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ABSTRACT OF THE DISSERTATION

Building an Analytical Foundation to Study and Enhance the Bids
in Wholesale Electricity Market

by

Mahdi Kohansal

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2018

Dr. Hamed Mohsenian-Rad, Chairperson

An efficient electricity market determines the operational mechanisms to maintain

long-term and short-term power system reliability in a least-cost manner. The performance

of the market not only depends on the market structure, but also the bidding mechanisms

of the market participants including various generation resources, smart consumers and

financial players. Our goal is to study and improve the bids in electricity market with focus

on the California energy market. Therefore, in this thesis, a comprehensive analysis on the

real bidding data from California electricity market has been done. It is concluded that

compared to the supply side, the demand side in the California market is currently highly

inelastic, leading to many undesirable consequences such as price spikes and exercising

market power by generation companies.

To address such issues, a new demand bidding framework has been proposed that

recognizes the special characteristics of smart loads. The bids in this framework are called

extended-time demand bids. The new framework resolves the problems of accommodating

smart loads in the electricity market such as market instability and lack of equilibrium.

Moreover, a novel strategy for large smart loads to procure their required energy in elec-

tricity market has been introduced. The proposed strategy is general and can be applied

to both basic and complex smart load types.
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Finally, the performance of financial players bids known as Convergence Bids (CBs)

have been studied. While CBs are designed to improve the market efficiency and decrease

the price gap between day-ahead and real-time markets, there are recently serious concerns

where CBs do not act as intended and their performance even result in decreasing market

efficiency. Accordingly, we built an analytical foundation to explain under what conditions

placing a CB at a bus in a nodal electricity market can decrease (increase) market efficiency.

Specifically, it is shown that transmission line congestion can highly influence the perfor-

mance of CBs. In particular, under certain transmission line congestion configurations,

placing a CB at a bus can result in divergence (instead of convergence) between day-ahead

and real-time markets prices.
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Chapter 1

Background and Motivation

For decades, and before the electricity market is deregulated, the utility companies

used to have monopoly in their service territories. In particular, they used to own the

distribution grid, the transmission grid, the majority of the power plants that would generate

electricity for their consumers. In some areas, the utilities were run by private companies,

while others were public and belonged to city or state governments. Accordingly, the price

of electricity was regulated and determined by the city, state, or federal agencies.

In the 1980s, some scholars started arguing that the existing monopoly in the

electricity market does not provide incentives to operate efficiency [1, 2]. Furthermore, the

lack of competition among utilities and generators has caused unnecessary investment and

unwillingness to use new technologies. Based on these arguments, the first power market

was created in England and Wales in 1990 [3]. Since then, several power markets have been

established around the world, such as in Australia [4] and Spain [5]. In the United States,

the electricity markets are mostly regional and operated by Independent System Operators

(ISOs). Some of the examples of ISOs that operate deregulated electricity markets include

the California ISO (CAISO) [6], the Electric Reliability Council of Texas (ERCOT) [7], and

Pennsylvania, Jersey and Maryland (PJM) Interconnect [8].
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1.1 Electricity Market

Market Structure:

After deregulation, the roles of traditional power entities have changed and some

new entities have also emerged. These entities can be categorized into four groups:

• Independent System Operators: The ISOs are responsible for running the electricity

market, while maintaining the system security. They are called “Independent” be-

cause they are non-profit and they are not affiliated with any market participant such

as utilities, generators, and end-users. In fact, an ISO should be fair among market

participants and provide nondiscriminatory operational service to the market. The

priority of ISO is to maintain the system security which includes balancing supply

and demand, keeping the frequency of the system in the acceptable range, and re-

moving transmission violations from market transactions. To guarantee maintaining

the system security, each ISO has the authority to manage the resources and loads in

its service territory. Therefore, besides the role of market operation, the ISO has the

responsibility to monitor and control the power grid.

• Generators: They can be of different sizes and types. In practice, it is common that

a group of generators belong to the same generation firm. The goal of a generator or

a generation firm is to maximize its profit given the opportunities that market may

provide. Generators participate in the electricity market by submitting supply bids.

• Utilities and Aggregators: A utility or an aggregator is responsible for participating

in the market on behalf of consumers. Given the small size of most loads, aggrega-

tion is necessary in order to represent loads in the market. Utilities and aggregators

participate in the electricity market by submitting demand bids.

• Consumers: The electricity consumers are the end users of electricity. While smaller

consumers rely on utilities and aggregators to procure electricity, larger consumers,
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such as large industrial, agricultural, or commercial users, can directly enter the elec-

tricity market and purchase electricity by submitting demand bids.

Figure 1.1: Electricity Market Structure

Fig.1.1, shows the relationships among the above entities. The ISO collects the

bids and sets the scheduled generation and load as well as the electricity market price.

Market Price Calculation:

As we explained earlier, the ISO is responsible for calculating the price of electricity

based on the supply and demand bids that it receives. In most existing electricity markets,

e.g., in California, supply and demand bids can be either a self-schedule bid or an economic

bid. An economic bid specifies an energy quantity e in MWh and a price quantity p in

$/MWh. If an economic bid is a demand bid it indicates that the buyer is willing to

purchase up to e MWh energy with a price no higher than p $/MWh. In contrast, self-

schedule bids do not specify any price quantity. For example, a self-schedule demand bid

indicates that the buyer is willing to purchase exactly e MWh at any cleared market price.

In other words, the self-schedule bids represents the price-taker participants in the market,

while the economic bids represents the price-maker ones [9–11]. Also, a supply bid is always

a non-decreasing function of price, while a demand bid is always a non-increasing function

of price. Examples are shown in Fig. 1.2. First, consider the bid in Fig. 1.2(a). If it

3



represents a supply bid, then it means that the generator is willing to sell up to 5 MWh of

energy, regardless of the price. If the bid in Fig. 1.2(a) represents a demand bid, then it

means that the load or utility is willing to buy up to 5 MWh of energy, regardless of the

price. Next, consider the bid in Fig. 1.2(b). Since the bid in this figure is a non-decreasing

function of price, it may only represent a supply economic bid. It means that the generator

is willing to sell up to 4 MWh of energy only if the price is 12 $/MWh or higher. Finally,

consider the bid in Fig. 1.2(c). Since the bid in this figure is a non-increasing function of

price, it may only represent a demand economic bid. It means that the load is willing to

buy 6 MWh of energy only if the price is 10 $/MWh or less. Moreover, the economic bid

may comprise of more than one segment. For instance, CAISO allows the economic bids to

be up to 10 segments.

Price 

($/MWh)

Energy 

(MWh)0 5

(a)

Price 

($/MWh)

Energy 

(MWh)0 4

(b)

12

Price 

($/MWh)

Energy 

(MWh)0 6

(c)

10

Figure 1.2: Examples for self-schedule and economic bids: (a) A supply or demand self-
schedule bid. (b) A supply economic bid. (c) A demand economic bid.

Let nGec and nLec denote the number of generators and loads that submit economic

bids, respectively. For each generator i = 1, . . . , nGec , assume that the supply bid is modeled

by an energy component eGec
i ≥ 0 and a price component aGec

i ≥ 0. Similarly, for each load

j = 1, . . . , nLec , assume that the demand bid is modeled by an energy component eLec
j ≥ 0

and a price component bLec
j ≥ 0. Also, assume that the submitting quantity for self-schedule
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bids of supply and load are e
Gsf

i and e
Lsf

i , respectively. Also, the number of generators and

load submitting self-schedule are nGsf and nLsf . The ISO clears the market by solving the

following optimization problem:

Maximize
qGec ,qLec

nGec∑
i=1

aGec
i qGec

i −
nLec∑
j=1

bLec
j qLec

i

Subject to
nGec∑
i=1

qGec
i +

n
Gsf∑
i=1

e
Gsf

i =
nLec∑
j=1

qLec
i +

n
Lsf∑
j=1

e
Lsf

i

0 ≤ qGec
i ≤ eGec

j , i = 1, . . . , nGec ,

0 ≤ qLj ≤ e
Lec
j , j = 1, . . . , nLec .

(1.1)

The solution of problem (1.1) directly gives the generation schedule qGec = (qGec
1 , . . . , qGec

nGec
)

and the load schedule qLec = (qLec
1 , . . . , qLec

nLec
) of the entities that submit economic bids.

The cleared market price is also calculated based on the Lagrange multiplier of the equality

constraint that shows the power balance between generation and load in the system. The

objective in problem (1.1) is to maximize the social welfare of all generators and all loads [1].

Price

($/MWh)

Energy 

(MWh)

p*

q*

Social

Welfare

Aggregated supply curve

Aggregated demand curve

Figure 1.3: The calculation of clearing market price based on supply and demand bids.
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The solution of the social welfare maximization problem in (1.1) can also be visu-

alized as in Fig. 1.3. Here, the cleared market price and the generation and load schedules

are calculated by crossing the supply function, i.e., the aggregation of all supply bids, and

the demand function, i.e., the aggregation of all demand bids. In this figure, the only eco-

nomic bids are considered. The shaded area is the optimal social welfare, i.e., the optimal

value of the objective function in problem (1.1). Note that, problem in (1.1) does not in-

volve transmission line constraints and the detail of the power transmission network. If we

add the transmission line constraints, then the analysis will be generally similar, but more

computationally complex. See [1] for more details.

1.2 What is the problem?

Traditionally, the focus of feeding the consumers in power systems has been on

the generation side. In the recent years, power systems constantly face an increase in

the number of electricity consumers. On the other hand, there are limits to what can be

achieved on the supply side, because some generating units can take a long time to come up

to full power, some units may be very expensive to operate, and demand can at times be

greater than the capacity of all the available power plants put together, which can cause the

undesirable conditions for market operation. Due to these facts, there is a need to develop

new resource management methods to increase the grid efficiency and to better utilize the

existing available resources.

Moreover, as shown in chapter 2, since the most of demand entities participate

in the market as the price-taker players i.e. by submitting self-schedule bids, they do not

influence the market equilibrium price compared to the supply side. Experience with energy

markets has shown that the lack of demand participation has been a major contributing

factor to occurrences of energy market meltdown. For example, California’s energy crisis

at the turn of the millennium could, to a large extent, have been mitigated if demand side
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would participated in the market by submitting economic bids [12]. Therefore, there is a

great need to enhance demand side activity and market participation by encouraging more

loads to submit economic bids and also by improving the efficiency of existing demand bids.

1.3 Motivation

Given the recent advancements in smart grid technologies, such as smart appli-

ances and smart meters, conducting resource management on the demand side has also

become a realistic solution to demand side participation in the market. In particular,

demand response (DR) programs have recently received great attention in academia and

industry [13,14].

The core idea in DR programs is to exploit load flexibility towards achieving certain

energy efficiency or cost reduction goals. In this regard, load flexibility can be defined

and modeled in two different ways: load curtailing models and load shifting models. A

common model for elastic loads in demand response programs is the load that can be

curtailed if needed. In this thesis, we are not interested in curtailable loads. Rather

we are interested in time-shiftable loads. A time-shiftable load is a task that requires

consuming a certain total energy to be completed, but its operation can be scheduled any

time before a deadline. Some examples of time-shiftable loads are as follows: charging

plug-in electric vehicles [15], irrigation pumps [16], batch processes in data centers and

computer servers [17–19], various home appliances such as dish-washer, washing machine,

and dryer [20–22], intelligent pools [23], and certain industrial equipment [24,25].

The operational flexibility in time-shiftable loads makes them a valuable resource

in the wholesale electricity market. In fact, they play a central role in creating load flexibility

and enhancing demand response and peak-load shaving programs. Also, they can help to

enhance demand side market participation by improving the price-responsive behavior of

existing demand bids. Therefore, in this thesis, we try to exploit the flexibility of this
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type of load to not only minimize the cost of purchasing their energy, but also improve the

demand side participation.

Moreover, in the literature, Convergence Bids (CBs) have been considered as a

solution to improve the market participation of both the demand and supply sides [26–28].

CBs allow market participants to arbitrage between the forward and spot markets, exempt-

ing them from physically consuming or producing energy. The main reason of introducing

CBs is to decrease the price gap between forward and spot electricity markets. In fact,

in an ideal electricity market, there must be no difference between the prices in these two

markets. Recently, several reports from market operators have raised some concerns about

the impact of CBs on nodal electricity markets. In particular, there are concerns about

cases where CBs do not act as intended and their performance result in decreasing market

efficiency even they are increasing market participation. Unfortunately, there is limited

literature on addressing the issues related to CBs in electricity markets.

1.4 Previous Works

There are a limited number of studies which have looked into real-world bids data

in the electricity market [29–32]. Wolfram in [29] studied the bidding behavior of electricity

supplies in the daily auction of England and Wales. In [12], the supply and demand bidding

during the California market crisis in 2001 have been studied. Also, the authors in [31]

and [30] has analyzed the PJM and CAISO market prices and the behavior of supply bids.

