Title
Risk Allocation in Independent Power Contracts

Permalink
https://escholarship.org/uc/item/7v80046j

Author
Kahn, E.

Publication Date
1991-04-01
Risk Allocation in Independent Power Contracts

E. Kahn

April 1991
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Risk Allocation in Independent Power Contracts

Edward Kahn

Applied Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

April 1991

This work was supported by the Assistant Secretary for Policy Planning and Analysis, Office of Electricity, Coal, Nuclear and Renewable Energy, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
TABLE OF CONTENTS

Executive Summary ... iii

1.0 Introduction ... 1

2.0 Analysis of Risk Allocation .. 1

3.0 Overview of Contract Data ... 3

4.0 Performance Incentives ... 7
 4.1 Targets and Penalties .. 8
 4.2 Force Majeure ... 11
 4.3 Capacity Tests .. 12
 4.4 Minimum Take Provisions ... 13

5.0 Fuel Supply and Price ... 13
 5.1 Variable Price Terms .. 14
 5.2 Fuel Supply ... 17

6.0 Termination Clauses .. 18
 6.1 Pre-Commercial Period .. 18
 6.2 Operational Period .. 19

7.0 Affiliate Relations ... 20
 7.1 FERC Case Law .. 21
 7.2 State Regulatory Oversight .. 22

8.0 Miscellaneous Provisions ... 23
 8.1 Interest Rate Risk .. 23
 8.2 QF Risks ... 24
 8.3 “Regulatory-Out” Clauses ... 24

9.0 Price Trends ... 25
 9.1 Baseload Gas-fired Projects .. 25
 9.2 Baseload Coal Projects ... 28

10.0 Conclusions and Future Research .. 29

11.0 Acknowledgements ... 30

12.0 References ... 30
LIST OF TABLES

Table 1. Contract Sample .. 4
Table 2. Winning Bids (Through 7/90) 5
Table 3. Performance Incentives 9
Table 4. Maximum Performance Penalties 10
Table 5A. Variable Price Terms: Coal Contracts 15
Table 5B. Variable Price Terms: Gas and Oil Contracts 16
Table 6. Price Trends .. 26
Executive Summary

This paper reviews evidence on the allocation of risks in long term contracts between private power producers and utilities. The primary source of data for this analysis is a sample of actual contracts. The sample includes 20 contracts for 4570 MW from eight states and 13 utilities. There are nine IPPs and 11 QFs. Half the contracts resulted from some kind of competitive bidding process. The sample is skewed toward large projects and emphasizes contracts recently signed. Such projects are apt to indicate future directions better than a more strictly representative sample.

Private power contracts typically involve a generic allocation of risks between developers and utility ratepayers. Developers sign fixed payment contracts for capacity or investment related costs. To earn these payments, the projects are subject to performance standards. Developers also agree to a first-year variable cost which is the product of fuel cost and a fixed conversion efficiency, or “heat rate.” The heat rate remains fixed, but future fuel costs are adjusted by an external index. Fuel cost indexation effectively transfers most fuel price risk to the utility ratepayer. Demand risk is also born, almost universally, by the utility and its ratepayers. Important variations on this generic risk allocation and the most significant additional contract clauses are summarized topically below. Price trends are also reviewed.

1. Performance Standards

Virtually all contracts have explicit performance standards for generation availability and penalties for failing to achieve contract targets. There are also specifications for capacity testing and frequently penalties for degradation from contract commitments. Many contracts include “minimum take” restrictions which limit the utility’s operational flexibility. This is a further shift of demand risk to ratepayers.

Enforcing performance standards depends on the definition of force majeure. Liberal interpretations can excuse non-performance.

2. Fuel Supply and Price

Fuel price indexation is standard. Coal based projects typically index to GNP or the buyer’s costs. Gas based projects typically use national fuel cost indices or buyer’s cost. Projects using imported gas involve indices that will escalate more slowly than domestic gas costs. Only two contracts have explicit benefit sharing if actual project costs are less than the indexed price. Many contracts allow re-negotiation of the base price. This can amount to de facto acceptance of demand risk by the utility for variable costs. Variations in heat rate with project output, “heat rate curve pricing,” are incorporated in only one contract. This omission is the cause of many minimum take clauses, because sellers want to limit production to the output range where variable prices cover their costs.
3. Termination Clauses

Developers must typically post security deposits averaging $15-18/kW (range of $10-$30) that are forfeited in the event the facility never operates. Once operational, projects can be terminated for excessive non-performance. Force majeure definitions are key elements of these clauses. Termination penalties based on “front-loading” security appear in only five contracts. All Virginia Power contracts, however, require operating security that will be forfeited at premature termination.

4. Affiliate Relations

IPPs seeking FERC exemption from regulation must show they have not engaged in abusive self-dealing. QFs are under no such obligation. In their case, state regulation must assure that potential abuses are controlled. One case of this kind is reviewed.

5. Price Trends

It is generally believed that prices for independent power projects are coming down over time. This claim is illustrated for the subset of baseload projects in the sample. Price comparisons are complicated by a number of methodological issues, some of which are surveyed.

6. Summary and Conclusions

At the state or utility level there are trade-offs between accommodation of developers’ needs and the desirability of imposing responsibility. These trade-offs appear at the level of contract feature bundles. Contracts show leniency on one feature and severity on others. For example, the Virginia Power contracts are tough on performance requirements and force majeure, but are the most concessionary on the “regulatory out” clause (i.e., they assure payment even if regulators disallow the costs). Conversely, the JCPL contracts are lenient on performance penalties and capacity testing, but tough on the “regulatory out” issue. It is very difficult to assess risk balance at this level.

A complete assessment of risk allocation would require more quantitative economic analysis. If the prices paid in a lenient contract are low, then perhaps ratepayers are not damaged. Similarly, if contract prices are high, but terms and conditions are demanding, the ratepayer may also be well-served. The present state-of-the-art does not allow a systematic assessment of this kind. We do not have well developed methods to price out all contract features, nor are benchmark methods for measuring high and low prices well established.

Finally, a more complete view of the governance structure affecting independent power projects would require an examination and analysis of the loan agreement used to finance the investments. Loan agreements interact with the power sales contracts we have been examining here. They specify how some of the risks identified in this paper are to be managed by the project developer/owner. If the contract terms in the power sales agreement are too strict, the
project may not be able to acquire financing. Future research on the risk allocation mechanisms in the private power industry should focus on the loan agreements.

Despite these limits, we can observe two trends which suggest that the private power market is functioning reasonably well in the ratepayer's interest. The first trend is the measurable movement to lower prices in this highly competitive market. Second is the growing tendency to incorporate increasingly strict terms in the contracts as utilities move away from lenient risk allocation terms that tend to be found in earlier contracts.
1.0 Introduction

This paper reviews evidence on the allocation of risks in long term contracts between private power producers and utilities. As this segment of the electricity market grows, there is increasing interest in the efficiency of these arrangements. Long term contracts can impose rigidities that make adaptation to changing circumstances costly. The task of regulation in a contracting environment is to assure that project selection is equitable and efficient, and that risks are appropriately allocated. This paper addresses the latter subject by examining how contract terms make this allocation.

The power sales contracts examined here represent only a part of the governance structure associated with private power. The other part is the financing agreements among lenders, equity investors and developers. Of these, the loan agreements are most critical. Lenders are in the business of limiting and managing risk. They can be expected to constrain the behavior of developers and operators. This paper does not analyze loan agreements; they are more difficult to obtain than power sales contracts. Therefore, the discussion of risk allocation mechanisms here will be incomplete since it is confined to analysis of only power sales contracts.

The primary source of data for this analysis is a modest sample of power sales contracts for recent, relatively large projects. Both Qualifying Facilities (QFs) under PURPA and Independent Power Producers (IPPs) are considered. Contracts are available only from the files of state utility regulatory commissions, or in the case of IPPs that must get Federal Energy Regulatory Commission (FERC) approval, the contracts are filed with that agency. There is often a set of background issues involving local regulatory policy that has influenced particular contract features. Frequently this contextual material is either not formally documented, or so dispersed and fragmentary that it is impossible to organize systematically. As a substitute for the kind of ideal documentation of economic context associated with each agreement, this paper will begin with a general discussion of the kinds of contract data that are available and will be reviewed in this study. Section 2 gives a general background on risk allocation in private power contracts. Section 3 gives an overview of the contracts that will be analyzed in detail. Section 4 discusses performance incentives. Section 5 surveys fuel supply and price issues. Section 6 discusses termination clauses. Section 7 reviews issues associated with affiliate relations. Miscellaneous provisions are discussed in Section 8. Price trends are reviewed in Section 9. Conclusions and suggestions for future research are discussed in Section 10.

2.0 Analysis of Risk Allocation

Power projects have inherent risks, regardless of who develops them. The shift of responsibility for power plant construction, operation and economics from the vertically integrated utility to private producers involves a change in the allocation of these risks. The traditional vertically integrated firm constructed new generating capacity under a specific set of regulatory procedures
that tended to shift most risks onto consumers. This allocation was never really an issue as long as productivity gains were continually being realized. When underlying economic conditions facing the regulated firm became adverse, the response of regulators became less accommodating. Prudence reviews, in particular, acted to limit the extent to which construction cost over-runs could be passed along to consumers. Contracting for capacity with private producers offers the regulated utility an opportunity to transfer certain power project risks to third parties.

It will be convenient to structure the general discussion by using a simple typology of risks that can be made more specific and detailed as the analysis proceeds. Let us separate the risks of power projects into two categories; those having to do with price and those having to do with performance. The whole question of performance risk is addressed below in Sections 4 and 6. In this section we focus primarily on price risks. Price risks include construction costs and operating costs. Private power contracts typically specify fixed payment schedules for capacity or investment related costs, a first-year fuel cost per unit of output, and some external index to adjust future fuel costs. These arrangements transfer the construction cost risk from the utility and its ratepayers to the private developer. By fixing capacity payments contractually, all cost over-runs must be borne by the project, and cannot be passed along to the utility and its ratepayers.

