 

0 ! i 

SALINITY 
BRINE 

DENSITY VOLUME 
(4) (g/cc) (4) 
6 9 0.80 0.90 1.00 0 100 200 
i i i i i ! i 

ß 

ß 

ß 

ß 

.. 

TEMPERATURE 

(oc) 
-30-20-10 0 

0 i 1 i i 

# 

(a) 

150 

BOTTOM OF ICE 

SALINITY DENSITY 
(%•) (g/cc) 
6 9 0.75 0.85 0.95 0 

i i i i i 

.e ß ß 
: 

... 

... 

.. 

..- ./ ß 

; 

: 

: 

ii,.. .ll 1•... 
... ........... 

".• ß .... '-..• 

BO'I-rOM OF ICE 

BRINE 
VO LU M E 

(4) 
lOO 200 

i i 

(b) 

Fig. 5. Ice characteristics of two ice cores taken from a refrozen 
FY ice lead at the ice camp [Wen et al., 1989]. 

the scatterometer winter look-up table. If the signatures are 
stable as observed (under these winter conditions), then 
misclassification will be driven entirely by the computational 
aspects (segmentation) analyzed in section 2. This gives us 
an expected misclassification accuracy of less than 10%. 
However, it is quite difficult, as in most classification pro- 
cedures, to state truly the expected accuracy of the classifi- 
cation map. The most important factor which affects classi- 
fication accuracy is still the predictability of the physical 
variability of sea ice signatures. 

5. DISCUSSION 

5.1. Summary 

The classification approach and a subset of the simulation 
results obtained were presented in this paper. The dependence 
of the performance of the procedure on sea ice scattering 
characteristics and SAR system performance has been consid- 
ered. The sensitivity of the procedure has also been analyzed. 

The classification procedure worked well with the aircraft 
data set acquired over the Beaufort and Chukchi seas in 
March 1988. Comparison of the contrast observed in the 
SAR data and scatterometer measurements showed consis- 
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Plate 2. Aircraft SAR image of the ice camp area in the central Beaufort Sea (on March 19, 1988) and resulting 
classification. White is multi-year ice' grey, first-year ice' black, new ice/open water. IC denotes the position of the ice 
camp. 

tency in the separation between MY and FY ice during this 
season. The discrimination of these two ice types is feasible 
under these winter Arctic conditions, although the detection 
of new ice and open water will probably be limited by system 
noise performance of the ERS-1 SAR. In the case of open 
water, the effect of wind on its scattering cross section will 
cause ambiguity in the intensity-based classification scheme 
suggested here. Also, the need for absolute and relative 
calibration of the radar data is demonstrated if our classifi- 

cation scheme is to be effectively mechanized. The effect of 
snow cover and surface melt conditions on scattering char- 

acteristics increases classification error. The look-up tables 
are designed to account for the influence of season and 
environmental conditions on the expected microwave be- 
havior of sea ice. Scatterometer measurements have indi- 
cated that the contrast between FY and MY ice remains 

fairly stable for the period between October and May. The 
expected scattering behavior of sea ice during the spring, 
summer, and fall has also been described. We suggest that 
even though there is very little contrast between ice types, it 
is possible to discriminate between ice and open water 
during early, mid, and late summer. During the late spring 
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JPL AIRCRAFT SAR C-BAND VV 

SA R C LASO•I F I 'C AT ION % M Y = 32.1 

NORDA K •RMS RADIOMETER 3'3.6 GH z 

KRMS CLASS!F!CATION % MY = 30.9 

WHITE = MULTi-YEAR (MY) 
GREY = FIRST YEAR ROUGH 
DARK GREY = FIRST YEAR SMOOTH 
RED = NEW iCE 

Plate 3. Comparison of classification results with KRMS data from March 11, 1988 in the central Beaufort Sea. White 
is multi-year ice; dark blue, smooth first-year ice; light blue, rough first-year ice; red, new ice/open water. 

and fall it is possible to discriminate MY, FY, and open 
water/new ice although the contrast between these ice types 
will be slightly modulated by the moisture in the ice and 
snow. These effects are coded in the look-up tables con- 
structed using scatterometer data. We anticipate that this 
classification algorithm will perform adequately during the 
winter and that further enhancements to the algorithm will 
be required during the specified seasons. 

5.2. Evolution of Approach and Postlaunch Validation 

It should be emphasized that this is an intensity-based 
classification scheme and that the use of other features (e.g., 
texture, higher-order moments, etc.) for ice classification 
has not been explored fully owing to lack of routine SAR 

observations required to understand and mechanize such 
schemes. Flexibility is designed into the classifier that these 
additional features and other measurements (passive micro- 
wave data) could be easily incorporated into the classifica- 
tion scheme. Also, the validity and confidence in the ap- 
proach and the quality of the classification procedure will 
ultimately depend on an integrated program including field 
campaigns and aircraft underflights during the post-launch 
and operational phases to validate the approach as well as to 
provide ideas for improvement of this approach to ice 
classification. The approach suggested here should evolve 
with data available from routine coverage by ERS-1 in both 
the Arctic and Antarctic sea ice regions. 

It is expected that these sea ice classification products • 
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from SAR imagery will increase in value and utility after 
thorough validation is accomplished. Design changes and 
improvements will be required to incorporate the L band 
data from JERS-1 and RADARSAT imagery with its wide- 
swath capability. Obtaining extended time series by region 
and season will be extremely valuable for monitoring sea- 
sonal change, for heat flux calculations and for determining 
the role of the polar regions in global climate. 
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