Also, the elasticity of demand bids in electricity market of Australia and Iran have been

studied in [33,34]. To the best of our knowledge, our analysis in chapter 2 is the first study

that addresses the demand bids in CAISO after the market is upgraded to Market Redesign

and Technology Upgrade (MRTU) in 2009.

Morever, the operation of time-shiftable loads under demand response paradigm

have been discussed in the litreture [35, 36]. Also, recent efforts have been made to incor-
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porate price-taker time-shiftable loads into the wholesale electricity markets [37–40]. That

is, they are assumed to be relatively small so that their operation does not have impact

on the cleared market price in the day-ahead or real-time markets. For example, the prob-

lem of aggregating residential or other time-shiftable loads using utility-driven incentives

is discussed in [37, 40, 41]. Moreover, Optimal demand bidding for time-shiftable loads is

presented in [42–44], where the time-shiftable load of interest is assumed to be price-taker.

Furthermore, In [45], an optimal demand bidding mechanism using dynamic programming

for time-shiftable loads has been proposed . In this study, both self-scheduling and economic

bidding are considered.

The above studies regarding to the accommodating of time-shiftable loads in the

electricity market are valid only if the time-shiftable load is small and its operation does

not affect the price. Given the great interests among utilities to expand their demand

response potential, c.f., [46], such price-taker assumption may no longer be accurate in the

near future. The wholesale market interaction among multiple large time-shiftable loads is

investigated in [47] using game theory. It is shown that a market with multiple strategic

time-shiftable loads may not always have a Nash equilibrium. That is, such market may not

always be stable. In [48,49], the authors address wholesale electricity market participation

of large and price-maker consumers with time-shiftable and dispatchable loads. However,

the focus is on self-scheduling operation. That is, the load entity is assumed to submit

only energy bids, but not price bids. As a result, power procurement is not subject to

any condition on the clearing market price. Also, the proposed bidding strategy does not

improve the demand side participation in the market.

Moreover, the literature on CBs performance in non-electricity markets is rich,

c.f. [50–52]. However, the literature on CBs in electricity markets has emerged only recently,

and there is limited studies on addressing the issues related to CBs in this market. The

common approach so far has been to use historical market data from different ISOs to

conduct statistical analysis on market prices. Also, it is yet to be investigated how CBs
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may affect the price gap at each market operation time. As for the few studies that take

a rather analytical approach to CBs, so far, most of them have focused on cases where the

CBs are somewhat abused, either by a market player, e.g., when submitted strategically

in conjunction with Financial Transmission Rights (FTR)s [53, 54], or by an adversary,

e.g., in a cyber-physical attack [55]. As another example a data-driven approach combined

with a game-theoretic analysis was done in [56]. There are a few recent studies that have

pointed out the complexities around CBs in electricity markets and the fact that CBs in

electricity markets cannot be evaluated in the same way that they are often assessed in

other markets [57–59]. However, so far, no prior study has provided any analytical method

to explain such complexities and their root causes.

1.5 Thesis Organization

This thesis is organized as follow:

Chapter 2: We first focus on the real bidding data from the California ISO day-

ahead market. Unfortunately, large scale data analysis on real bids data is overlooked in

the literature. Therefore, our goal is to make fundamental observations about how demand

sides submit bids in the California market as well as the underlying causes and implications

of such bidding patterns.

Chapter 3: To improve the demand side participation in the market, in section 3,

we propose a new demand bidding framework that recognizes the special characteristics of

time-shiftable loads. The bids in this bidding framework are called extended-time demand

bids. The new framework resolves the problems of accommodating time-shiftable loads in

the electricity market such as market instability and lack of equilibrium. Moreover, the

proposed bidding structure also increases the market competitiveness due to expanding the

competition domain and increasing demand elasticity with temporal dependencies.
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Chapter 4: In this section, a novel strategy for large smart loads to procure

their required energy in electricity markets with minimum cost has been introduced. The

initial strategy is complex and hard-to-solve optimization problem. A verity of mathe-

matical methods have been applied to transfer the original problem into a tractable linear

programming in order to be solved by existing software and computers. As a result, the

proposed method becomes practical in the real world and it can be applied by load entities

to minimize the cost of procuring their time-shiftable loads in the market.

Chapter 5: The Convergence Bids (CBs) have been pointed out as a solution to

improve the market participation. More importantly, they help the market to decrease the

gap between forward and spot prices. Recently, several reports from ISOs have published

that show CBs do not act as intended and their performance result in decreasing market

efficiency. Accordingly, in this section, we built an analytical foundation to explain under

what conditions placing a CB in a nodal electricity market can decrease (increase) market

efficiency.

Chapter 6: This chapter concludes this thesis and identifies some future work

directions for the research performed in this thesis.
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Chapter 2

Analysis of Bids in California

Electricity Market

2.1 Introduction

CAISO operates different types of markets, including a forward market which is

known as day-ahead market (DAM). Generators and loads can participate in the CAISO

DAM by submitting their bids by 1:00 PM on the day preceding the trading day. In this

chapter, and its corresponding paper in [60], our focus is on gaining new insights about

market participation and the bids in the CAISO DAM. To the best of our knowledge, our

analysis in this section is the first study that addresses the bids; in particular demand

bids; in CAISO after the market is upgraded to Market Redesign and Technology Upgrade

(MRTU) in 2009.

2.2 Basic Observation

In this section, we analyze the bids in CAISO DAM over one year from February

1, 2013 to January 31, 2014. However, our focus is on demand bids since they are not active
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player in the market. Two key reports are used from the CAISO Open Access Same-Time

Information System [61]. The first report is a detailed database of every self-schedule and

economic bid that is submitted to the DAM for each hour on each day. The second report

is a summary of the DAM outcome.

In total, we analyzed 365 × 24 = 8760 hours of bids. On average, for each hour,

CAISO receives supply bids from 523 generators and demand bids from 99 loads. The

types and capacities of these bids are shown in Fig. 2.1. From Fig. 2.1(a), although a

large number of loads participate in the market, only 7% of them submit economic bids.

That means, 93% of loads commit to purchase regardless of the price. In contrast, 44% of

generators submit economic bids, as shown in Fig. 2.1(b). As for the size of the bids, only

10% of the total energy demand is elastic, as shown in Fig. 2.1(c). In contrast, 66% of the

total energy supply bids are elastic, as shown in Fig. 2.1(d).
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Figure 2.1: The types, counts, and capacities of demand and supply bids across four quarters
within the one year duration of this study.

13



1 2 3 4 5 6 7 8 9 10
0

2

4

6
(a)

Number of Price Segments

D
em

an
d 

B
id

s 
(C

ou
nt

)

 

 

1 2 3 4 5 6 7 8 9 10
0

50

100

150

Number of Price Segments

S
up

pl
y 

B
id

s 
(C

ou
nt

)

(b)

Economic

11%

SCE and PG&E

Figure 2.2: The average number of price segments in each economic bid.

A measure to assess the complexity (and to some extent elasticity) of an economic

bid is the number of its price segments. Even though the economic bids in CAISO market

can include up to 10 segments [62] , from Fig. 2.2(a), in practice, most demand bids have

only one price segment. It is particularly interesting that all economic demand bids that

have more than one price segment belong to the two largest utilities in California, namely

Southern California Edison (SCE) and Pacific Gas and Electric (PG&E). Surprisingly, the

third largest utility in California, i.e., San Diego Gas and Electric (SDG&E) does not submit

economic bids. It rather submits self-schedule bids and acts as price taker.

On the supply side, the economic bids are much more diverse in terms of the

number of their price segments, as shown in Fig. 2.2(b). Interestingly, as high as 11% of

generators submit economic bids that include 6 to 10 price segments. This is an important

observation specially because we did not see even a single economic demand bid, including

the demand bids from SCE and PG&E, with 6 or more price segments.
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Next, look at the exact shape of the bids in Figs. 2.3(a) and (b). In both cases,

there are four components that form the total demand curve: the bids from the three major

utilities and the rest of the bids that are collectively called “Others”. Since SDG&E only

submits inelastic self-schedule bids, its curves are straight lines. As for Others, they too are

practically inelastic bids. Note that, other than about 6 MW load elasticities at $100, which

are pointed at by arrows, the rest of the demand curves for Others are straight lines within

the practical $0 to $200 price range. Therefore, we can conclude that the price elasticity

on the demand side almost exclusively comes from the economic bids that are submitted by

SCE and PG&E.

For the case in Fig. 2.3(a), which exemplifies a summer day, SCE has a total of

2,976 MW demand elasticity within the price range of $43 to $72; and PG&E has a total

of 1,449 MW demand elasticity within the price range of $60 to $150. For the case in Fig.

2.3(b), which exemplifies a winter day, SCE has a total of 1,995 MW demand elasticity

within the price range of $54 to $78; and PG&E has a total of 1,146 MW demand elasticity

within the price range of $61 to $162. Note that, although the load levels are significantly

different in Figs. 2.3(a) and (b), the shapes of bids are similar in the two cases.

Despite their large size of demand elasticity, SCE and PG&E always exploit only

5 or fewer price segments in their bids. The problem with this approach is that it inevitably

creates long sub-ranges of inelastic load. For example, in Fig. 2.3(a), the SCE demand

remains fixed at 14,894 MW even if the price increases by 53% from $45 to $69. As another

example, in Fig. 2.3(b), the PG&E demand remains fixed at 9,375 MW even if the price

doubles from $70 to $162. Given the fact that SCE and PG&E are the only major loads

that currently utilize elastic demand in the CAISO market, these sub-ranges of inelastic

load can directly affect the cleared market price and price competitiveness. It is not clear

why SCE and PG&E do not exploit all 10 available price segments in their bids.
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Figure 2.3: Two examples for breaking down the total demand bids across the three major
utilities in California. Hours of trading: (a) August 30, 2013 from 4:00 PM to 5:00 PM; (b)
January 31, 2014 from 6:00 PM to 7:00 PM.

2.3 Further Analysis and Recommendations

2.3.1 Implications

From the observations in Section 2, the demand curve in the CAISO day-ahead

energy market is, for the most part, a straight line. As a result, the amount of energy that

is purchased by loads at each hour in this market does not, for the most part, depend on

the cleared market price at that hour. As for the few segments that exist in the aggregate

demand curve due to the EBs from SCE and PG&E, while they do affect the amount of

energy that is purchased from the DAM as a function of the DAM cleared market prices,

they do not affect the total energy that is purchased across the DAM and RTM combined.

This is due to the fact that the difference between the actual load and the cleared load in

the DAM are cleared in the RTM, keeping the total demand in the CAISO energy market

independent from the cleared market prices. Therefore, the total demand in the CAISO two-
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Figure 2.4: The cumulative count of large inelastic loads, with 200 MW or more annual
peak energy bids, that do not submit any economic bid at any hour.

settlement energy market is currently highly inelastic. Such low elasticity of the demand

bids has at least two consequences that are undesirable for efficient operation of the CAISO

energy markets: it may cause price spikes in the DAM and RTM; and it may also facilitate

the exercise of market power by generation companies [63].

2.3.2 Underlying Causes

There are at least three reasons for the current demand inelasticity in the CAISO

energy market. First, any major and unexpected change in demand due to changes in

prices, i.e., any price-elastic load behavior, can have adverse impact on the accuracy of load

forecasting that is done by CAISO. Since load forecasting plays a central role in CAISO

for operating the market and dispatching generation [64], any major deviation of the load

from CAISO’s forecasted level, due to any reason including price-elasticity, can in turn

potentially jeopardize power system reliability or cause unintended price spike.

Second, the primary objective for a load entity when participating in the DAM

is to hedge against uncertainty. Specifically, submitting a demand EB is not really about

practicing load elasticity and capping the load when the price is high; instead, the intention

is often to perform risk management by diversifying purchase across DAM and real-time

market (RTM). In this sense, the current role of demand EBs is similar to that of another

financial tool in CAISO, i.e. convergence bid. Convergence bidding is a mechanism whereby
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market participants can make financial purchases (or sales) of energy in the DAM, with

the explicit requirement to sell (or buy) back that energy in the RTM; see Chapter 5.

Interestingly, while SDG&E does not submit EBs, see Section 2.2, it does submit CBs [65].

Third, there is currently very limited load flexibility available to load entities in

California. On one hand, due to various economic and social reasons, the energy usage

of many consumers is historically inelastic [63]. On other other hand, the existing load

elasticity potential, see Section 2.3.3, has not been utilized yet. For example, the current

registered capacity of proxy demand response (PDR) resources is only 37 MW1.

2.3.3 Potentials to Improve Demand Bids

Addressing the three obstacles in Section 2.3.2 can potentially help in enhancing

demand bids and increasing load flexibility in the CAISO energy market. First, there is a

need to develop new load forecasting methods that incorporate the impact of price-elasticity

in demand; see [66]. Load forecasting may also benefit from new demand bidding structures

that are designed to accommodate flexible loads; see [67].

Second, we may develop new demand bidding strategies that not only diversify

purchase across DAM and RTM, but also exploit various load flexibility potentials to create

price-elasticity in demand curves; see [45]. Note that, medium and large consumers are

already allowed to directly bid in the CAISO energy markets, where the bids can be as low

as 100 kW in total and 10KW in each economic bid segment [64].