The typical contractual arrangements regarding operating costs, however, are not very different from the procedures used by the traditional vertically integrated firm. Since the mid-1970s, regulated electric utilities have essentially passed all their fuel costs directly through to consumers by means of the fuel-adjustment clause. The specific pricing structure for operating costs in private power contracts is not identical to the fuel cost adjustment mechanisms, but it does resemble it from the risk allocation perspective. The choice of the first year variable cost may turn out to be "wrong." In this situation, the developer/operator will have to bear the consequences if they are negative, and will reap the rewards if they are positive. The fuel cost indexation mechanism insulates the supplier to a great degree from having to make "on-going" purchase decisions that could lower fuel costs.

This standard allocation of risks implicitly attempts to achieve the socially desirable outcome that risks are borne by the party either best able to control them or best able to bear their costs (Arrow, 1974). In the case of private power contracts, the control of construction costs is allocated to the developer because he has a profit incentive to manage these efficiently. Furthermore, the developer may well pass this risk through to engineering firms or equipment vendors by only accepting fixed price contracts from them for their services. Fuel cost risk is essentially socialized by transferring it to customers as a whole.

The argument in favor of this latter policy is that utility customers in the aggregate can pool the risk and hence bear it at lower cost than an individual producer. The correlation of income and fuel price is therefore lower under these arrangements, than if producers had to bear these risks individually. Formalized exposition of these principles can be found in Newbery and Stiglitz (1981), and application of them to the electric utility context in Kahn (1984).
Private power contracts typically involve some fuel price risk sharing between the seller and the utility customer through the indexation mechanism. Indexation does not guarantee the producer complete recovery of his costs. It only allows a general tracking of market price movements. The degree of cost recovery depends on the choice of index. Once the indexed price is determined, the utility commonly recovers from its customers the cost of its private power purchases through a fuel clause adjustment procedure. Section 5 below discusses additional features of the fuel cost clauses in the contract sample, including the question of what happens if the variable costs get completely out of a reasonable range for some reason.

The other generic price risk associated with private power contracts involves the demand for power. This is a form of price risk that involves the value of output, rather than its cost. Construction cost risk and operating cost risks are commonly measured against a standard of comparable costs for these commodities. The demand risk involves the question of whether the project’s output is needed or not; that is, its value compared to the alternative of not having the output at all. The “used and useful” test associated with the rate base treatment of new capital investment amounts to imposing this risk upon the utility and its shareholders. If the projected need for power does not materialize, new utility plants may be partially or completely excluded from rate base until there is sufficient demand to make them economic. Private power contracts typically insulate the seller from this risk. Some contracts contain explicit clauses that commit the utility to payments even in the event that regulators disallow recovery of contract payments (this subject is discussed below in Sections 8.2 and 8.3). As a result of these arrangements, the financing cost for private contracts is reduced, but a risk premium is transferred to the utility (Perl and Luftig, 1990).

In the next sections we consider some of the variations on this basic allocation. We organize the discussion of risks topically and treat each issue with reference to the relevant contracts in our sample. The two issues treated at greatest depth in this paper and in the sample itself are: performance incentives and fuel supply and price provisions. Other topics discussed include termination provisions and affiliate relations.

3.0 Overview of Contract Data

Table 1 summarizes the sample of private power contracts that will be analyzed in this study. The contracts are organized by states, and each project is characterized by a small number of descriptors. These descriptors include: (1) firm capacity rating, (2) fuel type, (3) whether the project is an IPP, (4) whether the project emerged from competitive bidding, and (5) what kind of dispatch is associated with the contract.

The sample expands upon contracts previously analyzed, primarily with regard to dispatchability features (Kahn, et al., 1990). The sample is definitely skewed toward large projects; only three of the contracts represent projects of less than 100 MW. The two largest private power projects are included, Doswell and the Cogen Technologies Linden project, which are each approximately
Table 1. Contract Sample

<table>
<thead>
<tr>
<th>Location</th>
<th>Project</th>
<th>Date</th>
<th>MW</th>
<th>Fuel</th>
<th>Dispatch</th>
<th>IPP</th>
<th>Bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virginia</td>
<td>Hopewell</td>
<td>1986</td>
<td>335</td>
<td>G</td>
<td>B→I</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Doswell</td>
<td>1986</td>
<td>600</td>
<td>G</td>
<td>B→I</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Commonwealth</td>
<td>1988</td>
<td>240</td>
<td>G/O</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multitride</td>
<td>1988</td>
<td>76</td>
<td>C</td>
<td>I→B</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Beckley</td>
<td>1988</td>
<td>137</td>
<td>C</td>
<td>B/C</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Turbo</td>
<td>1988</td>
<td>116</td>
<td>G</td>
<td>B→I</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Vista/Paulsboro</td>
<td>1989</td>
<td>100</td>
<td>C</td>
<td>B/PR</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Tamal</td>
<td>1989</td>
<td>18</td>
<td>W</td>
<td>B/C</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Keystone</td>
<td>1988</td>
<td>200</td>
<td>C</td>
<td>I→B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chambers</td>
<td>1988</td>
<td>178</td>
<td>C</td>
<td>I→B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Dartmouth</td>
<td>1989</td>
<td>67</td>
<td>G</td>
<td>B/C</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Enron</td>
<td>1989</td>
<td>140</td>
<td>G</td>
<td>B/PR</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Ocean State</td>
<td>1985</td>
<td>235</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>TECO</td>
<td>1989</td>
<td>295</td>
<td>G</td>
<td>I/PR</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Indiantown</td>
<td>1990</td>
<td>300</td>
<td>C</td>
<td>B/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>Cogen</td>
<td>1989</td>
<td>594</td>
<td>G</td>
<td>B/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wallkill</td>
<td>1990</td>
<td>95</td>
<td>G</td>
<td>I</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Nevada</td>
<td>Sun Peak</td>
<td>1990</td>
<td>210</td>
<td>G/O</td>
<td>P</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>AES Shady Point</td>
<td>1985</td>
<td>300</td>
<td>C</td>
<td>B/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>Kern River</td>
<td>1984</td>
<td>300</td>
<td>G</td>
<td>MR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuel
- G = Gas
- O = Oil
- C = Coal
- W = Wood

Dispatch Types
- MR = must run
- P = peaking
- C = curtailable
- B = baseload
- I = intermediate
- PR = priority
- → = expected change in dispatch over project lifetime
600 MW. As a point of reference, a recent survey of contracts awarded through competitive bidding as of July, 1990 (*Current Competition*, 1990) is summarized in Table 2.

While Table 2 is instructive about competitive bidding, there are other channels through which private power contracts are concluded; principally, negotiation and standard offers. In practice, it can often be difficult to categorize the genesis of particular contracts definitively among these three alternative paths. Negotiation plays an important role even in bidding and standard offer settings. For large projects, negotiation is almost inevitable. The transactions costs of negotiating are more affordable for both sides of the arrangement when projects are large, than when they are small. The rationale for focusing on large projects in this analysis, is that they are likely to show the most sophistication and to set patterns for contract language that will then become standard for smaller projects.

Table 2. Winning Bids (Through 7/90)

<table>
<thead>
<tr>
<th>Supplier Type</th>
<th>Projects</th>
<th>Total MW</th>
<th>Average MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>QF</td>
<td>137</td>
<td>5252</td>
<td>38.3</td>
</tr>
<tr>
<td>IPP</td>
<td>13</td>
<td>2075</td>
<td>159.6</td>
</tr>
<tr>
<td>Utility</td>
<td>7</td>
<td>1311</td>
<td>187.3</td>
</tr>
<tr>
<td>Total</td>
<td>157</td>
<td>8638</td>
<td>55.0</td>
</tr>
</tbody>
</table>

Table 1 does not purport to give a geographically representative sample. It shows a very substantial number of projects whose output is sold in Virginia. This is a disproportionate representation with respect to the private power market as a whole. For the competitively bid segment, the Virginia representation is more in line with its share of the market. The recent developments in competitive bidding show an evolution in contract terms and substantially more refinement in risk allocation than earlier developments. For this reason, California and Texas, the two states with the most private power capacity, are deliberately under-represented. In both states development of private power was determined by regulatory and economic conditions of the mid-1980s. In the case of Texas, most of the cogeneration projects were associated with boom conditions in the oil and petrochemical industries. A small number of these have capacity contracts. The aggregate total of firm capacity contracts in Texas is about 3200 MW (PUCT, 1990). In California, almost all of the capacity in operation reflects standard offer contracts developed in 1982-83. The one project discussed, Kern River, has a non-standard contract, and raises important issues of contract administration and affiliate relations.

Finally, Table 1 gives a summary characterization of the operational features of these projects under the column labelled “Dispatch.” Different project types have different risks associated
with them. A meaningful characterization of these differences helps to define the issues involved in risk allocation. The categories used in Table 1 are simplified. At one extreme we have the “must-run” category, reflecting early PURPA implementation, where the obligation to purchase was interpreted to mean that the project’s output had to be accepted at all times. A number of factors have led utility planners to place increasing emphasis on operational flexibility (Le, et al., 1990). Thus even standard offer QF contracts increasingly contain some curtailment rights for the utility. Both AES Shady Point and Cogen reflect these provisions. At the opposite extreme are peaking projects. Our sample includes two of these, Commonwealth Atlantic and Sun Peak. Other competitive bidding solicitations, such as PSI Energy, have emphasized peaking projects.

