Title
Search for down-type fourth generation quarks with the ATLAS detector in events with one lepton and hadronically decaying W bosons

Permalink
https://escholarship.org/uc/item/7v27d57m

Journal
Physical Review Letters, 109(3)

ISSN
0031-9007

Authors
Aad, G
Abbott, B
Abdallah, J
et al.

Publication Date
2012-07-20

DOI
10.1103/PhysRevLett.109.032001

License
CC BY 4.0

Peer reviewed
A fourth generation of chiral quarks is a natural extension to the standard Model (SM). It can explain some discrepancies observed in meson-mixing data and can provide an additional source of CP violation in B_s decays. A review of theoretical and experimental motivations for a fourth generation of quarks can be found in Refs. [1,2].

This Letter presents a search for a fourth generation down-type quark, b'. If b' is chiral and its mass is larger than $m_t + m_W$, then it decays predominantly as $b' \rightarrow Wt \rightarrow WWb$. Pair production of b' quarks leads therefore to four W bosons and two b quarks in the final state. This analysis applies more broadly to any heavy quarks that decay into a W boson and a t quark, though the fourth generation b' model is chosen as the benchmark. The previous limit in the single lepton channel is $m_{Wb} > 372$ GeV from CDF, based on 4.8 fb$^{-1}$ of data [3]. Searches using two or more high p_T leptons in the final state have also been done at the Tevatron [4] and at the Large Hadron Collider (LHC) [5–7] with comparable sensitivity.

In the decay mode studied here, one of the four W bosons decays leptonically and the others decay hadronically. This lepton + jets channel, as $b'b' \rightarrow W^-tW^+\bar{t} \rightarrow bbW^+W^-W^- \rightarrow l^+\nu l\bar{\nu}q\bar{q}q\bar{q}$. In addition to requiring exactly one lepton, large missing transverse momentum, and at least six jets, the invariant mass of nearby jet pairs is used to identify high transverse momentum W bosons. In data corresponding to an integrated luminosity of 1.04 fb$^{-1}$ from $p\bar{p}$ collisions at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector, a heavy down-type quark with mass less than 480 GeV can be excluded at the 95% confidence level.

DOI: 10.1103/PhysRevLett.109.032001

PACS numbers: 13.85.Rm, 12.60.-i, 14.65.Jk

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
candidates are identified by localized energy deposits in the EM calorimeter with transverse energy $E_T > 20$ GeV and $|\eta| < 2.47$. The energy cluster must satisfy shower-shape requirements [11] and should be matched with a track reconstructed in the ID. Muon candidates must have transverse momentum $p_T > 18$ GeV, $|\eta| < 2.4$, and a consistent trajectory reconstructed by combining segments in the ID and MS.

The data used in this search were collected in the first half of 2011, and correspond to a total integrated luminosity of 1.04 ± 0.04 fb$^{-1}$. During this period, the average number of collisions per bunch crossing was six. The event reconstruction is affected by collisions during the same bunch crossing as the selected event (in-time pileup) and, to a lesser extent, collisions during adjacent bunch crossings, within the time the detectors are sensitive for each trigger (out-of-time pileup). The simulation takes both kinds of pileup into account.

The signal and SM backgrounds are modeled using a variety of generators. Pair-production of $b'\bar{b}'$ quarks decaying to Wt with subsequent showering and hadronization is generated with PYTHIA [12] using the MRST2007 LO* parton distribution function (PDF) set [13]. Seven samples with $m_{b'}$ masses ranging from 300 to 600 GeV are used. The cross section for each b' mass is calculated at approximate next-to-next-to-leading order (NNLO) using HATHOR [14]. For a b' quark with a mass of 350 GeV, the cross section is $3.20^{+0.10+0.12}_{-0.19-0.12}$ pb, where the first uncertainty comes from varying the renormalization and factorization scales by a factor of 2, and the second one from the PDFs. For a 500 GeV b' quark, the cross section is $0.33^{+0.01+0.01}_{-0.02-0.01}$ pb.