Finally, there is a need to make more flexible loads available through enhanced

demand response (DR) programs. Some of the current DR programs in CAISO include

PDR, reliability demand response resource (RDRR), participating load (PL), and aggre-

gated participating load (APL) [68]. Most of these programs, except for PDR, are mainly

designed for ancillary service market participation. However, linking these and other DR

programs to energy markets could provide load entities with the means needed to practice

1This number was provided to the authors by CAISO on March 12, 2015.
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price-elasticity. Of course, some load types, such as air conditioners, are minute-scale flex-

ible loads that are best utilized in ancillary service markets. However, there are also load

types, such as time-shiftable loads that are hour-scale flexible loads and appropriate for

energy market, as long as they are properly aggregated.

2.4 Conclusions

We analyzed one year of bids in the CAISO DAM market. We made interesting

observations. First, even though about 100 loads participate in the market, the demand

curve is shaped by only two loads, SCE and PG&E. This is because almost all other loads

submit self-schedule bids with no price components. While, 44% of 523 generators par-

ticipating in DAM submit economic bid. Second, despite the fact that economic bids can

include as many as 10 price segments, the demand bids in California tend to include only 5

or fewer price segments. This has inevitably created long sub-ranges of inelastic load in the

demand curve which can potentially affect the cleared market price and price competitive-

ness. These observations suggest that there is a need for enhancing demand side market

participation by encouraging more loads to submit economic bids and also by improving

the efficiency of existing economic demand bids.
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Chapter 3

Extended-Time Demand Bids: A

New Bidding Framework to

Accommodate Time-Shiftable

Loads

3.1 Introduction

Recent studies have suggested that time-shiftable loads may face load synchro-

nization and market instability if they are deployed at high penetrations such that they

become price maker [47]. To tackle this problem, in this chapter, we propose a new demand

bidding framework that recognizes the special characteristics of time-shiftable loads. The

new bidding structure is beneficial not only to the power system as a whole but also to

the consumers that are capable of shifting a portion of their loads. On one hand, it helps

the power system by increasing the social welfare across all generators and loads. On the

other hand, time-shiftable loads are cleared at cheaper cost. The new bidding structure
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also increases the market competitiveness due to expanding the competition domain and

increasing demand elasticity with temporal dependencies. The proposed bidding model in-

corporates the impact of large and price-maker time-shiftable loads, and it is not prone to

load synchronization and market instability.

3.2 Bidding Concept and Its Visualization

Consider an electricity market, where an ISO receives and processes the supply

and demand bids from generator and load companies, respectively. Currently, the demand

bids, whether of type self-schedule or economic, are specific to a particular hour. As a result,

they cannot directly accommodate time-shiftable loads. In fact, based on the current market

structure, if a demand response aggregator with time-shiftable load seeks to participate in

the energy market, then it must submit several separate demand bids at each hour, without

having the right tools to indicate the inter-temporal dependency across its bids. As we

discussed in Section 3.1, lack of recognizing the time-flexibility in time-shiftable loads can

cause market instability [47].

To tackle the above challenges, we propose the concept of extended-time demand

bidding as follows:

• Extended-time Self-Schedule Demand Bid : It includes an energy quantity e, a start-

time α, and an end-time β. It indicates that the buyer is willing to purchase an exact

total of e MWh at any price and between hours α and β.

• Extended-time Economic Demand Bid : It includes an energy quantity e, a price quan-

tity p, a start-time α, and an end-time β. It indicates that the buyer is willing to

purchase up to a total of e MWh at a price no higher than p $/MWh between hours

α and β.

Note that, we always have α ≤ β. For the special case where α = β, an extended-time bid

reduces to a regular bid.

21



Fig. 3.1 shows the impact of time-shiftable self-schedule demand bidding on a

two-time-slots market, where α = 1 and β = 2. Once the ISO receives the bid, it must

decide on the value of θ, i.e., the portion of the total needed energy e that is going to be

procured at hour α = 1, while the portion 1 − θ is going to be procured at hour β = 2.

As shown in Figs. 3.1(a) and 3.1(b), by increasing θ, the aggregated demand curve at hour

α = 1 shifts to the right, resulting in a higher price at this hour, while the aggregated

demand curve at hour β = 2 shifts to the left, resulting in a lower price at this hour. The

price curves versus parameter θ are plotted in Fig. 3.1(c). Considering the two time slots

combined, the changes in the total social welfare in the power system versus parameter θ

are illustrated in Fig. 3.1(d). Here, the social welfare is calculated across both generators

and loads. Based on this curve, the ISO schedules the operation of the time-shiftable load

to consume θ∗e MWh at time slot α = 1 and (1− θ∗)e at time slot β = 2. As intended, the

total energy consumption adds up to e.

3.3 Mathematical Representation

In this section, we discuss how the new biding structure can be incorporated into

the market optimization problem that is formulated and solved by the ISO. Suppose, the

market contains T = 24 hours. The economic dispatch problem in presence of extended-time

demand bids can be formulated as

max
q

T∑
t=1

 ∑
i∈DRE

t

piqi,t −
∑

j∈GRE
t

pjqj,t


+
∑

i∈DEE
t

pi

(
βi∑
t=αi

qi,t

)

s.t.
∑
i∈D

qi,t =
∑
j∈G

qj,t, ∀t

qi,t ≤ ei, ∀t, ∀i ∈ DRE

(3.1)
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Figure 3.1: Handling an extended-time demand bid in a two-time-slots market: (a) Supply
and demand curves at the first hour; (b) Supply and demand curve at the second hour;
(c) Price variation with respect to the time-shiftable demand bid at the two hours; (d)
Aggregated social welfare across the two hours.

qi,t = ei, ∀t, ∀i ∈ DRS

βi∑
t=αi

qi,t ≤ ei, ∀i ∈ DEE

βi∑
t=αi

qi,t = ei, ∀i ∈ DES

qi,t ≥ 0, ∀t, ∀i ∈ D

Generator j Constraints ∀j ∈ G.

The objective is to maximize the total social welfare of the power system over

the market time horizon. Two changes are made in the economic dispatch problem to

incorporate extended-time demand bids. First, in the objective function, the welfare for
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each time-shiftable load i that submits extended-time economic demand bid is defined over

the entire flexible operation period from αi to βi. Second, in the constraints, the target

energy levels for time-shiftable loads are calculated over the entire flexible operation period

from αi to βi, whether the extended-time bid is self-schedule or economic.

Next, we derive the Karush-Kuhn-Tucker (KKT) conditions with respect to the

extended-time demand bid variables. Suppose πt is the Lagrange multiplier for the energy

balance constraint at hour t, which represents the price at that hour. Let λi denote the

Lagrange multiplier for total demand constraint for time-shiftable load i and υi,t denote the

Lagrange multiplier for the constraint that shows the cleared energy cannot be negative.

The KKT optimality conditions for load i ∈ DEE and at hour t are obtained as

dL/dqi,t = −pi + πt + λi − υi,t = 0, (3.2)

λi(
∑βi

t=αi
qi,t − ei) = 0, (3.3)

λi ≥ 0, (3.4)

υi,t qi,t = 0, (3.5)

υi,t ≥ 0. (3.6)

We can now show the following results:

Theorem 1: If the price bid pi in an extended-time economic demand bid is

greater than πt, where αi ≤ t ≤ βi, then the total energy bid ei will be cleared, i.e.,∑βi
t=αi

qi,t = ei

Proof : Without loss of generality, let assume that πt0 is the minimum price

between hour αi and βi. If pi > πt0 , then from the KKT conditions, the following relations

hold:
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pi > πt0 → pi − πt0 > 0→ λi − υi,t > 0 ... (3.7)

...
υi,t≥0−→ λi > 0→

βi∑
t=αi

qi,t = ei

Similarly, we can show that if pi is less than the minimum price during hours αi and βi,

then the bid is not cleared. �

From Theorem 1, the behavior of an extended-time economic bid is similar to a

regular economic bid, i.e. the cleared energy and the market price match the bidder’s desire.

Theorem 2: Consider an extended-time bid i and two hours with two different

cleared market prices that are within the time frame αi and βi. The amount of cleared

energy of this extended-time bid at the more expensive hour is zero.

Proof : First, assume that the extended-time bid is of type economic. Suppose

πt1 > πt2 , where t1 and t2 are within the time frame αi and βi. Based on the KKT

conditions, the following equalities and inequalities hold:

πt1 > πt2 → pi − λi + υi,t1 > pi − λi + υi,t2 → ... (3.8)

...→ υi,t1 > υi,t2
υi,t2≥0−→ υi,t1 > 0→ qi,t1 = 0

The case for self-schedule bids can be proved similarly. �

From the above theorem, the ISO first clears the extended-time bids at the cheapest

hours until all prices become equal. After that, the ISO distributes the time-shiftable loads

among different hours so that the hourly prices maintain similar.
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3.4 Benefits of the New Bidding Structure

In this section, we study the impact of applying extended-time demand bids on

the California ISO day-ahead energy market. We use the hourly generator and load bids

data from the public bids database in [61]. For the ease of presentation, the grid topology

and transmission constraints are not considered in our analysis. Moreover, since California

ISO does not publish detailed cost of generators such as start-up, ramp up, and ramp down,

these parameters are not considered here.

Fig. 3.2 shows the hourly cleared energy and price on January 15, 2014 for different

time-shiftable load penetration levels γ. Here, γ % of self-schedule demand bids and γ %

of economic demand bids are assumed to be replaced by extended-time bids with α = 1

and β = 24. We can see that the amount of cleared load and the cleared market price

reduce during peak hours as we increase the penetration of extended-time bids. In fact, the

time-shiftable loads have been shifted to off pick hours, causing the peak-to-average ratio

(PAR) reduce, which makes the system more reliable. Moreover, by increasing γ, the prices

at different hours become equal, which is predictable based on the Theorem 2. After that,

by increasing the penetration level, there will be no change in the market price. Therefore,

after a certain penetration threshold, in this case at about γ = 18%, the system reaches a

saturation point at which increasing γ does not affect the cleared market prices.

Fig. 3.3(a) shows the social welfare of the power system versus the penetration of

the extended-time bids. We can see that increasing γ results in increasing the social welfare.

Moreover, as mentioned in section 3.3, besides the system benefits, the extended-time bids

are beneficial to the time-shiftable loads. This is shown in Fig. 3.3(b), where the average

cleared prices are compared for extended-time and regular demand bids. We can see that

the average price of extended-time bids is always less than that of regular bids, especially

at lower penetration levels. Based on Theorem 2, in lower amounts of γ, ISO clears the

extended-time bids in off-pick hours which have lower prices. By increasing penetration,
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Figure 3.2: Market outcome with extended-time demand bids at different time-shiftable
load penetration levels γ: (a) cleared energy, (b) cleared price.

the system reaches a saturation point, at which the prices become almost equal at different

hours. Accordingly, the average prices for different demand bid types converge to each

other.

One of the key problems in presentation of time-shiftable loads is load synchroniza-

tion, where all or a large number of time-shiftable loads shift their load to off-peak hours,

creating a new peak hour [35,69]. Next, we show that this problem can be tackled if we use

extended-time demand bids. The results are shown in Fig. 3.4. Here, the peak-to-average

(PAR) is plotted versus the time-shiftable load penetration level for two bidding demand

scenarios.

We can see that PAR is high if zero or only a small percentage of the loads are

time-shiftable. As we increase γ, the PAR reduces almost similarly for the two demand

bidding scenarios. However, beyond a certain penetration level when there is a considerable

percentage of time-shiftable loads, the PAR starts increasing, instead of decreasing, if the
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Figure 3.3: Market parameters versus the penetration of extended-time bids: (a) Social
welfare, (b) Average market price for different types of demand bids.

regular demand bids are used for time-shiftable loads. This is due to the load synchroniza-

tion problem that we mentioned earlier. However, by applying the proposed extended-time

bidding framework, we continue benefiting from the time-flexibility in time-shiftable loads

and lowering the prices even at higher penetrations of time-shiftable loads without suffering

from load synchronization.

Finally, we assess the market outcome for different values of ∆ = β−α+1, i.e., the

flexible time duration for time-shiftable loads. The results are shown in Fig. 3.5. We can

see that increasing ∆ can potentially help in peak load shaving and lower peak load prices.

However, by comparing the results in Figs. 3.2 and 3.5, one can conclude that increasing the

penetration of time-shiftable loads, i.e., the volume of flexible loads is often more beneficial

compared to increasing the time flexibility of a small volume of time-shiftable loads.
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Figure 3.4: The peak-to-average ratio of the total load profit versus the penetration level
of the time-shiftable loads. The load synchronization problem is resolved.