Most of the projects in Table 1 lie between these two extremes. We characterize a project as serving the baseload or intermediate demand segment on the basis of its variable costs relative to the system in which it will operate. These characterizations are not simply correlated with fuel type. Multittrade, for example, is a coal fired project, but its total variable costs (including operations and maintenance) are high relative to the Virginia Power system. Therefore, it will start out as an intermediate load project and gradually serve more baseload demand. Both Keystone and Chambers are also of this kind. Their variable cost structure makes it quite likely that they will not operate very frequently off-peak in the PJM system, at least in their early years of operation. Furthermore, these contracts specify a minimum of 3500 hours of operation. This minimum is likely to be binding.

The cases of three gas-fired projects, Doswell, Hopewell and Turbo Power, are similar, but inverted. They will start out as nearly baseload facilities because gas prices are low and their thermal efficiencies are high. As gas prices increase, they will serve intermediate demands increasingly. Wallkill, also gas-fired, is structured to operate for a minimum of 4670 hours per year, primarily during “on-peak” and “shoulder” periods. The price for off-peak dispatch beyond the minimum requirement is based mostly on variable costs. In the short-run, Wallkill will probably operate as a baseload plant. Because the Wallkill variable price escalates with gas prices, it may eventually become too costly in the long-run to dispatch much beyond the minimum number of hours.

The “priority” category (PR) reflects situations in which project output will be sold to more than one buyer. In these cases there must be some system for determining which buyer’s rights supersede those of others. The TECO project has the most explicit system of this kind. TECO is a complex and controversial project. Its initial application to FERC for certification as an IPP was rejected on the grounds of improper affiliate relations (TECO, 1990a). Upon rehearing, project rate proposals were accepted on traditional cost-of-service principles (TECO, 1990b). We focus attention on the treatment of the combined-cycle and combustion turbine facilities that would be built under the proposed arrangement. They are designed primarily to provide back-up and supplementary power to Seminole Electric Cooperative during maintenance and other outages on its own baseload units. These facilities would then be available on a defined priority basis to serve other markets. Since the market segment addressed here is generic and the proposed solution interesting, we include the project in our analysis. It will also be useful in
discussion of affiliate relations. Two other projects also serve multiple utility buyers, Enron and the Paulsboro/Vista projects. In these projects the priority rights questions are not treated very explicitly. Unlike TECO, these two other projects are designed for baseload operation. Both Keystone and Chambers have contracts to serve industrial facilities on a “second call” basis.

A final word needs to be said about the vintage of the sample. The selection is heavily tilted toward recent history. The older projects in the sample indicate circumstances that have largely been superseded. It is useful to have such projects for analysis, but they will seldom represent the “state of the art.” The oldest project discussed is the Kern River Cogeneration project. The final agreement was signed in January, 1984. The AES Shady Point contract was signed in December, 1985. The Ocean State project also dates from December, 1985 (although the FERC application for treatment as an IPP was not filed until October, 1986). Ocean State is probably the first large IPP, but the regulatory model it presents was not widely imitated. Essentially, Ocean State is structured on a pattern similar to traditional regulation with a performance incentive system, rather than the PURPA avoided cost or competitive bidding paradigm.

The Hopewell and Doswell projects were selected by Virginia Power in its 1986 solicitation. The Hopewell contract was signed in June, 1987. Doswell went through much subsequent history, and its final amended contract was concluded in January of 1990. The four other Virginia Power contracts were winners in the 1988 solicitation. The New Jersey contracts include two projects negotiated with Atlantic City Electric and signed in 1988, Keystone and Chambers; the others resulted from the Jersey Central Power and Light 1989 RFP. Both the Dartmouth and Enron agreements were signed in 1989. The TECO contracts were signed in 1989. Cogen Technologies was signed in 1989. Wallkill was the result of Orange and Rockland’s 1989 RFP. Both Indiantown and Sun Peak were signed in 1990.

4.0 Performance Incentives

Regulatory interest in generation performance incentives predates the large-scale development of the private power market. The large baseload utility generation projects which started to come on line in the 1970s stimulated regulatory attention to the development of performance standards. Utility returns are linked to the output achieved by units subject to these standards. There are typically rewards for exceeding a target performance goal and penalties for falling short. This system is intended to create incentives for good performance (Joskow and Schmalensee, 1986; Brown, Einhorn and Vogelsang, 1989).

In the private power market, where the obligation to serve is absent, performance incentives are more important than under standard rate-of-return regulation. In a contracting environment the utility is acting like a regulator with respect to the private developer, but lacks the kind of sanctions that the state agencies can impose on regulated firms. Therefore, the utility must rely on an explicit incentive structure in the contract. The performance incentives are usually tied to payments for firm capacity. It is unnecessary to give a performance incentive for energy payments under “must-take” contracts since the tariff price alone is sufficient. When
dispatchability is included as a feature the contract, then performance in response to dispatcher’s orders is typically linked to the firm capacity payment standards.

In this section we address four aspects of performance. The dominant issue is linking some aggregate measure of output or reliability against an expected standard. The contracts almost always contain such linkages and we will survey their features. Second, there is the very ambiguous area of defining the limits of the suppliers domain of responsibility. Almost all the contracts contain “force majeure” clauses which excuse non-performance due to circumstances beyond the control of the supplier. While such circumstances clearly arise, the incentive of the supplier is to draw the boundary broadly. In the limit, very little responsibility can remain. Third, there is an issue of capacity testing. Since firm capacity is the commodity being purchased, the contracts specify testing procedures and the consequences for failing to maintain commitments. Finally, we discuss minimum take provisions. These are guarantees from the buyer that limit the utility’s operational flexibility.

4.1 Targets and Penalties

Table 3 summarizes the performance incentives associated with our sample of contracts. This table gives a simplified version of what are frequently quite complicated contract clauses. Each contract is characterized by a threshold or target level of performance and a penalty or bonus schedule that prescribes how payments will be adjusted for deviations from the expected target or threshold.

There are a number of generalizations that can be drawn from Table 3. First, only the Massachusetts and California contracts have bonus provisions. All others involve only penalties. Second, the target or threshold levels differ substantially. There is some correlation of the target level of performance and the technology used. Generally, the expected performance level is higher for gas-fired units than for coal-fired units. This correlation is imperfect, however, and the targets are not uniformly expressed in the same units. Finally, the magnitude of the incentives is quite variable; some of the penalties are mild and some are strong. This last issue requires some discussion.

The best way to measure the magnitude is relative to the contract capacity charge. Both Dartmouth and AES Shady Point penalty rates are expressed in this fashion and both are proportional; i.e., each 1% shortfall from the target performance results in a 1% reduction in capacity payment. By comparison, the TECO penalty is quite mild, only a 0.2% reduction for each 1% shortfall. The New Jersey penalties are also low because they are assessed relative to the PJM power pool deficiency charge, which is typically based on combustion turbine costs compared to the much higher baseload capacity charges of the contracts in question here. The penalties in the Wallkill contract are also mild. If the project fails to achieve 80% availability, the deficiency is assessed against the difference between the contract price for energy and the
<table>
<thead>
<tr>
<th>State</th>
<th>Project/Region</th>
<th>Threshold/Target Level</th>
<th>Penalty/Bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey</td>
<td>JCP&L</td>
<td>Project Availability < Utility Availability unless Proj. Av. ≥ 80%</td>
<td>Δ Availability * PJM Cap. Deficiency Charge</td>
</tr>
<tr>
<td></td>
<td>Atlantic City</td>
<td>90% Availability</td>
<td>Δ Availability * PJM Cap. Deficiency Charge</td>
</tr>
<tr>
<td>New York</td>
<td>Cogen</td>
<td>PMT = $/kWh for deliveries (=Fixed + O&M + Fuel) = Fixed + O&M during curtailment unless capacity not available (including transmission)</td>
<td>$2.40/kW-yr is deducted from fixed PMT (same rate paid if av. > 90%)</td>
</tr>
<tr>
<td></td>
<td>Wallkill</td>
<td>80% Availability</td>
<td>$3/kW-yr penalty; for every 1% above $4.35/kW-yr bonus (scaled to capital cost and rate base fraction)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Enron</td>
<td>90% availability</td>
<td>$2.40/kW-yr is deducted from fixed PMT (same rate paid if av. > 90%)</td>
</tr>
<tr>
<td></td>
<td>Dartmouth</td>
<td>85% availability</td>
<td>$2.40/kW-yr is deducted from fixed PMT (same rate paid if av. > 90%)</td>
</tr>
<tr>
<td></td>
<td>Ocean State</td>
<td>80% availability</td>
<td>$2.40/kW-yr is deducted from fixed PMT (same rate paid if av. > 90%)</td>
</tr>
<tr>
<td>Virginia</td>
<td>Commonwealth Atlantic</td>
<td>15 days forced outage allowance</td>
<td>1.33% of Capacity Price per Excess F.O. Day</td>
</tr>
<tr>
<td></td>
<td>Turbo Power</td>
<td>25 days forced outage allowance</td>
<td>$5.17/kW-day</td>
</tr>
<tr>
<td></td>
<td>Beckley</td>
<td>30 days forced outage allowance</td>
<td>$3.65/kW-day</td>
</tr>
<tr>
<td>Florida</td>
<td>TECO CC/CT</td>
<td>87.5% availability</td>
<td>0.2% reduction in capacity charge for every 1% below target</td>
</tr>
<tr>
<td></td>
<td>Indiantown</td>
<td>87.92% Capacity Billing Factor (CBF)</td>
<td>Penalty: CBF < 55%, payment 0; CBF 55-86%, 36-98% * capacity charge. Bonus: 92-97%, 105-110% * Capacity Charge.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.46% Maximum Equivalent Forced Outage Factor</td>
<td>1% reduction in capacity price for 1% excess outage</td>
</tr>
</tbody>
</table>
projected avoided cost for the utility. Since these two prices can be assumed to be relatively close on the average, the cost penalty is probably the same magnitude as that in the TECO contract.