Top quark pair production is modeled using ALPGEN [15] where hard emission of up to three partons is described using QCD matrix elements, HERWIG [16] is used to model the parton shower, and JIMMY [17] describes multiple parton interactions. The rate of top quark production predicted by the simulation is validated with data using an event sample with three, four, or five jets, where little or no b' signal is expected.

Production of a W or Z boson in association with many jets is described in ALPGEN with hard parton emission of up to five partons and HERWIG for the parton shower. The $W +$ jets background is normalized using a data-driven method which fits templates from simulated events to a data sample dominated by W decays [18]. The $Z +$ jets background is normalized to a NNLO calculation [19].

Other processes considered are the production of dibosons (WW, WZ, ZZ), modeled with ALPGEN and HERWIG and normalized to next-to-leading-order (NLO) calculations [20]; single top, modeled with MC@NLO [21] and HERWIG; and $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}WW$, $t\bar{t}Wj$, $t\bar{t}Zj$, and $WWjj$, all modeled with MADGRAPH [22] and PYTHIA.

The multijet background is strongly suppressed by the requirements described below. The residual contribution is estimated using a data-driven technique called the matrix method, described in detail in Ref. [23]. Validation of this background estimate is done by reversing these requirements to enhance the multijet contribution.

Electrons, jets, muons, and missing transverse momentum are used to select events for this search. Electrons are required to have $E_T > 25$ GeV and be within the pseudorapidity range $|\eta| < 2.47$, excluding the barrel–end-cap transition region $1.37 < |\eta| < 1.52$. Electrons must pass tight identification requirements [11] and also satisfy calorimeter isolation: the energy not associated with the electron cluster inside a cone of size $\Delta R = 0.2$ around the electron direction must be smaller than 3.5 GeV after the correction for the contributions from interactions additional to the hard process.

Jets are reconstructed from topological calorimeter clusters using the anti-k_t algorithm [24] with radius parameter 0.4. These jets are then calibrated to the hadronic energy scale using p_T and η-dependent correction factors obtained from simulation and validated with collision data [25]. For this analysis, jets are required to satisfy $p_T > 25$ GeV and $|\eta| < 2.5$. The closest jet within an η-ϕ cone of 0.2 around an electron candidate is removed.

Muon candidates must satisfy $p_T > 20$ GeV and $|\eta| < 2.5$ and pass tight identification requirements [23]. Muons must also satisfy calorimeter isolation, which requires that the energy, excluding the estimated energy deposited by the muon, is smaller than 4 GeV in a cone of size $\Delta R = 0.3$ around the muon direction, and track isolation, which requires that the summed momentum of all tracks excluding the muon track is smaller than 4 GeV in a cone of size $\Delta R = 0.3$. Finally, all muons within a cone of size $\Delta R = 0.4$ around any jet with $p_T > 20$ GeV are removed.

The missing transverse momentum (E_T^{miss}) is constructed from the vector sum of topological calorimeter energy deposits and muon momenta, projected onto the transverse plane [26].

If each b' quark decays to a top quark and a W boson, the resulting final state is $t\bar{t}W W^-$. In the lepton + jets channel, the final state contains one lepton, E_T^{miss} from the undetected neutrino, and many jets from the eight quarks. Exactly one lepton (e or μ) must pass the selection described above. Since not all jets are expected to satisfy the momentum and rapidity requirements, at least six jets are required.

To reduce the multijet background, additional requirements are placed on the E_T^{miss} and the transverse mass of the leptonically decaying W boson, $m_W^T = \sqrt{2E_T^{miss} p_T^l (1 - \cos(\Delta \phi(E_T^{miss}, p_T^l)))}$. In the electron channel, $E_T^{miss} > 35$ GeV and $m_W^T > 25$ GeV are required, and in the muon channel, $E_T^{miss} > 20$ GeV and $E_T^{miss} + m_W^T > 60$ GeV are required. Only events with six or more jets are considered. For a b' quark with a mass of 350 GeV, $11.2 \pm 1.7\%$ of signal events are accepted with this selection. For a
events are retained.