3.5 Impact on Market competitiveness

In this section, we present an example to study the impact of extended-time de-

mand bidding on price competitiveness. Consider a market over T = 3 hours. The true

generation and demand bids based on the true marginal costs are shown in Tables 3.1 and

3.2, respectively. Since self-schedule bidding is a special case of economic bidding, where

the price bid is infinity, all bids are assumed to be economic bids. There are 11 generators

and 11 loads in each time slot. Let us assume that generator j = 3 at hour t = 1, generator

j = 5 at hour t = 2 and generator j = 4 at hour t = 3 submit their bids strategically.

Similar to the previous section, we assumed that a portion γ of each load is time-shiftable,

where α = 1 and β = 3. To find Nash equilibrium among the three strategically bidding

generators, we followed the general method in [70] and used an exhaustive search with reso-

lution 1$/MWh for the price bid and 1MWh for energy bid. The results are shown in Table

3.3. We can see that by increasing γ, the differences between noncompetitive and compet-

itive prices reduces. It means that by applying extended-time bids, there is less potential

for the three strategic generators to exercise market power. Furthermore, at γ = 16%, one
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Figure 3.5: Market outcome with extended-time demand bids at different time-shiftable
load durations ∆: (a) cleared energy, (b) cleared price.

of the Nash equilibria under extended-time bidding is equal to the true market equilibrium

and the prices at the other equilibrium point are only 1$ more than the competitive prices.

In contrast, at γ = 0, which is the representation of the existing market framework, the

differences of the cleared and competitive prices are 32−28 = $4 at hour t = 1, 36−30 = $6

at hour t = 2, and 38− 35 = $3 at hour at t = 3.

3.6 Conclusion

In this chapter, we propose extended-time demand bids that are tailored around

the special characteristics of time-shiftable loads. The proposed new bidding framework is

compatible with the existing market structures as it allows both self-schedule and economic

bids to become extended-time demand bids. The bidding concept, its visualization, and its
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Table 3.1: Generators bids data

Generator (Energy e, Price p)
Index j t = 1 t = 2 t = 3

1 (10 , 5) (14 , 4) (10 , 2)

2 (8 , 7) (11 , 9) (7 , 7)

3 (25 , 11) (12 , 16) (12 , 14)

4 (15 , 17) (10 , 21) (20 , 27)

5 (14 , 25) (30 , 28) (10 , 23)

6 (10 , 28) (10 , 33) (11 , 30)

7 (12 , 40) (6 , 41) (6 , 35)

8 (10 , 48) (13 , 45) (13 , 40)

9 (10 , 55) (9 , 49) (9 , 44)

10 (11 , 60) (11 , 53) (11 , 51)

11 (9 , 68) (15 , 59) (15 , 57)

mathematical representation are presented. It is shown that the proposed bidding structure

can prevent the typical load synchronization problem for time-shiftable loads. Furthermore,

it is beneficial to the power system as a whole and the consumers with time-shiftable

loads. The new demand bidding structure also has the potential to increase the market

competitiveness and contribute to mitigating market power.
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Table 3.2: Demand bids data

Load (Energy e, Price p)
Index i t = 1 t = 2 t = 3

1 (23 , 84) (14 , 85) (10 , 80)

2 (12 , 72) (17 , 74) (10 , 72)

3 (17 , 59) (15 , 65) (15 , 62)

4 (10 , 51) (9 , 54) (12 , 53)

5 (9 , 44) (11 , 48) (10 , 46)

6 (9 , 32) (10 , 36) (7 , 40)

7 (10 , 27) (9 , 30) (8 , 38)

8 (12 , 23) (10 , 26) (7 , 32)

9 (14 , 13) (11 , 18) (11 , 27)

10 (10 , 8) (13 , 10) (12 , 20)

11 (7 , 5) (7 , 6) (14 , 11)

Table 3.3: Market Price Competitiveness

Penetration Noncompetitive Price ($) Competitive Price ($)
γ t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

0% 32 36 38 28 30 35

8%
33 33 35

32 32 32
32 32 35

16%
33 33 33

32 32 32
32 32 32

32



Chapter 4

Price-Maker Economic Bidding in

Two-Settlement Pool-Based

Markets: The Case of

Time-Shiftable Load

4.1 Introduction

In this section, a new scenario-based stochastic optimization framework is proposed

for price-maker economic bidding in day-ahead market (DAM) and real-time market (RTM)

[11, 71]. The presented methodology is general and can be applied to both demand and

supply bids. That is, no restrictive assumptions are made on the characteristics of the

pool and its agents. However, our focus is on the operation of time-shiftable loads with

deadlines, because; as mentioned in Chapter 1; they play a central role in creating load

flexibility and demand side participation. Moreover, we do consider the size of the load

and hence the impact of demand bids on the cleared market price. In fact, the analysis in
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this section advances the existing price-taker results in [45], because here we consider price-

maker market participation of time-shiftable loads. This study also advances the existing

self-scheduling results in [72], because here we consider economic bidding. In our model,

we consider two-settlement markets, where energy is procured from both DAM and RTM.

Note that, the electricity markets in the united states have been designed based on the

two-settlements; therefore, the result of this section is applicable in real world electricity

markets.

4.2 Problem Statement

4.2.1 Two-Settlement Electricity Market

In a two-settlement wholesale electricity market, e.g., in California , Pennsylvania-

Jersey-Maryland, and Texas, energy is traded in both DAM and RTM. Also from chapter

1 , there are more energy cost minimization opportunities for loads in Economic bidding

than Self-Schedule bidding. However, the demand bids that are submitted (or metered)

to the real-time market only indicate energy quantities. That is, they are always of type

Self-Schedule [44,73].

Day-Ahead Market:

Let T denote the number of daily market intervals. For example, in an hourly

market, we have T = 24. At each time slot t, let xt and pt denote the energy bid and the

price bid that are submitted to the day-ahead market, respectively. The market outcome

from a participant perspective depends on not only its bids, but also the market price quota

curve1 [72], [74], as shown in Fig. 4.1. There are one self-schedule and two economic bids

1“For a given hour, the quota of a price maker generator or load is defined as the amount of power that
it generates or consumes in that hour. The curve that expresses how the market-clearing price changes
as this quota changes is called residual generation/demand curve [74] or simply price quota curve [72].
While the price quota curve is step-wise monotonically decreasing with respect to generation level for a price
maker generator, it is step-wise monotonically increasing with respect to consumption level for a price maker
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Figure 4.1: An example for price-maker self-scheduling and price-maker economic bidding
for a given price quota curve in a pool-based market.

shown in this figure. The self-schedule bid is a straight vertical line. Moving this line

towards left or right can affect the price, as explained in the price-maker self-scheduling

analysis in [72]. In contrast, price-maker economic bids affect not only the price but also

the amount of cleared energy quantity, as shown in Figs. 4.2(a) and (b), respectively. In

fact, under price-maker economic bidding, the cleared market price and the cleared energy

quantity are two-dimensional functions λt(xt, pt) and qt(xt, pt), respectively. For each price

bid pt, the cleared market price λt(xt, pt) is a step-wise increasing function of energy bid

xt. Also, for each price bid pt, the cleared energy quantity qt(xt, pt) is a straight identity

line that is saturated beyond a certain threshold. Such threshold increases as the price bid

pt increases, allowing larger energy bids to be cleared in the day-ahead market. For the

example in Fig. 4.2, if the energy bid is xt = 20 MW and the price bid is pt = 36 $/MW,

then we have λt(xt, pt) = 36 $/MW and qt(xt, pt) = 15 MW. If xt = 20 MW and pt = 48

$/MW, then we have λt(xt, pt) = 38 $/MW and qt(xt, pt) = 20 MW. These numbers are

marked on Fig. 4.2 for clarification.

consumer. Price quota curves are stepwise because the supply/demand bids are assumed to be blocks of
generation/load at given prices [72]. These curves embody the effects of all interactions with competitors
and the market rules [72], [74]. The price quota curves of a price maker generator or load can be obtained
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Figure 4.2: An example for the market outcome under price-maker economic bidding for
two different price bids: (a) cleared price of electricity; (b) cleared energy quantity. Here,
the price quota curve is the same as the one in Fig. 1.

Real-Time Market:

Recall from Section 2 that the demand bids in real-time markets do not indicate

any price quantity. In fact, in practice, the demand is only metered and then the payments

corresponding to the real-time markets are calculated accordingly [76]. At each time slot

t, let yt denote the energy bid that is submitted (or metered) to the real-time market.

The cleared market price and the cleared energy quantity are modeled as one-dimensional

functions φt(yt) and gt(yt), respectively. The former is a step-wise increasing function of

energy bid yt. The latter is simply a straight identity line, i.e., gt(yt) = yt.

by either market simulation or using forecasting procedures [74], [75].
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4.2.2 Optimization Problem

In practice, market participation is prone to uncertainty. Let K denote the num-

ber of random market scenarios. At each time slot t and for each scenario k = 1, . . . ,K, the

multiplications qt,k(xt, pt)λt,k(xt, pt) and yt,kφt,k(yt,k) indicate the cost of power procure-

ment from the day-ahead market and the real-time market, respectively. The price-maker

economic bidding problem for time-shiftable loads can be formulated as

min
1

K

K∑
k=1

β∑
t=α

qt,k(xt, pt)λt,k(xt, pt) + yt,kφt,k(yt,k)

s.t.

β∑
t=α

qt,k(xt, pt) + yt,k = e, ∀ k,

(4.1)

where the optimization variables are xt, pt, and yt,k for any time slot t and any market

scenario k. The objective in (4.1) is to minimize the expected value of the total energy

expenditure to finish the task. The equality constraints assure that for all scenarios, the

total energy purchased matches the target energy level e. Note that, the energy bids to

real-time market act as resource variables [77, 78]. As a result, they are specific to each

scenario k to purchase a total of e−
∑β

t=α qt,k(xt, pt) MWh energy from the real-time market

under scenario k.

The nonlinear mixed-integer stochastic optimization problem in (4.1) is difficult

to solve. In fact, it is recently shown in [45] that even if the time-shiftable load is small

and price-taker, i.e., λt,k and φt,k are independent of the bids, then solving problem (4.1)

is still a challenging task due to the nonlinearity in qt,k(xt, pt). Nevertheless, we will next

present an innovative method to find the global optimal solution of problem (4.1) within a

short amount of computational time.
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4.3 Proposed Solution Method

In this section, we explain how we can reformulate problem (4.1) as a mixed-integer

linear program. This is done by taking four key steps. The reformulated optimization

problem is then solved efficiently using various mixed-integer linear programming solvers,

such as CPLEX [79] or MOSEK [80].

4.3.1 Problem Reformulation Steps

Step 1: At each time slot t and for each scenario k, we define qtht,k(pt) as the

maximum energy quantity that can be cleared in the day-ahead market when the price bid

is pt. For example, from Fig. 2(b), we have qtht,k(36) = 15 MWh. This is because the cleared

energy curve for any bid with pt = $36 is bounded by 15 MWh. In other words, if the

time-shiftable load seeks to procure more than 15 MWh, then it must submit a price bid

that is higher than $36. As another example, we have qtht,k(48) = 38 MWh. A method to

model qtht,k(pt) will be provided later in Step 3. However, for now, assume that the value of

qtht,k(pt) is given for each price bid pt. We can write

qt,k(xt, pt) =

 xt, if xt ≤ qtht,k(pt),

qtht,k(pt), otherwise.
(4.2)

In other words, we have

qt,k(xt, pt) = min
{
xt, q

th
t,k(pt)

}
. (4.3)

Next, we define a new auxiliary variable as

θt,k =

 0, if xt ≤ qtht,k(pt),

1, otherwise.
(4.4)
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From (4.2), (4.3) and (4.4), we have

θt,k = 0 ⇔ qt,k(xt, pt) = xt ≤ qtht,k(pt) (4.5)

and

θt,k = 1 ⇔ qt,k(xt, pt) = qtht,k(pt) ≤ xt. (4.6)

Interestingly, for any time slot t and any market scenario k, the relationships in (4.5) and

(4.6) are equivalent to

θt,k ∈ {0, 1}, (4.7)

xt − θt,kL ≤ qt,k(xt, pt) ≤ xt, (4.8)

qtht,k(pt)− (1− θt,k)L ≤ qt,k(xt, pt) ≤ qtht,k(pt), (4.9)

where L is a large number compared to load size e. To show the above, we note that, if

θt,k = 0, then (4.8) and (4.9) become

xt ≤ qt,k(xt, pt) ≤ xt, (4.10)

qtht,k(pt)− L ≤ qt,k(xt, pt) ≤ qtht,k(pt). (4.11)

The lower bound and the upper bound in (4.10) are equal. Also, since L is a large number,

the lower bound constraint in (4.11) is not binding. Therefore, we can conclude that the

relationship in (4.5) holds. If θt,k = 1, then (4.8) and (4.9) become

xt − L ≤ qt,k(xt, pt) ≤ xt, (4.12)

qtht,k(pt) ≤ qt,k(xt, pt) ≤ qtht,k(pt), (4.13)

The lower bound constraint in (4.11) is not binding. From this and because the lower bound
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and the upper bound in (4.10) are equal, we can conclude the relationship in (4.6).