At the other extreme, the Turbo Power penalty is quite large. The annual capacity payment under this contract is $128/kW. The penalty for excess forced outage days is $600,000 per day, or $5.17/kW per day. This is approximately 4% of the annual capacity payment.

Table 4 expresses the relative magnitude of performance penalties another way. This table shows, for four projects, the number of allowed forced outage days per year, and how many additional outage days during the year would be necessary to reduce the capacity payment to zero. Clearly, the Turbo Power contract has the most severe penalty structure. For 25 excess outage days, the entire annual capacity payment would be eliminated. By comparison, the AES Shady Point contract has rather mild constraints. The allowed forced outage rate of 14.46% amounts to about 53 days (0.1446*365 = 52.8). To eliminate the entire capacity payment for this project, it would have to be out of service for every remaining day of the year; i.e., 312 days. Thus, the daily penalty for excess outages is only 0.32% of the capacity payment (0.32% = 100%/312).

It is more reasonable to compare AES Shady Point with other baseload coal projects, since Turbo Power is gas-fired combined cycle, which can be expected to be more reliable in operation. Table 4 shows the corresponding data for the Beckley and Indiantown contracts. The Beckley forced outage day allowance is 30 per year (with the possibility of carrying over up to 15 unused forced outage days from a previous year). The penalty for excess forced outage days is $500,000 per day, or $3.65/kW per day. The levelized capacity payment for this contract is approximately $500/kW-yr. Therefore, at 137 excess forced outage days the capacity payment is eliminated.

<table>
<thead>
<tr>
<th>Project</th>
<th>Fuel</th>
<th>Allowed Outage (days/year)</th>
<th>Penalty for Excess Outage Days</th>
<th>Excess Outage Days to Zero Capacity Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbo Power</td>
<td>Gas/Oil</td>
<td>25</td>
<td>4%/day</td>
<td>25</td>
</tr>
<tr>
<td>AES Shady Point</td>
<td>Coal</td>
<td>53</td>
<td>0.32%/day</td>
<td>312</td>
</tr>
<tr>
<td>Beckley</td>
<td>Waste Coal</td>
<td>30</td>
<td>0.73%/day</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>47</td>
<td>0.55%/day</td>
<td>130</td>
</tr>
</tbody>
</table>
Finally, consider Indiantown. The monthly capacity payment formula is expressed in terms of a quantity called the “Capacity Billing Factor,” which is the normal capacity factor adjusted in several ways. First, if the unit is on scheduled maintenance, those periods are excluded from the calculation. Second, if there is a force majeur event, then the Capacity Billing Factor for that period is defined to be 55%. With these definitions, the monthly capacity payment is zero if the capacity billing factor for that month is less than 55%. If it is between 55% and 87%, the capacity payment goes linearly from 36% of the standard contract payment to 98% of that standard rate. When capacity billing factor is in the range from 87% to 92%, the standard rate is paid. This amounts to a maximum forced outage allowance of 13%, or 47 days per year. The threshold for non-zero capacity payments of 55% Capacity Billing Factor amounts to 130 days/year of excess forced outage. This is calculated by first netting out an expected six weeks per year of maintenance, multiplying by 55%, and then subtracting the allowed 47 days of forced outage (365-42 = 323; 323*0.55 = 177; 177-47 = 130).

4.2 Force Majeure

This term is defined in dictionaries as an unexpected and disruptive event that may excuse parties from contractual obligations. Force majeur clauses are a necessary, but troublesome, feature of contracts. We treat this subject here because it has strong interactions with the performance incentive provisions discussed above. The distinction between a forced outage event and a force majeure event can be vague. This is frequently recognized in the contracts by clauses allowing the utility, at its discretion, to re-classify events as force majeure, that had been called forced outages. This kind of re-classification amounts to forbearance on the utility’s part. It will financially benefit the seller to the degree that their payments in a given case are constrained by the performance target.

The most significant issue with respect to force majeure events is whether they trigger an interruption in capacity payments. Such interruptions are standard clauses in the Virginia contracts. In these contracts the monthly capacity payment is suspended and prorated for the duration of the force majeure period. This can be less of a financial burden to the seller than treatment of the event as a forced outage. At the opposite extreme, the New Jersey contracts (both JCP&L and Atlantic Electric) do not deem force majeure events sufficient to affect capacity payments. If such events were to last long enough, the contract would probably go into default and terminate. But sellers would probably receive capacity payments for at least 18 months in these cases. The proposed revisions of the JCP&L RFP system would modify this treatment to the standard adopted in Virginia, namely suspension of capacity payments (JCPL 1990).

There are intermediate cases. The AES Shady Point contract provides for up to three months of capacity payment during force majeur before suspension. The facility must then operate for 90 days before another force majeur event would qualify for up to three months capacity payment. The Indiantown contract also allows capacity payments during force majeur. They would be calculated under the standard performance payment formula, which would have the effect of reducing them over time until they became zero after one year.
A second set of issues involves specific definitions of events that do or do not qualify as force majeure. The typical list includes acts of God, weather, riots, wars, accidents, and the actions or inactions of government agencies. The Virginia contracts specifically exclude changes in market conditions or government actions that affect the cost or availability of fuel, or demand for the seller's product. This last clause presumably addresses changes in the demand for steam from a cogeneration facility.

4.3 Capacity Tests

Capacity tests are a standard feature of private power contracts. Since payments for capacity are made on a per kW basis, it is critical to determine kW capacity precisely. The contracts treat test procedures with varying degrees of specificity. The usual terms include a specified frequency of testing, an adjustment of payments in light of test results, and a set of procedures and conditions for conducting the tests. Frequently the contracts limit deviations of the tested capacity from some initially estimated capacity level that is written into the contract. The maximum tolerable deviation is typically 10%.

The Virginia contracts have the most detailed language on this subject. All of these contracts specify two tests per year, one for the summer peak and one for the winter peak. The test sets an upper bound on the contract capacity. If for some reason the seller is more comfortable with a lower rating, that is his choice. The utility reserves the right to order additional tests if the seller deviates on two successive occasions from the dispatcher's instruction by at least 5%. This clause reflects Virginia Power's strong concern with output control. Should the tests result in lower capacity than originally estimated, or than was determined previously, the lower result is binding. Such outcomes can be changed during subsequent periods, but always bounded by the maximum 10% rating increase over original estimates.

The Virginia pattern is generally reflected in the other contracts with a few exceptions. In Florida, for example, there is only one test per year for both TECO and Indiantown. The AES Shady Point contract does not require capacity testing in the commercial operation period unless there have been two successive downward adjustments to capacity based on a Summer On-Peak capacity factor test. This test requires that the facility have an adjusted capacity factor of 95% during this period, where the adjustment includes allowances for Force Majeure and forced outages of 14.46% during that period. This adjusted capacity factor is computed every year and if it is below target, contract capacity is reduced by the ratio of the annual value to the 95% target. Two successive downward adjustments trigger annual tests, which then become the binding determinant of contract capacity.

It is worth noting a number of cases where failure to meet initially determined contract capacity is treated with some leniency. The first involves TECO Power Services. This contract provides for only a 0.2% reduction in capacity payment for each 1% by which tested output falls short of contract capacity. This adjustment is in addition to the availability adjustment in this contract discussed above in Section 4.1 which uses the same 0.2% penalty formula for each 1% shortfall.
The Ocean State contracts specify that capacity payments will be reduced only if the facility tests at lower than 90% of its originally determined capacity. These reductions would be proportional from a base of 90% of original capacity. This amounts to a free 10% capacity degradation. Both Keystone and Chambers also have a "dead band" in the contract specifications for capacity degradation. It is only 5% in these cases, compared with the 10% in Ocean State. The penalty, however, is only assessed at the rate of the PJM Capacity Deficiency Charge. This price is much less than the capacity price in the Chambers contract. It becomes comparable or even larger than the capacity charge in Keystone after the fifteenth year of that contract.

The Jersey Central Power and Light contracts invoke only "best efforts" obligations on seller's whose tests fail to meet contract capacity. The lack of explicit remedy in these contracts amounts to shifting the risk of capacity degradation completely onto the utility ratepayers.

4.4 Minimum Take Provisions

Minimum take provisions represent a performance guarantee from the buyer to the seller. In various ways the utility can assure the developer that a certain amount of output will be purchased. Under standard PURPA implementation, there is no need for such provisions. The obligation to purchase from QFs makes all their output "must take." In our contract sample, only the Kern River project represents this kind of obligation. All other contracts, which are of more recent vintage, reflect the concern with dispatchability.

The discussion of dispatch in Section 3 already identified one kind of minimum take provision, a contractually specified minimum number of operating hours. The Chambers, Keystone and Wallkill projects all have this feature. AES Shady Point exhibits a slight variation on this, a required 65% minimum annual capacity factor. This project also has a clause giving it dispatch priority over any subsequent QF with which the utility may contract.

Another form of minimum take is limited curtailment rights. This issue has been discussed and analyzed at length in Kahn, et al. (1990), so it is treated only briefly here. Essentially this situation involves projects that may be started up and shut down at the discretion of the utility, but once operating cannot be dispatched over a very wide range of output. Doswell, for example, can only be curtailed to 80% of maximum capacity. The same limit occurs in the Vista/Paulsboro contracts. The Turbo contract limits curtailment to only 85% of maximum capacity. These limits impose operational rigidities upon the utility which can be very costly. Minimum take restrictions are another way in which demand risks are allocated to ratepayers.

5.0 Fuel Supply and Price

All contracts contain provisions addressing fuel supply and price issues. The standard treatment of price issues, described briefly in Section 2, involves a base year price and an indexation mechanism. Embedded in the base year price is both a fuel cost and a conversion efficiency, or "heat rate." The seller must maintain this conversion efficiency over the term of the contract.
To account for changing economic conditions, each contract contains a specific indexation procedure. Since indexation is not a perfect mechanism, many of the contracts allow for renegotiation of the price. In this section, we first survey the variable price mechanisms. We then discuss contract terms associated with fuel supply such as inventory and force majeure.