At this stage of the selection, pair production of b' quarks is distinguished mostly by the large number of energetic jets, as shown in Fig. 1. Events with b' decays contain jets from three hadronic W decays, while $t\bar{t}$ background events contain only one hadronic W decay.

To identify these hadronic W decays, pairs of jets separated by $\Delta R < 1.0$ are examined. This choice of ΔR selects W bosons with high p_T and reduces the combinatorial background in events with large jet multiplicity. The number of reconstructed W bosons (N_W) is defined as the number of such jet pairs with an invariant mass in the range 70–100 GeV. This range is not symmetric around the W boson mass as additional energy is often included in the cone. Each jet may contribute to only one identified hadronic W decay. In Fig. 2, the invariant masses of dijet pairs in a control sample of events with only three to five jets are shown. Good agreement is observed between the data and simulation across the entire spectrum including the region close to the W boson mass, where a bump can be seen in the $t\bar{t}$ simulation.

The efficiency of finding a simulated W decay with both quarks matched to separate reconstructed jets depends on the W boson p_T. For simulated $t\bar{t}$ and b' events passing the selection described above and containing a W boson with a p_T of about 250 GeV the two jets from the W boson are found approximately 80% of the time. Once both jets are found, the efficiency that the jets have $\Delta R < 1.0$ and a dijet mass within the specified invariant mass range is approximately 70%, as can be seen in Fig. 3.
TABLE I. Systematic uncertainties in the predicted total background in the signal region. Some of the uncertainties have been constrained in background-dominated regions, profiled as described in the text. Smaller systematic uncertainties, such as those related to lepton identification and theory, and small uncertainties on the rate, are not profiled and are not included here. For the profiled systematics, the uncertainty before profiling is given in parentheses.

<table>
<thead>
<tr>
<th>Uncertainty on background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profiled uncertainties</td>
</tr>
<tr>
<td>$W + \text{jets normalization}$</td>
</tr>
<tr>
<td>ISR/FSR</td>
</tr>
<tr>
<td>Jet energy resolution</td>
</tr>
<tr>
<td>Jet reconstruction efficiency</td>
</tr>
<tr>
<td>Not-profiled uncertainties</td>
</tr>
<tr>
<td>Jet energy scale</td>
</tr>
<tr>
<td>$t\bar{t}$ simulation generator</td>
</tr>
<tr>
<td>$t\bar{t}$ showering model</td>
</tr>
</tbody>
</table>

The $W + \text{jets normalization}$ uncertainty is 4%, plus 24% per jet added in quadrature [18]. The uncertainties in lepton reconstruction efficiency and energy scale are derived in dilepton samples dominated by $Z \rightarrow \ell\ell$ decays and applied to the simulated background and signal samples.

The systematic uncertainties are treated as correlated between signal and background, and between electron and muon channels, except where they are specific to the background model (e.g. $W + \text{jets normalization}$) or to a channel (e.g. electron or muon efficiencies).

To extract the most likely value of the $b'\bar{b}'$ cross section in the nine bins of (N_W, N_{jet}) multiplicity, a binned maximum likelihood fit using a profile likelihood ratio is performed, varying each background rate within its uncertainty, and allowing shape and rate variation due to the systematic uncertainties described above. The signal and background rates are fitted simultaneously.

Events in the final selection which have low hadronic W boson or jet multiplicity ($N_W < 2$ and $N_{\text{jet}} < 8$) are dominated by background processes and serve to constrain some of the systematic uncertainties. The likelihood is maximized with respect to the variation due to the systematic uncertainties. This procedure serves to reduce some of the systematic uncertainties, those listed as profiled in Table I.

FIG. 4 (color online). Distribution of the numbers of events observed in the data and expected from SM processes for jet multiplicity $N_{\text{jets}} = 6, 7, \geq 8$ with hadronic W multiplicity $N_W = 0, 1, 2$. The expected b' signals for two masses are also shown, stacked on top of the backgrounds.