Step 2: At each time slot t and for each scenario k, the cleared market price in

the day-ahead market is obtained as

λt,k(xt, pt) =

 λt,k(xt,∞) if xt ≤ qtht,k,

pt otherwise,
(4.14)

where λt,k(xt,∞) is the price quota curve for an infinite price bid, i.e., the price curve under

Self-Scheduling [72]. Next, we note that the cost of power procurement from the day-ahead

market at time slot t and under scenario k is modeled as

Ct,k(xt, pt) = qt,k(xt, pt) λt,k(xt, pt). (4.15)

From (4.2) and (4.14), we can rewrite the above expression as

Ct,k(xt, pt) =

 xtλt,k(xt,∞) if xt ≤ qtht,k,

qtht,k(pt)pt otherwise.
(4.16)

If xt ≤ qtht,k(pt) then λt,k(xt,∞) ≤ pt. Accordingly, we have xtλt,k(xt,∞) ≤ qtht (pt)pt.

Also, if xt > qtht (pt) then λt,k(xt,∞) ≥ pt. Accordingly, we have xtλt,k(xt,∞) ≥ qtht (pt)pt.

Therefore, we can rewrite (4.16) as

Ct,k(xt, pt) = min
{
xtλt,k(xt,∞), qtht,k(pt)pt

}
. (4.17)

From (4.4), (4.16) and (4.17), we have

θt,k = 0 ⇔ Ct,k(xt, pt) = xtλt,k(xt,∞) ≤ qtht,k(pt)pt (4.18)
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and

θt,k = 1 ⇔ Ct,k(xt, pt) = qtht,k(pt)pt ≤ xtλt,k(xt,∞). (4.19)

Again, for any time slot t and any market scenario k, the relationships in (4.18) and (4.19)

are equivalent to (4.7) and

xtλt,k(xt,∞)− θt,kL ≤ Ct,k(xt, pt) ≤ xtλt,k(xt,∞), (4.20)

qtht (pt)pt − (1− θt,k)L ≤ Ct,k(xt, pt) ≤ qtht (pt)pt, (4.21)

where L is again a large number. To show the above equivalence, we note that if θt,k = 0,

then (4.20) and (4.21) become

xtλt,k(xt,∞) ≤ Ct,k(xt, pt) ≤ xtλt,k(xt,∞), (4.22)

qtht (pt)pt − L ≤ Ct,k(xt, pt) ≤ qtht (pt)pt. (4.23)

The lower bound and the upper bound in (4.22) are equal. Also, since L is a large number,

the lower bound constraint in (4.23) is not binding. Therefore, we can conclude that the

relationship in (4.18) holds. If θt,k = 1, then (4.20) and (4.21) become

xtλt,k(xt,∞)− L ≤ Ct,k(xt, pt) ≤ xtλt,k(xt,∞), (4.24)

qtht (pt)pt ≤ Ct,k(xt, pt) ≤ qtht (pt)pt. (4.25)

The lower bound constraint in (4.24) is not binding. From this and because the lower bound

and the upper bound in (4.25) are equal, we can conclude the relationship in (4.19).

Step 3: At each time slot t and for each scenario k, the threshold qtht,k(pt) is a

step-wise linear function of price bid pt. For example, in Fig. 1, qtht,k(pt) is 0 for any pt < 30,

it is 8 for any 30 ≤ pt < 34, it is 15 for any 34 ≤ pt < 38, and so on and so forth. Following
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the general methodology in [72] for modeling step-wise linear functions, we can write

qtht,k(pt) =

nt,k∑
i=1

xmin
t,k,sut,k,s, (4.26)

pt =

nt,k∑
i=1

(
at,k,s + ut,k,sp

min
t,k,s

)
, (4.27)

where

ut,k,s ∈ {0, 1}, (4.28)

0 ≤ at,k,s ≤ ut,k,samax
t,k,s, (4.29)

nt,k∑
s=1

ut,k,s = 1. (4.30)

Here, nt,k is the number of price steps in the step-wise linear function qtht,k(pt), parameter

pmin
t,k,s is the minimum price in step number s, parameter xmin

t,k,s is the cleared energy in step

number s, parameter amax
t,k,s is the width of step number s, vt,k,s and at,k,s are auxiliary

variables. For example, in Fig. 1, we have pmin
t,k,1 = 0, pmin

t,k,2 = 30, pmin
t,k,3 = 34, pmin

t,k,4 = 38,

xmin
t,k,1 = 0, xmin

t,k,2 = 8, xmin
t,k,3 = 15, xmin

t,k,4 = 20, amax
t,k,1 = 30, amax

t,k,2 = 4, amax
t,k,3 = 4, amax

t,k,4 = 3, etc.

We can also write

qtht,k(pt) pt =

nt,k∑
s=1

xmin
t,k,s

(
ct,k,s + vt,k,sp

min
t,k,s

)
. (4.31)

Step 4: Finally, at each time slot t and for each scenario k, we can again adjust

the modeling approach in [72] and write:

xtλt,k(xt,∞) =

mt,k∑
s=1

λt,k,s
(
bt,k,s + vt,k,sx

min
t,k,s

)
, (4.32)

xt =

mt,k∑
s=1

(
bt,k,s + vt,k,sx

min
t,k,s

)
, (4.33)
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and

yt,kφt,k(yt,k) =

ot,k∑
s=1

φt,k,s
(
ct,k,s + wt,k,sy

min
t,k,s

)
, (4.34)

yt,k =

ot,k∑
s=1

(
ct,k,s + wt,k,sy

min
t,k,s

)
, (4.35)

where

vt,k,s ∈ {0, 1}, (4.36)

wt,k,s ∈ {0, 1}, (4.37)

0 ≤ bt,k,s ≤ vt,k,sbmax
t,k,s, (4.38)

0 ≤ ct,k,s ≤ wt,k,scmax
t,k,s, (4.39)

mt,k∑
s=1

vt,k,s = 1, (4.40)

ot,k∑
s=1

wt,k,s = 1. (4.41)

Here, parameters mt,k, x
min
t,k,s, and bmax

t,k,s characterize the step-wise linear day-ahead price

quota curve λt,k(xt,∞) under Self-Schedule bidding; and ot,k, y
min
t,k,s, and cmax

t,k,s characterize

the step-wise linear real-time price quota curve φt,k(yt,k). For example, based on the curves

in Figs. 1 and 2, we have bmax
t,k,1 = 8, bmax

t,k,2 = 7, bmax
t,k,3 = 5, etc.

4.3.2 Resulted Mixed-Integer Linear Program

After applying the changes in the four steps in Section 4.3.1, we can reformulate

optimization problem (4.1) as
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min
1

K

K∑
k=1

β∑
t=α

Ct,k +

ot,k∑
s=1

φt,k,s
(
ct,k,s + wt,k,sy

min
t,k,s

)
s.t.

β∑
t=α

qt,k + yt,k = e, ∀k,

xt − θt,kL ≤ qt,k, ∀t, k,

qt,k ≤ xt, ∀t, k,

qtht,k − (1− θt,k)L ≤ qt,k, ∀t, k,

qt,k ≤ qtht,k, ∀t, k,
mt,k∑
s=1

λt,k,s
(
bt,k,s+vt,k,sx

min
t,k,s

)
−θt,kL ≤ Ct,k, ∀t, k,

Ct,k ≤
mt,k∑
s=1

λt,k,s
(
bt,k,s + vt,k,sx

min
t,k,s

)
, ∀t, k,

nt,k∑
s=1

xmin
t,k,s

(
ct,k,s+vt,k,sp

min
t,k,s

)
−(1−θt,k)L≤Ct,k, ∀t, k,

Ct,k ≤
nt,k∑
s=1

xmin
t,k,s

(
ct,k,s + vt,k,sp

min
t,k,s

)
, ∀t, k,

qtht,k =

nt,k∑
i=1

xmin
t,k,sut,k,s, ∀t, k,

pt =

nt,k∑
i=1

(
at,k,s + ut,k,sp

min
t,k,s

)
, ∀t, k,

xt =

mt,k∑
s=1

(
bt,k,s + vt,k,sx

min
t,k,s

)
, ∀t, k,

yt,k =

ot,k∑
s=1

(
ct,k,s + wt,k,sy

min
t,k,s

)
, ∀t, k,

0 ≤ at,k,s ≤ ut,k,samax
t,k,s, ∀t, k, s,

(4.42)
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0 ≤ bt,k,s ≤ vt,k,sbmax
t,k,s, ∀t, k, s,

0 ≤ ct,k,s ≤ wt,k,scmax
t,k,s, ∀t, k, s,

nt,k∑
s=1

ut,k,s = 1, ∀t, k,

mt,k∑
s=1

vt,k,s = 1, ∀t, k,

ot,k∑
s=1

wt,k,s = 1, ∀t, k,

ut,k,s, wt,k,s, vt,k,s ∈ {0, 1}, ∀t, k, s,

where the optimization variables are xt, pt, yt,k, θt,k, qt,k, q
th
t,k, Ct,k, at,k,s, bt,k,s, ct,k,s, ut,k,s,

vt,k,s, and wt,k,s for any time slot t, any market scenario k, and any step number s. The

problem in (4.42) is a mixed-integer linear program.

4.4 More Complex Time-shiftable Loads

The model that we used in our analysis so far describes a time-shiftable load in

its most generic form. In this section, we explain how other characteristics of time-shiftable

loads can also be incorporated into the analysis. More specifically, we show that the optimal

bidding framework in this section can include any other feature of time-shiftable loads, as

long as the feature can be modeled as linear mixed-integer constraints.

4.4.1 Per-Time-Slot Consumption Limits

Some time-shiftable loads may have limitations on their consumption level at each

time slot. Let Zmin and Zmax denote the minimum and maximum consumption levels that

the time-shiftable load of interest can support. We must have

Zmin rt,k ≤ zt,k ≤ Zmax rt,k ∀t, ∀k, (4.43)
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where for each time slot t and random scenario k, we have

zt,k = qt,k + yt,k (4.44)

and rt,k is a new binary variable to indicate whether the load is switched ‘on’ or ’off’ at

time slot t and under scenario k.

4.4.2 Ramp Constraints

The ramp up and ramp down constraints do not allow the time-shiftable load to

change its consumption level faster than certain rates within two consecutive time slots:

zt,k − zt−1,k ≤ Umax ∀t ≥ 2, ∀k (4.45a)

zt−1,k − zt,k ≤ Dmax ∀t ≥ 2, ∀k (4.45b)

where Umax and Dmax denote the maximum ramp up and maximum ramp down rates,

respectively. Note that, the constraints in (4.45) address one type of inter-temporal depen-

dency in time-shiftable loads. Another type is discussed next.

4.4.3 Uninterruptible Loads

If a time-shiftable load is uninterruptible, then as soon as it switches ‘on’ to start

operation, it must continue its operation until it finishes its intended task. Based on the

notations that we defined in Section 4.4.1, the following constraints must hold for an unin-

terruptable time-shiftable load:

rt,k ≤ rt+1,k +
1

e

t∑
τ=1

zτ,k ∀t ≤ T − 1, ∀k. (4.46)

From (4.46), at time slot t and under scenario k, we can choose rt,k = 1 only if either

rt+1,k = 1, i.e., the operation of the load continues in the next time slot, or
∑t

τ=1 zτ,k = e,
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i.e., the operation of the load finishes by the end of the current time slot [24]. Note that, the

constraints in (4.46) address yet another type of inter-temporal dependency in time-shiftable

loads.

4.4.4 Aggregated Small Sub-Loads

In some cases, a time-shiftable load may consist of several smaller time-shiftable

subloads or subtasks [45]. In that case, besides selecting the day-ahead and real-time market

bids, we must also optimally schedule the operation of all subloads. Let S ≥ 1 denote the

number of time-shiftable subloads. For each subload s = 1, . . . , S, let αs and βs denote the

beginning and the end of the time interval at which the subload can be scheduled. Also

let es denote the total energy that must be consumed in order to finish the operation of

subload s. We can incorporate the problem of scheduling subloads by adding the following

constraints into the problem formulation:
S∑
s=1

zt,k,s = zt,k ∀t, ∀k, (4.47)

βl∑
t=αl

zt,k,s = el ∀s, ∀k. (4.48)

Note that, if there is only one subload, i.e., S = 1, then (4.47) reduces to (4.44); and (4.48)

reduces to the first constraint in (4.42).

4.5 Case Studies

4.5.1 Case Study 1: A Detailed Illustrative Example

In this section, we present a detailed illustrative example. Suppose we would like

to procure energy for a time-shiftable load with start time α = 1, deadline β = T = 3,

and total energy consumption e = 75 MWh. The uncertainty in the electricity market is

modeled using K = 2 scenarios.
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Basic Time-Shiftable Loads

First, consider the most generic time-shiftable load model. The price quota curves

for the day-ahead and the real-time markets and the corresponding optimal bids are shown

in Fig. 4.3. These optimal solutions are first obtained by solving the mixed-integer linear

program in (4.42) and then the results are verified using exhaustive search. Using a computer

with a 2.40 GHz CPU and 80 GB shared RAM, the mixed-integer linear program in (4.42)

was solved in less than 1 second. However, it took multiple days for the exhaustive search

with several for loops to finish the search and give the exact same solution.