5.1 Variable Price Terms

In Tables 5A and 5B we summarize the variable price terms. Coal based contracts are treated in Table 5A, and all oil and gas based contracts are described in Table 5B.

The coal contracts utilize two kinds of indices, either the utility’s cost for coal (alternatively all utilities in the state) or the GNP deflator. Only AES Shady Point and Multitrade have a variable operations and maintenance component (O&M). In both cases these are base year prices that escalate with the GNP deflator. Keystone and Chambers distinguish an on-peak and off-peak variable price. Both these prices are specified as a constant plus an escalating component. Only the Indiantown contract involves “heat rate curve” pricing. This term refers to the systematic variation in conversion efficiency with output level. At lower levels of output, efficiency is low compared to full load output. The Indiantown pricing formula systematically incorporates these variations. Indiantown also incorporates a benefit sharing formula that allocates to both buyer and seller half the difference between the indexed fuel cost and the actual cost the project incurs. The variable prices in the Keystone contract change after years eight and 15 of operation to new base levels that are fixed in the contract, and subsequently escalate with the GNP deflator. Multitrade makes specific allowance for re-determination of the base price every three years upon request of either party.

The principles governing such re-determinations are strict. The price which results from re-determination must reflect a fair market value. In case of disputes, either party may request resolution by binding arbitration. Thus there is no opportunity for either party to extract concessions or off-load extra costs onto the other.

Escalators in Table 5B refer to natural gas costs unless specified otherwise. Some contracts include formulas for both oil and gas. The contracts in Table 5B show considerable attention to national price indices specific to oil and gas. Four of the contracts have escalators of this kind. None of the contracts use a GNP index for fuel. The utility’s fuel costs are the basis of escalation in three cases, Doswell, Cogen and Hopewell (for oil only). In three cases there are specific attempts to de-couple the escalation from national fuel indices. These are Enron, Dartmouth and Ocean State, all of which use imported gas. Enron is based on liquified natural gas (LNG) (Hollis, et al., 1990). The New England Power Pool Fossil Fuel Index reflects a mix of coal and oil and gas fuel costs. Therefore, it can be expected to escalate in cost at a rate that is less than the oil and gas escalation rate. Both Dartmouth and Ocean State use Canadian gas. Escalation formulas involving this supply also ought to result in less rapid increases than U.S. gas cost indices.
<table>
<thead>
<tr>
<th></th>
<th>Energy Price Escalation</th>
<th>Other Variable Price Factors</th>
<th>Adjustment to Escalator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shady Point</td>
<td>Buyer's fuel index</td>
<td>O&M costs indexed to GNP</td>
<td></td>
</tr>
<tr>
<td>Paulsboro</td>
<td>GNP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keystone</td>
<td>Constant and coal used by NJ utilities</td>
<td>On/off peak distinction</td>
<td>Prespecified changes after years 8 and 15</td>
</tr>
<tr>
<td>Chambers</td>
<td>Constant & coal used by NJ utilities</td>
<td>On/off peak distinction</td>
<td></td>
</tr>
<tr>
<td>Multitrade</td>
<td>Virginia Power's in-system coal-fired generation</td>
<td>O&M costs indexed to GNP</td>
<td>Renegotiation available every 3 years. Price discounting specifically allowed.</td>
</tr>
<tr>
<td>Beckley</td>
<td>GNP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiantown</td>
<td>Seller's cost & buyer's fuel index, benefit-sharing</td>
<td>Heat rate curve pricing</td>
<td></td>
</tr>
</tbody>
</table>
Table 5B. Variable Price Terms: Gas and Oil Contracts

<table>
<thead>
<tr>
<th>Energy Price Escalation</th>
<th>Other Variable Price Factors</th>
<th>Adjustment to Escalators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commonwealth Atlantic</td>
<td>Gas: National spot gas price index and national utility gas price index. Oil: Gulf Coast spot pipeline (low) No. 2 oil price.</td>
<td>O&M indexed to GNP and fuel type</td>
</tr>
<tr>
<td>Doswell</td>
<td>Utility's fuel cost for similar project.</td>
<td></td>
</tr>
<tr>
<td>Turbo</td>
<td>Gas: National spot gas price. Oil: Gulf Coast spot pipeline (low) No. 2 oil price.</td>
<td></td>
</tr>
<tr>
<td>Hopewell</td>
<td>Gas: National utility gas price and national spot prices. Oil: Buyer’s fuel index.</td>
<td></td>
</tr>
<tr>
<td>Wallkill</td>
<td>National spot market for must-run. Actual cost for energy beyond must-run.</td>
<td>O&M linked to CPI</td>
</tr>
<tr>
<td>Enron</td>
<td>New England Power Pool fossil energy cost.</td>
<td></td>
</tr>
<tr>
<td>Cogen</td>
<td>Sellers cost and buyer's fuel index benefit-sharing.</td>
<td>O&M linked to CPI</td>
</tr>
<tr>
<td>Dartmouth</td>
<td>Constant and average of Canadian spot and pipeline purchase cost.</td>
<td></td>
</tr>
<tr>
<td>Ocean State</td>
<td>New England Fossil Fuel Index</td>
<td></td>
</tr>
<tr>
<td>TECO</td>
<td>Cost pass through.</td>
<td></td>
</tr>
</tbody>
</table>

Escalators refer to natural gas costs unless specified otherwise.
Table 5B shows only three contracts involving variable O&M costs. These escalate at either the consumer price index (CPI) or GNP deflator. More significantly, five contracts specifically allow renegotiation. Four of these are Virginia Power contracts, where such clauses seem standard. In the case of Enron, renegotiation amounts to the project bearing a certain amount of demand risk. The project involves significant fixed costs of gas transportation. If it is dispatched at low capacity factors, the overall cost of power will be high. Therefore the project sponsors will renegotiate the variable cost downward to achieve an 80\% capacity factor if escalation has caused the project to be dispatched less. This willingness to lower price is equivalent to accepting demand risk. Other clauses in this contract also provide for price reductions in the event that total cost exceeds the buyer's average cost of power.

Only one gas-based contract, Cogen, provides for benefit sharing in the event that the project’s costs are lower than the indexed price. The renegotiation provisions in the Virginia Power contracts might achieve the same goal, but that is not their ostensible purpose.

None of the contracts involve “heat rate curve pricing” of the kind in Indiantown. This is connected to the minimum take provisions noted at the end of Section 4.4 above. Because the reduced efficiency of combustion is not provided for through heat rate curve pricing, these projects offer relatively little curtailment. As noted above, this amounts to a further transfer of demand risk to ratepayers.

5.2 Fuel Supply

Although inventory is the standard hedge against fuel supply interruptions, surprisingly few contracts address this issue explicitly. Only Doswell and Hopewell have specific requirements. The security of fuel supply issue is addressed more indirectly through incentives associated with availability requirements. As in so many other cases, the key factor is force majeure definition. The Virginia Power contracts exhibit the tough line on this subject. A fuel supply interruption is only deemed to be a force majeure event if the cause of the interruption was a force majeure event in the fuel transport system. This means that economic causes are excluded. The same terms appear in Walkill, Enron, and the JCPL contracts. More lenient terms appear in Keystone, Chambers and AES Shady Point. In these contracts any fuel supply interruption, whatever the cause, is considered a force majeure event. Since these three contracts are all coal-based the probability of fuel supply interruption can be considered low. Some contracts, such as Cogen, Dartmouth, TECO and Indiantown, fail to discuss the fuel supply issue at all.

Finally, Sun Peak represents the most unique fuel supply arrangement in the sample. In this case the utility, Nevada Power, assumes all responsibility for fuel supply and price. Fuel is simply delivered to the project, which is also operated by Nevada Power personnel. The unusual arrangements in this case arise out of the special circumstances surrounding this project. Sun Peak is essentially an emergency capacity purchase made by Nevada Power due to unanticipated high demand. The arrangement was made on a third party basis due to the heavy financial pressure Nevada Power is under because of its already substantial construction program. In this
environment, the utility is willing to trade construction cost risk and burden for fuel cost and other risks (NPSC, 1990a and 1990b).

6.0 Termination Clauses

The termination issue addresses a wide range of contingencies that would result in the utility ending its purchase agreement. It is highly unlikely that the seller would willingly seek termination. He has typically gone to considerable trouble to put together the power project, so there would have to be some extra-ordinary motive to end it. The generic motive for abandonment by the seller would involve situations which cause his costs to exceed his revenues. Such situations can arise exogenously from unexpected fuel cost increases, equipment repair costs or the loss of ancillary revenues from surplus power sales or cogeneration steam sales. Whether such events would trigger a termination, depends upon their severity and the risk tolerance of the buyer.

There is no direct analogy for these clauses in the traditional regulatory framework. The closest parallel is the treatment of abandoned property. This issue is examined by Zimmerman (1988), who finds that regulators have typically limited the ability of regulated firms to recover costs under “adverse outcomes.” The conflicts between utility shareholders and ratepayers over the allocation of the burdens associated with risky investments have created perverse incentives. The advantage to the utility of third party contracts is that the abandonment risk is shifted away from the regulated firm and its shareholders and onto the project developer/operator.

In this section we survey termination and related clauses in the contract sample. We separate the discussion, as is common in the contracts, into the pre-commercial and the operational periods. In each case we identify potential causes for termination and financial consequences. In this discussion there will be inevitable cross-reference to the force majeure issue reviewed above in Section 4.2. Termination is ultimately due to the failure of the seller to meet his obligations to the extent it is in his control to do so. There is always an ambiguous domain where responsibility is not entirely clear. In particular contracts the definition of force majeure will be critical to determining causes for termination.

