Title
Cooperative Acoustic Vehicle Localization (SYS 1)

Permalink
https://escholarship.org/uc/item/7vc0s6mp

Authors
Lewis Girod
Andreas Ali
Mani Srivastava
et al.

Publication Date
2006
Cooperative Acoustic Vehicle Localization

Lewis Girod, Andreas Ali, Kung Yao, Mani Srivastava
CENS - http://research.cens.ucla.edu/

Introduction: Improving vehicle safety by position tracking in GPS-denied area.

Problem Description: Develop a system to acoustically track vehicle location and speed

Proposed Solution: Localization based on time of arrival using pseudo-noise sequence

Application Vision

- Cooperative system
 - System coordinates acoustic vehicle tracking via RF signaling, informs vehicle of position relative to potential hazard

Project Goal

- Assess use of audible acoustic ranging for vehicle safety applications in GPS-denied areas
- Develop a testing platform to enable experimentation
- Perform some initial experiments to test signaling waveforms

Application Vision

- Receivers over road receive acoustic signals
- Emitters in bumper emit acoustic signals

Receiver Setup

- Linear array of 14 microphones
- Sampled at 48KHz
- Suspended over the roadway
- Wirelessly synchronized to vehicle

Emitter Setup

- Two emitters: one on each side of the front bumper
- Driven from laptop inside the vehicle
- Connection to OBD-II port to record reported vehicle speed
- Connection to 433 MHz radio logs synchronization and break beam events

System Architecture

- Emitter Setup
 - One broadcaster radio emits periodic signals
 - Receivers feed correlated sync symbols into the ADC
 - Offline processing matches up sync symbols
 - Rate conversion to correct for ADC clock skew (166 PPM)

Synchronization Issue

- We implemented wireless synchronization
- Single broadcaster radio emits periodic signals
- Receivers feed correlated sync symbols into the ADC
- Offline processing matches up sync symbols
- Rate conversion to correct for ADC clock skew (166 PPM)
- For an on-line system, must be integrated into RF protocol

Position Tracking

- Each line represents a tracked location, corresponding to the axis between emitters
- Time is represented by color: Blue → Green → Red
- The array is positioned at (0,0) → (3.5,0)

In this test, we:
- Drove towards the array, and stopped
- Drove back quickly in reverse
- Drove forward, weaving intentionally from side to side