From Fig. 4.3, we can see that the bidding outcome and the schedule of the time-

shiftable load across time slots highly depends on the realization of the market scenario. For

example, if scenario k = 1 occurs, then the power consumption at time slot t = 1 becomes

47 MWh, out of which 20 MWh is procured from the day-ahead market at 24 $/MW and

27 MWh is procured from the real-time market at 29 $/MW. In this scenario, because the

prices are high at time slot t = 2, no energy usage is scheduled at this time slot. Finally,

the power consumption at time slot t = 3 and scenario k = 1 is 75 − 47 = 28 MWh, out

of which 10 MWh is procured from the day-ahead market at 23 $/MW and 18 MWh is

procured from the real-time market at 25 $/MW. The total cost of power purchase from

the day-ahead market in this scenario is C1,1 + C2,1 + C3,1 = 20 × 24 + 0 × 0 + 10 × 23 =

$710. Also, the total cost of power procurement from the real-time market is obtained as

27× 29 + 0× 0 + 18× 25 = $1,233.

We can similarly calculate the total cost of power procurement from the day-

ahead market and the total cost of power procurement from the real-time market under

scenario k = 2 as $1,089 and $708, respectively. Therefore, the expected overall cost of

power procurement, i.e., the objective value in optimization problem (4.1) becomes $1,870.

Note that if we use the price-maker Self-Schedule bidding in [72], then the total expected

cost of power procurement becomes $1,904, i.e., $34 higher than our proposed price-maker
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Figure 4.3: The price quota curves and optimal bids for Case Study 1, where the time-
shiftable load has its basic features. Sub-figures (a), (c), (e), (g), (i), (k) correspond to
the day-ahead market and sub-figures (b), (d), (f), (h), (j), (l) correspond to the real-time
market.

economic bidding method. Also, if we do even load distribution, i.e., we distribute the total

load e = 75 MWh equally across the β − α + 1 = 3 time-slots and also equally across

the day-ahead and real-time markets, then the total expected cost of power procurement

becomes $2,169, i.e., $299 higher than our proposed price-maker economic bidding method.
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Time-Shiftable Loads with Consumption Limits

Next, we consider the basic time-shiftable load model, but we also assume that

there exist per-time-slot consumption limits as in Section 4.4.1. The results are shown in

Fig. 4.4(a), where Zmin = 0 MWh and Zmax varies from 25 to 50 MWh. We can see that

the optimal energy procurement cost is high if the operation of the time-shiftable load is

highly restricted due to the per-time-slot power consumption constraints. However, as we

increase Zmax, the cost reduces and finally reaches its original level as in previous example,

where Zmax is not binding.
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Zmax

C
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t (
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Figure 4.4: The cost of energy procurement for Case Study 1 when the time-shiftable has
(a) per-time-slot consumption limits; (b) ramp constraints.

Time-Shiftable Loads with Ramp Constraints

Again, consider the basic time-shiftable load model, but this time assume that

there exist ramp constraints as in Section 4.4.2. The results are shown in Fig. 4.4(b),

where Umax = Dmax vary from 0 to 30 MWh. Note that, if Umax = Dmax = 0, then

the load does not tolerate any inter-temporal variation. We can see that ramp constraints
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can significantly increase the energy procurement cost. However, as we increase Umax and

Dmax, the cost reduces and finally reaches its original level as in the original example, where

the ramp constraints are not binding.

Uninterruptible Time-Shiftable Loads

Recall from Section 4.4.3 that if a time-shiftable load is uninterruptible, then it

is still flexible with respect to its operation start time; however, once it starts operation,

it cannot be interrupted until it finishes its task. Here, interruption is defined as selecting

zt,k < Zmin, which requires choosing rt,k = 0, i.e., switching the load off. The optimal bids

when the time-shiftable load is uninterruptible is shown in Fig. 4.5, where Zmin = 15. We

can see that, the time-shiftable load procures energy from all three time slots, including

the second time slot which has high prices. This is because, unlike in Fig. 4.3, here, the

operation cannot be interrupted during the second time slot and then resumed during the

third time slot. Note that, since an uninterruptible time-shiftable load is less flexible than

a basic time-shiftable load, it pays 14$ more for its energy procurement compared to the

first example.

Aggregated Time-shiftable Subloads

To study the impact of time-shiftable subloads on the choice of demand bids, the

total load e = 75 MWh is now divided into three sub-loads as follow: 1) e1 = 10, α1 = 1,

β1 = 3, 2) e2 = 20, α2 = 1, β2 = 2, and 3) e3 = 45, α3 = 2, β3 = 3. Fig. 4.6 shows

the procured energy for different loads at scenarios k = 1 and k = 2. We can see that the

different start and end-times for sub-loads affects the amount of total energy that needs to

be procured under each scenario and at each time slot.
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Figure 4.5: The price quota curves and optimal bids for Case Study 1, where the time-
shiftable load uninterrupitble as addressed in Section 4.5.1. Sub-figures (a), (c), (e), (g), (i),
(k) correspond to the day-ahead market and sub-figures (b), (d), (f), (h), (j), (l) correspond
to the real-time market.

4.5.2 Case Study 2: California Energy Market

In this section, we present some additional case studies, this time based on the

California energy market. To create the price quota curves, we used the hourly generator

bids data from the public bids database in [61] at one dollar price bid resolution. The

day-ahead and real-time prices are also obtained from the prices database in [61], where we

averaged real-time market prices in each hour to make them comparable with the hourly

price data from the day-ahead market. Finally, since the focus in this section is on pool-
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Figure 4.6: The procured energy for different time-shiftable sub-loads at different time slots
as in Section 4.5.1: (a) scenario k = 1, (b) scenario k = 2.

based markets, the grid topology and transmission constraints are not considered in our

simulations.

In total, we examined 10 cases. Each case has a time shiftable load with E = 10

GWh and K = 3 market scenarios. For Case 1, the three scenarios are based on the price

and bid data during January 1, 2014 to January 3, 2014. For Case 2, the three scenarios

are based on the price and bid data during January 4, 2014 to January 6, 2014. The rest

of the cases are setup similarly, all together using data for 30 days. For each case, three

design options are compared: 1) Optimal price-marker self-schedule bidding, which is an

extension of the design in [72] to both day-ahead and real-time markets; 2) Optimal price-

marker economic bidding, which is based on the design in this section; and 3) Even load

distribution, which distributes the load equally across time-slots and markets.

The amount of savings due to using optimal price-maker economic bidding over

optimal price-maker self-schedule bidding across the 10 cases are shown in Figs. 4.7(a) and

(b), during some off-peak hours from α = 10:00 AM to β = 12:00 PM and also during some

on-peak hours from α = 15:00 PM to β = 17:00 PM, receptively. Similarly, the amount
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of savings due to using optimal price-maker economic bidding over even load distribution

across the 10 cases are shown in Fig. 4.8.

Finally, the detailed simulation results for the example of Case 1 during off-peak

hours are shown in Figs. 4.9 and 4.10. We can see major differences across the three

designs, in terms of both the average cleared energy and the average purchase price. Note

that, the averaging here is done across the K = 3 random market scenarios. For instance,

on average, if optimal price-maker economic bidding is employed, then 29.8%, 33.7% and

36.5% of the total needed energy is purchased from the day-ahead and real-time markets

during hours 10:00 AM, 11:00 AM, and 12:00 PM, respectively. These percentages change

to 30.6%, 38.1% and 21.3% if optimal price-maker self-scheduling is being employed. As for

the price results in Fig. 10, an interesting observation is that optimal price-maker economic

bidding is more successful in smoothing down the prices across the three operational hours

and also to some extent across the day-ahead and real-time markets.
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Figure 4.7: Savings due to using optimal price-maker economic bidding over optimal price-
maker self-scheduling: (a) off-peak hours, (b) peak hours.
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Figure 4.8: Savings due to using optimal price-maker economic bidding over even load
distribution: (a) off-peak hours, (b) peak hours.

Finally, the computation time of the proposed method versus the number of ran-

dom scenarios is shown in Table 4.1. As one would expect, increasing the number of random

scenarios results in increasing the number of optimization variables, i.e., increasing the size

of the optimization problem. Accordingly, the computation time increases. When it comes

to solving mixed-integer linear programs, the computation time particularly depends on the

number of binary variables, because it indicates the maximum branching steps needed when

we use a branch and bound algorithm [81]. From Table 4.1, despite the increased computa-

tional complexity, one can still use the proposed method in this section under larger sets of

random scenarios. If needed, one can lower the price resolution at price quota curve, e.g.,

by setting resolution to $2 instead of $1, so as to decrease the number of steps in the price

quota curve in order to further lower the computation time.

4.6 Conclusions

We formulated and efficiently solved a new scenario-based stochastic mixed-integer

linear programming framework for price-maker economic bidding of time-shiftable loads
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Figure 4.9: Comparison between the three designs in terms of average cleared energy for
Case 1 during off-peak hours: (a) optimal price-maker economic bidding, (b) optimal price-
maker self-scheduling, (c) even load distribution.

with deadlines in day-ahead and real-time markets. On the application side, the results

in this section extended some recent results in price-taker operation of time-shiftable loads

in wholesale electricity markets. Both basic and complex time-shiftable load types are

addressed, where the latter includes time-shiftable loads that are uninterruptible, have per-

time-slot consumption limits or ramp constraints, or comprise several smaller time-shiftable

subloads. On the methodology side, the results in this section also extended the existing

results on price-maker self-scheduling of both loads and generators, because price-maker

self-scheduling is a restricted special case of price-maker economic bidding. To investigate

the performance of our design, a highly detailed illustrative case study along with multiple

case studies based on the California energy market data are presented. We showed that

the proposed optimal price-maker economic bidding approach outperforms both optimal

price-maker self-scheduling and even-load-distribution.
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Figure 4.10: Comparison between the three designs in terms of average purchase price
for Case 1 during off-peak hours: (a) optimal price-maker economic bidding, (b) optimal
price-maker self-scheduling, (c) even load distribution.

Table 4.1: Computation time versus the number of scenarios

# of # of # of Computation
Scenarios Variables Binary Variables Time (Sec)

1 228 105 0.7

2 406 188 0.8

3 570 264 2.7

4 760 353 6.2

5 958 446 23

6 1080 501 37

7 1214 562 91

8 1422 660 289

9 1616 751 897

10 1804 839 1478

57



Chapter 5

Analysis of Convergence Bids in

Nodal Electricity Markets

5.1 Introduction

Ideally, and to assure market efficiency, there must be no difference between the

prices in the day-ahead market (DAM) and the real-time market (RTM). Otherwise, some

generation resources may practice market power and withhold a portion of their capacities

to increase the DAM or RTM prices to gain more profit [26–28,82].

Nevertheless, in practice, there is always a gap between the two sets of prices. For

example, Fig. 5.1(b) shows the distribution of the price difference in trading hub SP15

in Southern California across 24 hours and 30 days in March 2016 [61]. Here, the price

difference is calculated as the DAM price minus the RTM price. There are several days

and hours (such as 2 PM on March 14) where the DAM price is much higher than the

RTM price and there are also several days and hours (such as 9 AM on March 14) where

the RTM price is much higher than the DAM price. Fig. 5.1(c) shows similar data at two

nodes within SP15 on March 8 and 14. We can see that price gap can be less or more severe
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Figure 5.1: Examples of the price gap, i.e., the DAM price minus the RTM price, in the
California ISO market during March 2016: (b) the full month for trading hub SP15 in
Southern California; (c) two sample days at two nodes within SP15.

at different nodes due to locational issues such as transmission line congestion.

5.1.1 Convergence Bidding Concept

To eliminate the above price gap, Convergence bids (CBs), a.k.a., Virtual bids

(VBs), have been introduced to electricity markets [26–28]. Note that, CB is the term that

is used by the California ISO and VB is the term that is used by the Pennsylvania-Jersey-

Maryland (PJM) Interconnection and some other ISOs. CBs allow market participants

to arbitrage between the DAM and RTM, exempting them from physically consuming or

producing energy [27]. CBs are similar to what is known as future trading in traditional

commodity and financial markets [26]. Similar to physical bids, CBs have two types: supply

CBs and demand CBs. Supply (demand) CB is a bid to sell (buy) energy in DAM without

any obligation to produce (consume) energy. If the CB is cleared in the DAM, then the

bidder is credited (charged) at the DAM price and charged (credited) at the RTM price.

Therefore, the difference between the earning in the DAM (RTM) and the cost in the RTM

(DAM) will be the payment to the CB bidder.

From an ISO’s perspective, if participants make profit through CBs, it should

automatically help closing the price gap [53]. For example, when DAM price is greater (less)

than the RTM price, the participants can make profit by submitting supply (demand) CB
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into DAM. Increasing supply (demand) CBs results in decreasing (increasing) the DAM price

due to the virtual surplus of supply (demand) in the DAM. As a result, more (less) demand

needs to be cleared in the RTM leading to increase (decrease) in the RTM price [26,53,58].