The expected background and signal contributions, as well as the observed numbers of events in the data, are shown in Fig. 4 and given in Table II for the nine bins of jet and hadronic W-boson multiplicity. No evidence for the production of b' quarks is observed. The CLs method [28] is used to set 95% confidence level (C.L.) cross section limits.

<table>
<thead>
<tr>
<th>N_{jet}</th>
<th>N_W</th>
<th>Expected background</th>
<th>Observed events</th>
<th>b' 350 GeV</th>
<th>b' 500 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0</td>
<td>2060$^{+850}_{-750}$</td>
<td>1839</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>410$^{+104}_{-130}$</td>
<td>410</td>
<td>47</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>≥ 2</td>
<td>28$^{+10}_{-16}$</td>
<td>32</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>570$^{+320}_{-230}$</td>
<td>521</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>166$^{+49}_{-68}$</td>
<td>142</td>
<td>46</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>≥ 2</td>
<td>17.9$^{+6.6}_{-6.8}$</td>
<td>21</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>≥ 8</td>
<td>0</td>
<td>170$^{+180}_{-70}$</td>
<td>173</td>
<td>56</td>
<td>3</td>
</tr>
<tr>
<td>≥ 8</td>
<td>1</td>
<td>69$^{+32}_{-27}$</td>
<td>57</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>≥ 8</td>
<td>≥ 2</td>
<td>12.1$^{+8.6}_{-5.2}$</td>
<td>11</td>
<td>22</td>
<td>6</td>
</tr>
</tbody>
</table>
upper limits for the pair production of fourth generation quarks, \(b' \). The median expected upper limit is extracted in the background-only hypothesis. The results are shown in Fig. 5 as a function of the \(b' \) mass. Systematic uncertainties are taken into account and it is assumed that the branching ratio (BR) for \(b' \to W t \) is 100%. These cross section limits are interpreted as limits on the \(b' \) mass by finding the intersection of the limit curves with the theoretical cross section curve. Uncertainty in the theoretical cross section includes renormalization and factorization scale and PDF uncertainties calculated with HATHOR [14].

Masses below 480 GeV are excluded at the 95% confidence level, while the expected limit is \(m_{b'} > 470 \) GeV. For a particle with a mass of 480 GeV, the expected exclusion limit on the pair production cross section is \(\sigma < 0.54^{+0.45}_{-0.25} \) pb, while the observed exclusion is \(\sigma < 0.47 \) pb.

In conclusion, a search for pair production of heavy down-type quarks decaying via \(b' \to W t \) in the lepton + jets channel has been performed using 1.04 fb\(^{-1}\) of \(\sqrt{s} = 7 \) TeV pp collision data recorded with the ATLAS detector, selecting events based on the number of jets and hadronic W decays. A heavy down-type quark with mass less than 480 GeV is excluded at the 95% confidence level, improving significantly on previous limits.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.