6.1 Pre-Commercial Period

The basic risk at issue in this situation is the planning uncertainty faced by the utility, in particular the risk of insufficient capacity. If suppliers are unable to meet their commitment to bring capacity into operation by the date promised, then the utility must make other adjustments to meet demand. These other arrangements would probably be a short-term capacity purchase from a neighboring utility. Two of the contracts actually attempt to incorporate some procedure for estimating these opportunity costs to the utility. These opportunity costs are then treated as the basis for determining the liquidated damages suffered by the utility. The AES Shady Point contract and the Enron contract have clauses of this kind.
The more common practice is for the contracts to specify some proxy value for the damages associated with failure to come on line at the estimated date. Usually the seller is required to make deposits into a liquidated damages fund that are timed to a schedule of project development milestones. These milestones include events such as securing fuel and construction contracts, financial closing, construction ground-breaking and initial equipment testing. The range of variation in the contracts is along two principal dimensions: (1) the size of the liquidated damage deposits, and, (2) the period before termination is triggered.

The damage deposits range from a low of $10/kW in the Atlantic City Electric contracts to $30/kW in the Indiantown contract and the Virginia contracts associated with the 1988 Solicitation. More typical values are in the $15-18/kW range. The maximum period allowed before termination is triggered is three years in the JCP&L contracts and AES Shady Point. The Virginia Power contracts from the 1988 Solicitation and Indiantown allow only one year. Others fall in the one to two year time frame. During this allowed period of non-performance, however, the utility will take proportional payments from the liquidated damages fund.

These clauses allow forbearance in certain cases. As usual, force majeure is a central locus with respect to the rigorous enforcement of these provisions. There are considerable differences among the contracts with respect to responsibility for securing governmental permits and approvals. In some cases this responsibility rests solely with the seller. This is typically the case for environmental permits. Keystone and Chambers, for example, impose partial damages for failure to secure these permits in 36 months. Dartmouth must secure them in 24 months or be liable for termination and forfeiture of all the liquidated damages deposit. If Dartmouth failed to obtain FERC approval, termination would ensue, but not forfeiture of the liquidated damages fund. Failure to secure FERC and SEC approval by one year from the signing date of the Sun Peak project triggers both termination of the contract and buyout by the purchasing utility, Nevada Power.

6.2 Operational Period

Once the project is in operation, termination can be triggered by excessive performance failures. Representative thresholds where non-performance would cause contract termination are in the range of 12 months (Wallkill) to 18 months (Vista/Paulsboro) to 27 months (Indiantown). The Virginia contracts, which are usually the most constraining on sellers, have no clause which causes termination for non-performance.

There is often a security requirement associated with the operational period. This is conceptually distinct from the liquidated damages fund associated with the project completion risk discussed above, although in the case of the Virginia contracts it has the same name. There are two distinct rationales for ongoing security deposits. The first is the planning risk facing the utility. This is not much different than the concern about project completion. The major difference is the lack of distinct milestones during the development process which track the progress of the project. Premature termination of ongoing projects will impose adjustment costs on the utility.
Security deposits that are forfeited in such cases compensate the utility for those risks. This issue only arises in the Virginia contracts, where it is a standard feature.

The second rationale for ongoing security is associated with the “front-loading” issue in pricing. The term front-loading refers to cases where the price pattern in the contract is perceived to be in excess of avoided cost value in its initial years, and thereby imposes a kind of credit risk on the utility and its ratepayers. Front-loaded prices are essentially construed to be a loan that is repaid over the project term by pricing patterns in the later years of the contract that are below the avoided cost estimate. If the project terminates operation before repayment occurs, then the project has defaulted on its loan. To protect against this risk, the contract may require security deposits. There are, however, fairly large elements of convention and uncertainty in the precise definition of avoided cost in particular situations. For this reason, the concern with front loading credit risks is not universal. For further discussion of the issues associated with front loading, see Kahn, et al. (1990).

In our sample there are four cases where contracts contain clauses associated with front loading. These are Dartmouth, Indiantown, Cogen and Keystone. In two cases, the contract specifies exact dollar amounts that must be posted as security to cover the exposure to premature termination. In one case, Dartmouth, the obligation lasts for ten years with the maximum exposure estimate for year six at an amount that is roughly 40% of projected revenues for that year. The Cogen contract involves substantially smaller sums (on a normalized, per kW basis) over shorter periods. Further, Cogen lists a schedule of security deposit requirements as a function of the project start date. The earlier the project begins operation, the larger the exposure, because avoided cost increases over time. In both cases the full amount of security must be deposited or guaranteed by some form of cash equivalent, such as a letter of credit.

Keystone and Indiantown involve formulas that accrue excess payment balances depending upon actual production by the facility and actual utility cost outcomes. In the case of Keystone, the security is not deposited as cash or cash equivalent, but is a security interest and second mortgage on the project itself. This is a relatively weak form of security, because the value of the project in its later years of operation is uncertain, and is likely to be small. The Indiantown requirements are much more substantial, involving cash equivalent deposits than can be as much as $160/kW. The magnitude of these deposits is determined by a “termination fee” formula. The requirements in Dartmouth are approximately as large as those in Indiantown.

7.0 Affiliate Relations

This subject involves those issues arising from ownership linkages between regulated utilities and private producers. There are many partnership or joint venture relations between developers of private power projects and the subsidiaries or affiliates of regulated investor-owned utilities. These relations create the potential for abuse of market power. While such issues are not explicitly addressed in contract language, there is some concern about potential risks arising from these relations. In this section we address these background issues in two ways. First, there
is an emerging case law at FERC governing affiliate relations. This addresses the affiliate issues at the stage where projects have been selected by utilities, contracts are signed and the projects are seeking waivers from FERC's cost-of-service regulations under the Federal Power Act; i.e., becoming designated as IPPs. The federal concern does not address QFs which may be 49% owned by regulated utilities. It is left to the states to deal with these issues. Second, the states have responsibility for ongoing contract administration. We will show how affiliate abuse can operate through this mechanism as well as through the project selection channel.

7.1 FERC Case Law

Private power projects that are not Qualifying Facilities under PURPA and that seek waivers from federal cost-of-service regulation must apply to the FERC. Decisions on such cases are still relatively few. In general, the FERC has granted such waivers where it was shown that the rates for power purchase did not reflect the exercise of seller market power. Market power is related to control of transmission facilities, or may arise from affiliate relations.

Two recent FERC decisions, involving projects in our sample invoked these general principles, and granted the exemptions (Doswell Limited Partnership, 1990 and Commonwealth Atlantic Limited Partnership, 1990). Other recent cases resulted in rejected applications, primarily because of improper affiliate relations. The TECO Power Services project represents a complex arrangement involving Tampa Electric, an affiliate of TECO, and Seminole Electric Cooperative. One part of the transaction involves the sale of capacity from Tampa to TECO for resale to Seminole. This arrangement in particular raised the issue of abusive self-dealing (TECO, 1990a). The FERC order rejecting the original TECO application does not prove that the abuse occurred, but simply asserts that there is no evidence to the contrary. The applicants subsequently re-filed with FERC, changing the basis of their application from an exemption on the grounds of “workable competition,” to traditional cost-of-service. On this altered basis, FERC accepted the proposal (TECO, 1990b). Similarly, the Sun Peak project’s application to FERC for market-based rates was rejected due to concerns over market power (NSP, 1991a). Upon re-application, FERC accepted the rates based on cost-of-service (NSP, 1991b). Finally, there is a related case where FERC rejected an arrangement based on affiliate relations. The contracts, which are not included in our sample, involved Iowa Southern Utilities and its affiliate Terra Comfort Corporation. They were rejected on the grounds that there had been no showing that abusive self-dealing had not occurred (Terra Comfort Corporation and Iowa Southern Utilities Company, 1990).

These cases all involve the concept of competition as a substitute for regulation. Where FERC has decided that the facts of the case clearly support a finding of no seller market power, it has granted exemption from traditional regulatory principles based on cost-of-service. Affiliate transactions by definition raise doubts about the workability of competition. The FERC case law appears to require that in such situations a clear demonstration must be made that no abuse occurred. Absent such a demonstration, there is a presumption that market power was operative.
FERC does not operate independently of the state regulatory process. Key evidence on the reasonableness of costs and their allocation comes from the decisions of state commissions involving the projects under federal review. This is clear both in Commonwealth and the TECO decisions. In fact, the states will have ongoing administrative responsibility over private power contracts. The importance of this responsibility with respect to affiliate relations is demonstrated next.

7.2 State Regulatory Oversight

Affiliate relations are not presumed abusive under PURPA regulations governing Qualifying Facilities. The PURPA ownership test is really the only control applied by the law and regulations on these relations. This test limits the ownership of QFs to a 49% stake by regulated utilities or their affiliates. In practice, however, self-dealing abuses can occur between QFs and utilities. In this section we review the best known situation of this kind involving Southern California Edison Company (SCE) and its affiliate Mission Energy.

Mission Energy is the largest utility affiliate operating in the private power industry, and second only to Dow Chemical’s Destec subsidiary in capacity ownership (Independent Power Report, 1990). In our contract sample, Mission is part owner of Hopewell, Commonwealth Atlantic, Sun Peak and the Vista/Paulsboro projects. Its assets also include significant minority ownership positions in several large QFs selling power to SCE. One of these is the Kern River Cogeneration Company (KRCC). KRCC was originally conceived as a joint venture between Getty Oil and SCE to develop large-scale cogeneration in conjunction with enhanced oil recovery operations. Getty’s share was subsequently assumed by Texaco, and SCE’s share was eventually transferred to Mission Energy. The original contract dates from January, 1984 and the project began operating in August of 1985.