Therefore, while market participants make profit out of their CBs, they also help in reducing

the price difference between the DAM and RTM; thus, solving the aforementioned price gap

problem.

5.1.2 Concerns about Convergence Bids’ performance

The concept of CBs is relatively new in the ISO markets. For example, California

ISO put CBs into effect in 2011 [59]. So far, most ISOs have adopted this concept with

almost no rudimentary changes from traditional commodity and financial markets [58].

However, there are recent ISO reports raising some concerns about CBs, arguing that CBs

may not have performed well in ISO markets and it is generally difficult for ISOs to even

analyze how CBs may have actually affected price convergence and market efficiency in ISO

markets. For example, here is a related quote from the California ISO 2015 Annual Report

on Market Issues and Performance [57]:

“However, the degree to which convergence bidding has actually increased

market efficiency has not been assessed. In some cases, virtual bidding may

be profitable for some market participants without increasing market efficiency

significantly or even decreasing market efficiency.”

Here is another quote from the PJM Interconnection 2015 Report on Virtual Transactions

in the Energy Markets [58]:

“In considering when and to what degree virtual trading offers benefits to

PJM markets, it is important to account for these distinctions before defini-

tively concluding that the generally accepted principles of market efficiency as

demonstrated by trading in other financial and commodity marketplaces hold

equally well to PJM’s energy markets.”
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The above citations and quotes exemplify the current state of uncertainty and

debate about the advantages or disadvantages of CBs in nodal electricity markets. With

this in mind, our study seeks to address the above open problem by analyzing how a CB

may affect the price gap between DAM and RTM.

5.1.3 Our Goal

In this section, we focus on one of the primary factors that influence the per-

formance of CBs in electricity markets, i.e., transmission line congestion. Our goal is to

provide in-depth sensitivity analysis to undestrant how the price gap between DAM and

RTM is affected by the CBs under different grid operational conditions in congested nodal

electrcity markets. Our analysis is not statistical; thus, it is inherently different from the

existing literature on CBs in electricity markets, e.g., in [83–86]. Instead, we look at the

basic formulation of CBs in nodal electricity markets and obtain closed-form sensitivity

models to explain how a CB may influence the DAM and RTM prices at a bus where it is

cleared. Finally, built upon the fundamental sensitivity analysis, several case studies are

presented to show that the impact of CBs in the nodal electricity market may cause price

convergence (intuitive result) or price divergence (counter-intuitive result).

5.2 Sensitivity Analysis of Two-Settlement Market Prices to

Convergence Bids

In this section, we investigate the sensitivity of the DAM and RTM prices to CBs

in order to understand how CBs may influence the price difference in a two-settlement nodal

electricity market.
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5.2.1 Electricity Market Model

Consider the following DAM market clearing optimization problem in presence of

convergence bids [27,85]:

min 0.5 pTAp + bTp (5.1a)

s.t. 1T p = 0 : λ (5.1b)

− c ≤ S Φ p ≤ c : µ−,µ+ (5.1c)

pmin ≤ p ≤ pmax (5.1d)

where the optimization variables are

p ,

[
x y v w

]T
. (5.2)

In (5.1), A is a positive diagonal matrix comprising α and −α components of all supply and

demand bids in the DAM, respectively. Both physical and convergence bids are taken into

consideration. Moreover, b is the vector comprising of β and −β components of all supply

and demand bids, respectively. Equality (5.1b) represents the system balance constraint

ensuring total generation matches total load. Also, the Lagrange multiplier associated with

(5.1b) provides the reference price. The transmission line flow limit constraints in two

directions are expressed in (5.1c). Also, the Lagrange multipliers associated with (5.1c)

indicate the shadow prices. The last inequality in (5.1d) expresses each participant’s upper

and lower operating capacity limits. Finally, by using the reference and shadow prices, the

LMPs can be obtained as

π = λ1− STµ, where µ = µ+ − µ−. (5.3)
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The RTM market clearing optimization problem can also be formulated as [27,85]:

min 0.5 zTC z + dT z (5.4a)

s.t. 1T z + 1Tx = 1T l : δ (5.4b)

− c ≤ S(Ψ x + Θ z−Ω l) ≤ c : η−,η+ (5.4c)

zmin ≤ z ≤ zmax (5.4d)

where the optimization variables are the elements of vector z. Similar to the DAM LMPs,

the RTM LMPs are obtained by using the Lagrange multipliers in (5.4b) and (5.4c) as

σ = δ1− STη, where µ = η+ − η−. (5.5)

We must note two key differences between (5.1) and (5.4). First, demand bids are

not allowed at the RTM, instead, ISOs use the forecasted load as constant at problem (5.4),

c.f. [60]. Second, as in practice, the RTM clearing process is based on only physical bids

but not CBs [27,85]. Note that, even though CBs do not appear in the RTM optimization

in (5.4), because they do affect the cleared physical supply bids in the DAM i.e. x, they

indirectly have impact on the LMPs of the RTM.

5.2.2 Closed-Form Sensitivity Analysis

We are now ready to present a formal theorem to explain how the cleared energy

of a CB can affect price difference between the DAM and RTM at the bus where the CB is

placed.

Theorem 1 Consider a CB at bus i. Without loss of generality, suppose it s a supply CB,

whose cleared energy bid is denoted by vi. (a) The price gap ∆i = πi − σi at bus i is a

piecewise linear function of the cleared CB (vi). (b) The slope of such function, i.e., the
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right-sided partial derivative, is obtained as

∂∆i

∂vi
=
∂πi
∂vi
− ∂σi
∂vi

=
−1

1Th
− 1

1Te

1

1Th
(1T K̂h− rK̂h)

= − 1

1Th

1

1Te
(1Te + 1T K̂h− rK̂h),

(5.6)

where

h , Λ1−ΛXT (XΛXT )−1XΛ1, (5.7)

e , Γ1− ΓYT (YΓYT )−1YΓ1, (5.8)

r , 1TΓY(YΓYT )−1R̄SΨ̂, (5.9)

and Λ, Γ, K̂, X, Y, R̄, and Ψ̂ are constant matrices that depend on cleared bids and

admittance and congestion status of lines.

Note that, if the CB is a demand bid, then we can replace vi with −wi in (5.6).

The proof of Theorem 1 is as follows.

Proof. Suppose bus i is taken as the reference bus, the price gap at bus i is

obtained as ∆i = λ − δ. Let v−i denote the set of all supply CBs other than vi. We can

now define:

p−i ,

[
x y v−i w

]T
(5.10)

as the optimal solution of all variables in (5.1) other than vi. We also define A−i, b−i,

pmin
−i , pmax

−i , and Φ−i by removing row i and/or column i from A, b, pmin, pmax, and Φ.

Let us now decompose vector p−i into vector p̄−i for entries that are binding by any

of the two inequality constraints in (5.1d) and vector p̂−i for entries that are not binding by

either of these two constraints. Similarly, we define Ā−i, Â−i, b̄−i, b̂−i, p̄min
−i , p̂min

−i , p̄max
−i ,

p̂max
−i , Φ̄−i, and Φ̂−i. We also decompose vector µ into vector µ̄ for the Lagrange multipliers

corresponding to the binding constraints in (5.1c). Let D̄ denote a row-reduced identity
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matrix, i.e., an identity matrix with the same size of matrix S whose rows that correspond to

the non-binding transmission line capacity constraints are eliminated. Finally, we define µ̂

as the Lagrange multipliers which are not binding by any of the transmission line capacity

constraints. Note that, due to complimentary slackness, we have µ̂ = 0. Using convex

optimization theory [87, Chapter 4], we can show that problem (5.1) is equivalent to the

following problem:

min
p̂−i

0.5 p̂T−i Â−i p̂−i + b̂T−i p̂−i (5.11a)

s.t. 1T p̂−i + 1T p̄−i + vi = 0 : λ (5.11b)

D̄S (Φ̂−i p̂−i + Φ̄−i p̄−i) = D̄c : µ̄. (5.11c)

Here, vi and p̄−i are fixed at their optimal values but p̂−i is variable. The objective

function includes only those terms that depend on p̂−i. Since bus i is the reference bus,

SΦp = SΦ−ip−i. Also, we kept only those line capacity constraints that are binding at the

optimal solution of problem (5.1).

Since (5.11) is a convex quadratic program, it can be solved by equivalently solving

the following system of linear equations, namely the KKT conditions [87], over p̂−i, λ and

µ̄, as follow:

Λ−1p̂−i + b̂−i =

 1T

−X


T λ
µ̄

 (5.12a)

1T

X

 p̂−i = n−

1

0

vi. (5.12b)

where

X , D̄SΦ̂−i, Λ , Â−1−i , n ,

 −1T p̄−i

D̄c− D̄S Φ̄−i p̄−i

 . (5.13)
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The coefficients in (5.12) hold as long as the set of binding constraints do not change at

the solution of problem (5.1). If a binding constraint becomes unbinding or an unbinding

constraint becomes binding, then some or all matrices Λ, b̂−i, X, and n may change,

but keeping the relationship between variables, i.e., λ and vi, linear. Thus, the overall

relationship is piecewise linear. From (5.12) and (5.7), we have:

∂λ/∂vi = −1/1Th. (5.14)

The analysis of the RTM prices is similar. We can first show that problem (5.4)

is equivalent to the following problem:

min
ẑ

0.5 ẑT Ĉ ẑ + d̂T ẑ (5.15a)

s.t. 1T ẑ + 1T z̄ + 1T x̂ + 1T x̄ = 1T l : δ (5.15b)

R̄S(Ψ̄ x̄ + Ψ̂ x̂ + Θ̄ z̄ + Θ̂ ẑ−Ω l) = R̄c : η̄, (5.15c)

where x̂ = K̂ p̂−i and x̄ = K̄ p̄−i. Again, since (5.15) is a convex quadratic program, we

can solve it by equivalently solving its corresponding KKT conditions [87], which in this

case are a system of linear equations over ẑ, δ and η̄:

Γ−1ẑ + d̂ =

 1T

−Y


T δ
η̄

 (5.16a)

1T

Y

 ẑ = m−

 1T

R̄SΨ̂

 K̂p̂−i (5.16b)

where Y , R̄SΘ̂, Γ = Ĉ−1, and m is defined as

m ,

 1T l− 1T z̄− 1T K̄p̄−i

R̄S(Ωl− Ψ̄K̄p̄−i − Θ̂ ẑ)

 . (5.17)
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Finally, by obtaining p̂−i as a function of vi from (5.12), and using the KKT

conditions of RTM in (5.16), the sensitivity of δ with respect to vi can be obtained:

∂δ

∂vi
=

∂δ

∂p̂−i
.
∂p̂−i
∂vi

=
1

1Te

1

1Th
(1T K̂h− rK̂h) (5.18)

where e and r are defined in (5.8) and (5.9). Note that, the coefficient in (5.18) depends

on the set of binding constraints in not only the RTM optimization problem in (5.4) but

also the DAM optimization problem in (5.1). If a binding constraint becomes unbinding or

an unbinding constraint becomes binding, then some or all vectors e, h, and r may change,

but keeping the relationship between δ and vi linear.

Since both λ and δ are piecewise linear function of vi, their difference, i.e., ∆i is

also a piecewise linear function of vi. The slope of such function is derived as in (5.6) by

subtracting (5.18) from (5.14). This concludes the proof.

The above theorem explains how a CB may change the price difference between

the DAM and RTM of the bus where it is placed. Given the sensitivity model for price

gap in (5.6), can ISOs guarantee that a profitable CB helps the system efficiency by closing

the price gap under different grid operational conditions? First, what ISOs expect from

the sensitivity of the price gap needs to be understood. Recall from Section 5.1 that ISOs

assume that increasing a supply (demand) CB at a bus decreases (increases) the DAM price

and increases (decreases) the RTM price at that bus. In fact, ISOs believe that

∂∆i

∂vi
=
∂πi
∂vi
− ∂σi
∂vi

< 0 (5.19)

Therefore, if ∆i > 0, the market participants can earn profit by submitting supply CBs;

on the other hand, from (5.19), the supply CBs close the price gap among DAM and

RTM. The same argument can be done when ∆i < 0 and the demand CBs are submitted.

However, as we show in Section 5.3, this argument does not always hold in nodal electricity

markets. In fact, the impact of a CB on the price gap of the bus where it is placed depends
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Table 5.1: Generators Bids Parameters

Bids
α1 β1 α2 β2 α3 β3

S
ce

n
ar

io

1
DAM 0.1 8 - - 0.3 10
RTM 0.7 2 1.7 3 1.9 4

2
DAM 0.1 8 - - 0.3 10
RTM 0.7 2 1.7 3 1.9 4

3
DAM 0.1 8 - - 0.3 10
RTM 0.7 2 1.7 3 0.1 9

on the coefficients of the piece-wise linear functions in Theorem 1. Indeed, under each

network operating condition; depending on the coefficients in (5.6); placing a CB may

enforce convergence (desirable) or divergence (undesirable) of the DAM and RTM prices.