[8] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring; the y-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\theta\) as \(\eta = -\ln \tan(\theta/2)\). A cone in \(\eta-\phi\) is defined as \(\Delta R = \sqrt{\Delta \eta^2 + (\Delta \phi)^2}\).
55 Department of Physics, Hampton University, Hampton Virginia, USA
56 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge Massachusetts, USA
57 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
58 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
59 ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
60 Faculty of Science, Hiroshima University, Hiroshima, Japan
61 Department of Physics, Indiana University, Bloomington Indiana, USA
62 University of Iowa, Iowa City Iowa, USA
63 Department of Physics and Astronomy, Iowa State University, Ames Iowa, USA
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculty of Science, Kyoto University, Kyoto, Japan
68 Kyoto University of Education, Kyoto, Japan
69 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
70 Physics Department, Lancaster University, Lancaster, United Kingdom
71 INFN Sezione di Lecce, Italy
72 Dipartimento di Fisica, Università del Salento, Lecce, Italy
73 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
74 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
75 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
76 Department of Physics and Astronomy, University College London, London, United Kingdom
77 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
78 Fysikstaben, Lunds Universitet, Lund, Sweden
79 Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain
80 Institut für Physik, Universität Mainz, Mainz, Germany
81 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
82 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
83 Department of Physics, University of Massachusetts, Amherst Massachusetts, USA
84 Department of Physics, McGill University, Montreal Quebec, Canada
85 School of Physics, University of Melbourne, Victoria, Australia
86 Department of Physics, The University of Michigan, Ann Arbor Michigan, USA
87 Department of Physics and Astronomy, Michigan State University, East Lansing Michigan, USA
88 INFN Sezione di Milano, Italy
89 Dipartimento di Fisica, Università di Milano, Milano, Italy
90 B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
92 Department of Physics, Massachusetts Institute of Technology, Cambridge Massachusetts, USA
93 Group of Particle Physics, University of Montreal, Montreal Quebec, Canada
94 P. N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
97 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
98 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
99 Nagasaki Institute of Applied Science, Nagasaki, Japan
100 Graduate School of Science, Nagoya University, Nagoya, Japan
101 INFN Sezione di Napoli, Italy
102 Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
103 Department of Physics and Astronomy, University of New Mexico, Albuquerque New Mexico, USA
104 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
105 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, DeKalb Illinois, USA
107 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
108 Department of Physics, New York University, New York New York, USA
109 Ohio State University, Columbus Ohio, USA
110 Department of Physics and Astronomy, University of Oklahoma, Norman Oklahoma, USA
157Department of Physics, University of Toronto, Toronto Ontario, Canada
158TRIUMF, Vancouver British Columbia, Canada
159Department of Physics and Astronomy, York University, Toronto Ontario, Canada
160Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8571, Japan
161Science and Technology Center, Tufts University, Medford Massachusetts, USA
162Department of Physics and Astronomy, University of California Irvine, Irvine California, USA
163INFN Gruppo Collegato di Udine, Italy
164ICTP, Trieste, Italy
165Department di Chimica, Fisica e Ambiente, Universitá di Udine, Udine, Italy
166Department of Physics, University of Illinois, Urbana Illinois, USA
167Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
168Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CN), University of Valencia and CSIC, Valencia, Spain
169Waseda University, Tokyo, Japan
170Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
171Department of Physics, University of Wisconsin, Madison Wisconsin, USA
172Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
173Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
174Department of Physics, Yale University, New Haven Connecticut, USA
175Yerevan Physics Institute, Yerevan, Armenia
176Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

aDeceased.
bAlso at Laboratorio de Instrumentacão e Física Experimental de Partículas - LIP, Lisboa, Portugal.
cAlso at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
dAlso at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
eAlso at TRIUMF, Vancouver BC, Canada.
fAlso at Department of Physics, California State University, Fresno CA, USA.
gAlso at Novosibirsk State University, Novosibirsk, Russia.
hAlso at Fermilab, Batavia IL, USA.
iAlso at Department of Physics, University of Coimbra, Coimbra, Portugal.
jAlso at Università di Napoli Parthenope, Napoli, Italy.
kAlso at Institute of Particle Physics (IPP), Canada.
lAlso at Department of Physics, Middle East Technical University, Ankara, Turkey.
mAlso at Louisiana Tech University, Ruston LA, USA.
nAlso at Department of Physics and Astronomy, University College London, London, United Kingdom.
oAlso at Group of Particle Physics, University of Montreal, Montreal Quebec, Canada.
pAlso at Department of Physics, University of Cape Town, Cape Town, South Africa.
qAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
rAlso at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
sAlso at Manhattan College, New York NY, USA.
tAlso at School of Physics, Shandong University, Shandong, China.
uAlso at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
vAlso at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
wAlso at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
xAlso at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.
yAlso at Section de Physique, Université de Genève, Geneva, Switzerland.
zAlso at Departamento de Fisica, Universidade de Minho, Braga, Portugal.

aaAlso at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA.
bbAlso at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
ccAlso at California Institute of Technology, Pasadena CA, USA.

ddInstitute of Physics, Jagiellonian University, Krakow, Poland.

eeAlso at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.

ffAlso at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA.

Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.