The KRCC contract is not a standard offer arrangement under California procedures. Therefore, in 1988 the California Public Utilities Commission (CPUC) initiated a review of this and fifteen other “non-standard power purchase agreements.” The CPUC’s Division of Ratepayer Advocates (DRA) issued a report on this subject, focusing primarily on KRCC, which argued that the contract resulted in payments significantly in excess of avoided cost (CPUC-DRA, 1988). This result was argued to be a direct consequence of self-dealing where one set of SCE employees negotiated with other SCE employees over terms and conditions with material impact on the prices ultimately paid by ratepayers. SCE has argued that CPUC policy during the time period at issue was strongly supportive of joint venture development of cogeneration projects (Jurewitz, 1990).

At the heart of the dispute is a set of contract clauses associated with the capacity payments made by SCE to KRCC. The DRA argued that KRCC received a payment for firm capacity while its operating requirements were more like non-firm capacity. Two clauses in particular were relevant in this regard. First, KRCC was allowed to conduct unlimited maintenance during the on-peak period. During the actual operation, KRCC was allowed to reclassify a forced outage as scheduled maintenance, thereby qualifying for a capacity bonus payment. Second,
KRCC was allowed unusually liberal termination provisions. It was not required to provide the standard five years advance notice of termination required of projects greater than 100 MW. Because QF capacity payments are levelized, they must refund overpayments in the event of premature termination. KRCC’s contract was for twenty years, but its repayment obligation ended after twelve years. For these reasons, DRA claimed the KRCC contract was more like non-firm, or “as-available” capacity, than firm capacity. The CPUC ultimately endorsed the DRA analysis and disallowed $48 million in overpayments made by SCE (CPUC, 1990).

8.0 Miscellaneous Provisions

This discussion has not exhausted the various standard provisions of private power contracts. Neither has it completely surveyed all the risks identified by analysts of this market. In this section we identify and discuss briefly some of the more important features that have been ignored so far. As one useful point of reference, we rely on the survey of this subject by Frank (1989), which reflects the perspective of an important financial participant in the private power market. In this section we discuss, (1) interest rate risk, (2) QF risks, and, (3) “regulatory out” clauses. We do not address tax risks, because they have become a very much smaller part of project returns than was the case before the 1986 Tax Reform Act (Kahn and Goldman, 1987).

8.1 Interest Rate Risk

The possibility that interest rates will fluctuate between the time when a project is proposed and when it is permanently financed is a risk of development. This can be a relatively long time, because permanent financing is commonly put in place only after construction is completed and operation is about to begin. If interest rates increase substantially between the time when a bidder prepares his bid and when permanent financing is acquired, then project economics can deteriorate considerably. With only one exception this interest rate risk is borne by the developer in our contract sample. The exception is the Commonwealth Atlantic contract. In this contract, the capacity price is determined by a schedule in the contract that ties payment level to Treasury bond rates. The exact capacity price will be calculated by a formula that first computes the yield to maturity corresponding to a 13 year term for actively traded Treasury bonds, and then fixes the capacity payment from a table that links such rates with capacity payments. The purpose of this contract feature is to enable the developer to secure leveraged lease financing for the project.

Other projects in the contract sample probably involve greater interest rate risk than Commonwealth Atlantic, because this project has a relatively short lead time between project formulation and the time when the project is permanently financed. In general, interest rate risk is an increasing function of this time interval. For coal projects the interest rate risk is greater because this time interval is longer. This is primarily due to the need to acquire environmental permits before permanent financing can be closed. This will typically take longer for coal than for gas-fired projects.
8.2 QF Risks

The issue here refers to the possibility that a project designated a Qualifying Facility under PURPA may lose that status, and the corresponding exemptions from regulation if the purchase arrangement for thermal energy fails. This subject is addressed explicitly in only four of the contracts. Both Chambers and Keystone have essentially the same provisions. If QF status is lost, the rate immediately reverts to a spot market price (the purchase rate paid hourly by the PJM power pool). The two parties then try to restore the contract prices by application to FERC. In the event such efforts fail, the seller must accept whatever rate emerges from the process. AES Shady Point also involves a FERC re-determination of price in the event QF status is lost. The only difference with Keystone and Chambers is that the contract price will remain in effect until the re-determination is made. Finally, Cogen Technologies addresses this issue slightly differently. In this contract prices decline to 90% of the contract rate immediately and both parties petition FERC to restore the original rate. The seller, however, has the option to terminate if, as a result of the loss of QF status, the project would become liable to regulation under the Public Utility Holding Company Act. Cogen is the only contract to identify this concern.

8.3 “Regulatory-Out” Clauses

“Regulatory-out” clauses are, in effect, a somewhat more general version of the QF risk. They address any change in regulation that would alter prices. The usual scenario underlying the concern here is that a future regulatory ruling results in the utility being unable to recover from ratepayers the costs paid to the seller under the contract. It is this scenario which motivates the name for these clauses.

These clauses have some similarity to prudence review issues for the regulated firm. They address the problem of continuing financial support for the private developer/operator under adverse conditions. Even in the prudence review context, the firm is never completely penalized (Zimmerman, 1988), presumably because the regulator and the utility are bound by the commitment to an ongoing relationship. In the private power setting, no such ongoing commitment is involved. Therefore, the private firm should expect harsher treatment than the utility itself might obtain under adverse circumstances.

Less than half the contracts address this problem. The Virginia Power contracts all provide significant accommodation to the developer. Even in the case of a disallowance, the utility promises to pay the contract prices for between 12 and 18 years, depending on the particular contract. After that designated period, the developer must bear a disproportionate share of the burden. The JCPL contracts shift all the disallowance risk to the developer. This is also true of Indiantown.
9.0 Price Trends

It is generally believed that prices paid to private power producers have declined over time. In this section we will substantiate this claim to a limited extent, using data from the contract sample. It is difficult to compare all projects in the sample because they vary along important dimensions. For this discussion we will simplify the comparison considerably.

First, we separate projects by fuel type; gas-fired projects are compared to one another and coal-fired projects are compared to one another. Secondly, we cannot address all the projects because the product differentiation in the sample is considerable. There is no simple way to compare prices for the peaking projects with those of the baseload projects. Similarly, the imported gas projects have a cost structure that resembles baseload coal more than it resembles conventional gas. The imported gas projects (Enron, Dartmouth and Ocean State) have substantial fixed costs for gas transportation that are offset by lower cost fuel. This kind of substitution (fixed cost for variable cost) is the standard trade-off used to compare conventional gas and coal projects. The key to the gas/coal comparison is estimates of future gas price escalation. These estimates are highly uncertain, and would complicate our task.

Instead we look simply at the two earliest contracts in our sample, AES Shady Point and Kern River Cogeneration Company, and compare their costs to project of similar structure that came later in time. We focus on projects capable of serving the baseload segment, even if they have dispatchability options which would make them more flexible in operation. Even this task raises issues that complicate comparisons. Table 6 summarizes the comparison.

9.1 Baseload Gas-fired Projects

We begin with the Kern River case. This contract specifies a twenty year capacity payment of $143/kW-yr and an energy payment that is indexed to gas costs. The form of the energy payment is a heat rate times the gas price paid by the utility for its own use. The value for the heat rate is 9300 Btu/kWh. There is also a 2 mill/kWh payment for variable O&M which is fixed over the term of the contract. This contract is related to the California Interim Standard Offer No.4 (ISO4) contracts that were available in the 1983-1985 period. ISO4 contracts specified capacity payments similar to those of KRCC. The heat rate and O&M provisions were slightly different. ISO4 heat rates were lower (about 8900 Btu/kWH), but if limited curtailments were offered, they would be about the same. The variable O&M rate in ISO4 contracts was indexed to inflation changes.

The Virginia Power gas-fired combined cycle contracts dating from the 1986 and 1988 solicitations make useful contrasts to KRCC. Although these projects, (Hopewell, Doswell and Turbo Power) offer substantially more dispatchability than KRCC, or even the curtailment option under ISO4, they are considerably cheaper on both the capacity and energy dimensions. The 25 year levelized capacity payments, starting in 1990 and 1991 are $115/kW-yr for Doswell, $121/kW-yr for Hopewell, and $128/kW-yr for Turbo Power. Given the 5 to 6 year differences
Table 6. Price Trends

<table>
<thead>
<tr>
<th>Baseload Gas</th>
<th>Start Date</th>
<th>Fixed Payment</th>
<th>Variable Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRCC</td>
<td>1985</td>
<td>$143/kW-yr</td>
<td>9300 Btu/kWh * Gas Price with Demand Charges</td>
</tr>
<tr>
<td>Doswell</td>
<td>1991</td>
<td>$115/kW-yr*</td>
<td>8470 Btu/kWh * Gas Commodity Costs</td>
</tr>
<tr>
<td>Hopewell</td>
<td>1990</td>
<td>$121/kW-yr</td>
<td>9300 Btu/kWh * Gas Price with Demand Charges</td>
</tr>
<tr>
<td>Turbo</td>
<td>1991</td>
<td>$128/kW-yr</td>
<td>8846 Btu/kWh * Gas Commodity Costs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baseload Coal</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AES Shady Point</td>
<td>1993</td>
<td>$405/kW-yr*</td>
<td></td>
</tr>
<tr>
<td>Vista/Paulsboro</td>
<td>1994</td>
<td>$378/kW-yr</td>
<td></td>
</tr>
<tr>
<td>Indiantown</td>
<td>1996</td>
<td>$361/kW-yr</td>
<td></td>
</tr>
</tbody>
</table>

* plus fixed pipeline demand charges

b adjusted for distillate oil premium during four winter months

c pricing during 1991 and 1992 estimated at about $300/kW-yr

In start dates, inflation alone should account for a 25-30% greater price for the later units. Instead they are all less in nominal dollars.