Accordingly, compared to the impact of CBs in financial markets, the impact of CBs in

nodal electricity markets is much more complicated. Unfortunately, it appears that the

CB-related studies were not aware of such complex issues, and they could not address the

concerns raised by ISOs on CBs performance, as we pointed out in Section 5.1.2.

5.3 Case Studies

In this section, we discuss a few illustrative examples to demonstrate the funda-

mental concepts that our proposed analysis can help explain. Consider the three-bus power

network in Fig. 5.2(a). Generators G1 and G3 participate in both the DAM and RTM,

while generator G2 participates only in the RTM. All generators have quadratic cost func-

tions in form of 0.5αix
2
i + βixi, and their values are shown in Table 5.1. The reactance for

all transmission lines is 0.1 Ohm. The resistance is negligible. The load at bus 2 procures

75 MWh from the DAM. Its actual load is realized as 90 MWh at the RTM.

Three scenarios are studied under different grid conditions and transmission line

capacities. The scenarios are as follow:
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bus 1 bus 2

bus 3

G1

G3

~

G2~

~

Load

Supply CB

(a) The sample power network (b) Scenario 1 - No Congestion

(c) Scenario 2 – Congestion at both DAM and RTM (d) Scenario 3 – Congestion only at RTM

T12T
1

3

Figure 5.2: An example in a three-bus network to illustrate the intuitive (convergence) and
counter-intuitive (divergence) results of convergence bidding.

Scenario 1: The transmission lines have sufficiently large capacity, such that no

transmission line can be congested. If no CB is placed to the market, then the cleared

market prices are π1 = π2 = π3 = $14.12 and σ1 = σ2 = σ3 = $8.54.

Scenario 2: The capacity of the transmission line between buses 1 and 3 (T13) is 8

MW. All other parameters are the same as in Scenario 1. In this scenario, and in the absence

of the CB, transmission line T13 is congested at both DAM and RTM, as shown in Table

5.2. Accordingly, LMPs are different across different buses in both markets: π1 = $12.95,

π2 = $15.30, π3 = $17.65; and σ1 = $5.8, σ2 = $10.05, σ3 = $14.31.

Scenario 3: The capacity of the transmission line between buses 1 and 2 (T12) is

50 MW. The bid ofG3 submitted at the RTM is also changed as shown in Table 5.1. All other

parameters are the same as in Scenario 1. In the absence of the CB, no transmission line

is congested in the DAM, and we have: π1 = π2 = π3 = $14.12; however, the transmission

line between buses 1 and 2 is congested at the RTM, as shown in Table 5.2, note the bold

underlined numbers. Therefore, we have: σ1 = $5.4, σ2 = $13.4, and σ3 = $9.4.
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Table 5.2: Line flows without CBs

Line flow (MW)
T12 T13 T32

S
ce

n
ar

io

1
DAM 45.4 15.8 29.6
RTM 52.4 18.2 34.3

2
DAM 41.5 8 33.5
RTM 46.9 8 38.9

3
DAM 45.4 15.8 29.6
RTM 50.0 16.1 33.9

5.3.1 Numerical Results

In all scenarios, and in the absence of any CB, we have π2 > σ2, i.e., the DAM

price is higher than the RTM price at bus 2. Therefore, placing a supply CB at bus 2 is

profitable for the market participant. Of concern is whether or not such profitable supply

CB can also help reducing the gap between the DAM and the RTM prices at bus 2, i.e.,

π2 − σ2.

The outcome of placing a supply CB at bus 2 and increasing its amount is shown

in Fig. 5.2(b), (c), and (d) for Scenarios 1, 2, and 3, respectively. In Scenarios 1 and 2,

placing a profitable supply CB at bus 2 results in price convergence at bus 2. However,

under Scenario 3, placing a profitable supply CB at bus 2 results in price divergence at bus

2. This is counter-intuitive and against what ISOs expect from a CB [58].

5.3.2 Analytical Explanations

In this section, we use the analytical foundation that we developed in Theorem 1

to explain the numerical results that we observed earlier in the three scenarios.

Scenario 1: Since in this scenario, neither DAM nor RTM experience congestion,

we have D̄ = R̄ = 0. From this, together with definition of X and Y, we have X = Y = 0.

By substituting these terms in (5.7), (5.8), and (5.9), we have:

∂∆i

∂vi
= − 1

1TΛ1

1

1TΓ1
(1TΓ1 + 1T K̂Λ1) < 0 (5.20)
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where the inequality is due to Λ and Γ being diagonal positive semi-definite matrices and

K̂ comprising basis vectors. In fact, if the grid is not congested, then the electricity market

reduces to a typical two-settlement financial market, in which CBs always improve market

efficiency by reducing the price gap. In other words, what the ISOs often assume when they

work with CBs is true for a nodal electricity market without transmission line congestion.

For instance, in Scenario 1, we have ∆2 = 5.59 > 0, and ∂∆2/∂v2 = −0.47 < 0, which

results in price convergence between DAM and RTM, as shown in Fig. 5.2(b).

Scenario 2: In this scenario, the congested transmission line at both DAM and

RTM is T13; therefore, R̄ = D̄. Also, all marginal, i.e., price-maker, bids in the DAM are

of type physical supply; i.e. K̂ = I and Ψ̂ = Φ̂−i. Thus, we have

rK̂h = rh = 1TΓY(YΓYT )−1

× (XΛ1−XΛXT (XΛXT )−1XΛ1) = 0.

(5.21)

Also, we can prove that 1Th is always greater than zero:

1Th = ‖Λ0.51−Λ0.5XT (XΛXT )−1XΛ1‖22 > 0 (5.22)

And similarly, 1Te > 0. Therefore, the sensitivity of the price gap to the supply CB is less

than zero as expressed in (5.23):

∂∆i

∂vi
= − 1Th + 1Te

(1Th)(1Te)
≤ 0 (5.23)

The above inequality explains the desirable results in Scenario 2. In fact, the

conditions of this scenario guarantees that the supply CB results in price convergence. In

particular, in this scenario, we have ∆2 = 5.25 > 0, and ∂∆2/∂v2 = −0.57 < 0, which

supports the outcome of the supply CB on the price gap as shown in Fig. 5.2(c).
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Scenario 3: In this scenario, we have ∆2 = 0.73 > 0. Also, from (5.6) in Theorem

1, ∂∆2/∂v2 = 0.21 > 0. This is in contrast to what ISOs expect from CBs as expressed in

(5.19). In other words, despite the fact that submitting a supply CB at bus 2 is reasonable

for an independent CB market participant, the outcome to the market is in form of price

divergence and against what is considered desirable by an ISO.

In summary, from Scenario 1, 2 and 3, it can be concluded that whether or not

a CB causes price convergence between DAM and RTM in a congested nodal electricity

market, depends on the sensitivity of the price gap to the CB, which relies on the grid

conditions and transmission line congestion configuration. Therefore, while CBs always act

as intended and results in price convergence in other financial market or nodal electricity

market without congestion, but they may not act as expected in a nodal electricity market

with congestion.

5.4 Conclusion

This section was motivated by the current state of uncertainty and debate about

the impact of CBs in nodal electricity markets, which have been recently reported by mul-

tiple ISOs. To address this open problem, in this section, a fundamental sensitivity analysis

has been introduced to understand how a CB may affect the DAM and RTM prices in

a transmission-constrained nodal electricity market. Based upon the proposed sensitivity

model and intuitive case studies, it is shown that the transmission line congestion can influ-

ence the impact of convergence bidding in nodal electricity markets in a way that is possible

to degrade market efficiency. Specifically, under certain conditions, placing a CB at a bus

can result in divergence (not convergence) between the DAM and RTM prices in that bus,

which is counter-intuitive and undesirable.
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Chapter 6

Conclusions and Future Work

Conclusions

This thesis lies at the interface of operations research, economics, and engineering,

with focus on building an analytical foundation to study and enhance the bids in wholesale

electricity market. Therefore, as a first step in this thesis, a comprehensive analysis on the

real bidding data from California electricity market has been done. It is concluded that

compared to the supply side, the demand side in the California market is currently highly

non-elastic, leading to many undesirable consequences such as price spikes and market

power.

To improve the demand side participation in the market, a new demand bidding

framework has been proposed that recognizes the special characteristics of smart loads.

The bids in this bidding framework are called extended-time demand bids. The new frame-

work resolves the problems of accommodating smart loads in the electricity market such

as market instability and lack of equilibrium. Moreover, the proposed bidding structure

also increases the market competitiveness due to expanding the competition domain and

increasing demand elasticity. Moreover, a novel strategy for large smart loads to procure

their required energy in electricity market has been introduced. The proposed strategy is
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general and can be applied to both basic and complex smart load types, where the latter

includes the loads that are uninterruptible, have per-time-slot consumption limits, ramp

constraints, or comprise several smaller smart subloads. To investigate the performance of

our design, a highly detailed illustrative case study along with multiple case studies based

on the California energy market data are presented. We showed that the proposed optimal

economic bidding approach outperforms the existing models.

Finally, the performance of financial players bids known as Convergence Bids (CBs)

have been studied. The main reason of introducing CBs in the market is to close the price

gap between day-ahead and real-time markets; accordingly improve the market efficiency.

However, recent reports from ISOs show a state of uncertainty and debate about the impact

of CBs in nodal electricity markets. Accordingly, in this thesis, we built an analytical

foundation to explain under what conditions placing a CB at a bus in a nodal electricity

market can decrease (increase) market efficiency. Specifically, it is shown that transmission

line congestion can highly influence the performance of CBs. In particular, under certain

transmission line congestion configurations, placing a CB at a bus can result in divergence

(instead of convergence) between the day-ahead and real-time prices, which is counter-

intuitive and undesirable. The proposed analysis would be beneficial to ISOs to understand

how it is possible to shape the price difference caused by CBs across the power system.

Future Work

This thesis can be extended in several following directions:

• In this thesis, a comprehensive analysis on the real bidding data in California elec-

tricity market in one year has been done. One may do the same analysis on other

wholesale electricity markets in the US to see whether the demand side participation

in those markets is non-elastic or not.
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• The proposed bidding mechanism in Chapter 3 can be extended to cover the uncer-

tainty of the smart loads and accommodate it into the extended-time demand bid.

• Developing a more comprehensive bidding strategy model compared to the proposed

model in Chapter 4, to consider risk metrics such as Value at Risk (VaR) and Condi-

tional Value at Risk (CVaR).

• While we studied the impact of CBs on price convergence (divergence) on the same

bus where the CB was placed in Chapter 5, one can similarly study the impact also

on price convergence (divergence) at buses other than where CBs are placed.

• Similar to the analysis in Chapter 5, one may extend it to explain the collective impact

of a group of several CBs that are placed at different locations on the price gap of all

system buses.
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[74] G. B. Sheblé, Computational auction mechanisms for restructured power industry op-
eration. Norwell, MA: Kluwer Academic Publishers, 1999.

[75] G. Aneiros, J. M. Vilar, R. Cao, and A. M. S. Roque, “Functional prediction for the
residual demand in electricity spot markets,” IEEE Trans. on Power Systems, vol. 28,
no. 2, pp. 4201–4208, Nov. 2013.

[76] M. Shahidehpour, H. Yamin, and Z. Li, Market Operations in Electric Power Systems.
New York, NY: John Wiley & Sons, 2002.

[77] P. Kall and S. W. Wallace, Stochastic Programing, 2nd ed. John Wiley and Sons,
1994.

[78] K. Marti, Stochastic Optimization Methods. Springer, 2005.

81



[79] http://www.ibm.com/developerworks/downloads/ws/ilogcplex.

[80] http://www.mosek.com.

[81] S. Rao, Engineering Optimization, 4th ed. Hoboken, NJ: Wiley, 2009.

[82] W. Hogan, “Virtual bidding and electricity market design,” The Electricity Journal,
vol. 29, no. 5, pp. 33–47, 2016.

[83] A. Jha and F. A. Wolak, “Testing for market efficiency with transactions costs: An
application to convergence bidding in wholesale electricity markets,” in Industrial Org.
Seminar, Yale University. Citeseer, 2013.

[84] I. Mercadal, ”Dynamic competition and arbitrage in electricity markets: The role of
financial players”, Available online at: http://home.uchicago.edu/∼ignaciamercadal/
IgnaciaMercadalJMP.pdf.

[85] R. Li, A. Svoboda, and S. oren, “Efficiency impact of convergence bidding in the
california electricity market,” Journal of Regulatory Economics, vol. 48, no. 3, pp.
245–284, 2015.

[86] C. Woo, J. Zarnikau, E. Cutter, S. Ho, and H. Leung, “Virtual bidding, wind generation
and california’s day-ahead electricity forward premium,” The Electricity J., vol. 28,
no. 1, pp. 29–48, 2015.

[87] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,
2004.

82