There is an important subtlety involving gas transportation costs which makes the economic comparison difficult. The gas price used in the KRCC contract includes both gas commodity costs and demand (or transportation) charges. This is also true of Hopewell, which has a heat rate of 9300 Btu/kWh embedded in its energy cost structure. Thus Hopewell and KRCC are simply comparable, they have the same energy cost structure and Hopewell is cheaper in capacity cost while offering much greater operating flexibility (curtailment down to 35% of maximum capacity as well as commitment rights).

The Turbo Power contract makes no mention of gas demand charges. The project uses gas during the eight month period from March through October. During the four month November through February period it uses distillate oil. Presumably this arrangement will allow the project to use excess pipeline capacity for gas and thereby only involve small transportation demand.
charges. When distillate oil is used, there can be expected to be a fuel cost premium over gas. The contract estimates this at 37% in its base year prices. The contract heat rate is 7898 Btu/kWh in both seasons. We can think of the distillate premium as the economic equivalent of the gas demand charges. Assuming that the 37% premium stays constant, we can amortize it over a year and re-express the premium in terms of the contract heat rate. In these terms, then, the use of distillate oil is equivalent to a 12% heat rate penalty, or an adjusted heat rate of 8846 Btu/kWh. Notice that this heat rate is both less than the KRCC and Hopewell heat rates, but it also applies only to gas commodity costs and not to the sum of commodity and transportation charges. Thus, Turbo Power, even with the distillate oil premium, is less expensive than KRCC. Depending upon how often it is dispatched, the lower variable costs would probably also offset its slightly higher fixed cost compared to Hopewell.

Doswell is structured so that gas demand charges are treated as fixed costs. These are in addition to the capacity payments. The contract provides no information about their magnitude. The variable costs are based on a contract heat rate of 8470 Btu/kWh times the gas commodity costs. During the summer period Turbo will be dispatched before Doswell, since its contract heat rate is lower and both are based on gas commodity costs. During the winter period, this dispatch order will be reversed, since the distillate cost premium can be expected to exceed the 7% heat rate differences.

All three Virginia Power projects offer much more flexibility than California ISO4 projects (of which KRCC is a variant) at lower prices. The other gas-fired projects in the contract sample are not easily comparable with KRCC and the VP projects. We have already discussed the problems posed by the imported gas projects. The two peaking projects, Sun Peak and Commonwealth Atlantic, are an altogether different product. Wallkill is also in a different category. Its pricing structure defines it as an intermediate load project only. The fixed capacity price is paid on a cents/kWh basis. This means that even during off-peak periods, its price will be high. Therefore, the minimum take provisions in the contract of 4760 hours are also likely to be maximum take as well.

Finally, the Cogen project appears to be the most expensive baseload gas-fired project in the sample. Its fixed payment of $0.018553/kWh is equal to $138/kW-yr at an 85% capacity factor. This is roughly comparable to KRCC. In addition, however, there is an O&M payment of $0.009/kWh (1988$) which escalates with the GNP deflator. This is more than four times greater than any other O&M payment for a gas-fired project. At an 85% capacity factor, it is equivalent to $67/kW-yr. The variable pricing in Cogen is difficult to evaluate because there is a benefit-sharing arrangement in the contract which could lead to significant economies compared to the contract price.

One way to summarize this discussion is to draw the contrast between the competitively bid projects from Virginia and the negotiated projects, KRCC and Cogen. Along this axis, the clear result emerges that competition has meant lower prices and greater value. Alternatively, if we consider Cogen an outlier, then the price decline becomes a time trend. Since the sample is so
small, these conclusions must be tentative. It is always possible that Virginia Power is just a very aggressive buyer.

9.2 Baseload Coal Projects

This discussion parallels the previous analysis of gas-fired projects, with some change in emphasis. First, O&M costs, usually treated in these projects on a fixed basis, are an important factor in coal project pricing. Since these are often specified to escalate with the GNP deflator, it is best to compare all project fixed costs on a levelized basis. For this discussion we assume that the appropriate value for the GNP deflator over time is 5% and that all costs should be levelized at a 10% discount rate. Since we are mainly interested in relative prices, the choice of discount rate is not critical.

Again, we must constrain the contract sample to find easily comparable projects. We eliminate consideration of Multitrade, Keystone and Chambers because they are designed to be intermediate load projects. This is apparent through their pricing structures which place O&M costs in the variable price component. By raising variable prices in this way, the projects are less attractive for dispatch during off-peak periods.

The purely baseload projects in the sample are AES Shady Point, Vista/Paulsboro, Indiantown and Beckley. The earliest project in the sample is AES Shady Point. The contract dates from 1985. The project is expected to be in operation during 1991. The pricing terms vary depending on the start date. We focus attention on the period starting in 1993. Starting in this period and continuing for 30 years the pricing terms are based on the costs of the utility's avoided unit. On a levelized basis the fixed costs are $405/kW-yr. For the purposes of this comparison, we neglect variable costs. Coal-fired generation costs do vary with the particular fuel characteristics, but we are not in a position to assess the trade-offs in any but the most general way. Therefore, we will use as our main comparison the fixed costs of coal projects.

It is straight-forward to compare Vista/Paulsboro and Indiantown with AES Shady Point. The main issue involving Vista/Paulsboro is that the contract calls for a twenty year term instead of thirty years. There is provision for extending the contract to 30 years using the same pricing formula. Therefore, we assume such an extension. On this basis, the levelized fixed costs of the project are $378/kW-yr, starting in 1994. Indiantown, which has a thirty year term, involves levelized fixed costs of $361/kW-yr, starting in 1996. Thus, both projects start later than AES Shady Point, but have lower fixed costs.

Beckley involves a further complication. This project uses very low cost waste coal, but involves high fixed costs for handling such difficult fuel. On a levelized basis, the fixed costs of Beckley are $501/kW yr, starting in 1993. The expected variable cost in 1993 for Beckley is about 5 mills/kWh. This compares to at least 20 mills/kWh for the other projects. The question is whether the fixed cost premium is recovered through lower operating costs. If we assume that all these projects operate for 7000 hours per year on average (about 80% capacity factor), then the first year fuel savings of Beckley is $105/kW. Levelized over thirty years at a 5% annual
escalation rate, the levelized fuel savings are worth $168/kW-yr. This means that Beckley’s fixed costs net of these fuel savings are $333/kW-yr. This is clearly less than the other project costs. The economic comparison depends crucially on the assumed capacity factor. At 6000 hours/yr (68.4% capacity factor), levelized fuel savings are $144/kW-yr. At 5000 hours/yr (57% capacity factor), levelized fuel savings are $120/kW-yr. At this point, Beckley’s total cost advantage begins to fade away.

The basic conclusion from this limited review is that baseload coal project costs are declining. We have too limited a set of costs for the intermediate coal projects to make any assessment of those.

10.0 Conclusions and Future Research

This review of private power contracts gives a flavor of the range in risk allocation practices. Certain general trends are clear. Performance standards for both availability and contract capacity are nearly universal. Failure to maintain standards is almost always punished financially. Bonuses for superior performance are less common. Construction cost and interest rate risks are generally borne by developers. On the other hand, ratepayers typically bear fuel cost risks through indexation clauses.

Beyond this broad allocation, there is also some indication of a trade-off policy at the state or utility level between the accommodation of developers’ needs and the desirability of imposing responsibility. These trade-offs appear at the level of contract feature bundles. Contracts show leniency on one feature and severity on others. For example, the Virginia Power contracts are tough on performance requirements and force majeure, but are the most concessionary on the “regulatory out” clause. Conversely, the JCPL contracts are lenient on performance penalties and capacity testing, but tough on the “regulatory out” issue. It is very difficult to assess risk balance at this level.

A complete assessment of risk allocation would require more quantitative economic analysis. If the prices paid in a lenient contract are low, then perhaps ratepayers are not damaged. Similarly, if contract prices are high, but terms and conditions are demanding, the ratepayer may also be well-served. The present state-of-the-art does not allow a systematic assessment of this kind. We do not have well developed methods to price out all contract features, nor are benchmark methods for measuring high and low prices well established.

Despite these limits, we can observe two trends which suggest that the private power market is functioning reasonably well in the ratepayer’s interest. The first trend is the measurable movement to lower prices in this highly competitive market. Second is the growing tendency to incorporate increasingly strict terms in the contracts as utilities move away from lenient risk allocation terms that tend to be found in earlier contracts.
Finally, a more complete view of the governance structure affecting independent power projects would require an examination and analysis of the loan agreement used to finance the investments. Loan agreements interact with the power sales contracts we have been examining here. They specify how some of the risks identified in this paper are to be managed by the project developer/owner. If the contract terms in the power sales agreement are too strict, the project may not be able to acquire financing. Future research on the risk allocation mechanisms in the private power industry should focus on the loan agreements.

11.0 Acknowledgements

This work was supported by the Office of Electricity, Coal, Nuclear and Renewable Energy, The U.S. Department of Energy under Contract No. DE-AC03-76SF00098. I would like to thank Kevin Kelly and David Meyer for their support. I appreciate assistance and review comments from Tom Grahame and Phil Overholt, U.S. Department of Energy; Bill Booth, FERC; Eswara Raju, Virginia State Corporation Commission; Nancy Zausner, PG&E/Bechtel Generating Company; Tony Kaelin, PSI Energy; Mark Reeder and Harvey Arnett, New York Department of Public Service; Roberto Davis, Florida Power and Light; John O'Sullivan, Chadbourne and Parke; and Joe Eto, Lawrence Berkeley Laboratory.

12.0 References

Nevada-Sun Peak Limited Partnership (NSP), 1991a. 54 FERC, P.61264.

Nevada-Sun Peak Limited Partnership (NSP), 1991b. 55 FERC, P.61058.

Terra Comfort Corporation and Iowa Southern Utilities Company, 1990. 52 FERC, P. 61241.
