Title
Characterization of a gamma-ray tracking array: A comparison of GRETINA and Gammasphere using a 60Co source

Permalink
https://escholarship.org/uc/item/7wb5k8h5

Authors
Lauritsen, T
Korichi, A
Zhu, S
[et al.]

Publication Date
2016-11-11

DOI
10.1016/j.nima.2016.07.027

Peer reviewed
Characterization of gamma–ray tracking arrays: a comparison of GRETINA and Gammasphere using a 60Co source

T. Lauritsena, A. Korichib, S. Zhuc, A.N. Wilsond, D. Weisshaard, J. Dudouete, A.D. Ayangeakaaa, M.P. Carpentera, C.M. Campbellf, E. Clementb, H.L. Crawfordd, M. Cromazf, P. Fallonf, J.P. Greenea, R.V.F. Janssensa, T.L. Khooa, N. Lalovići,k, I.Y. Leef, A.O Macchiavellif, R.M. Perez-Vidalg, S. Pietrii, D.C. Radfordh, D. Ralel, L. Rileyl, D. Seweryniaka, O. Stezowskie

aArgonne National Laboratory, Argonne, Illinois 60439, USA
bC.S.N.S.M, IN2P3-CNRS, bat 104-108, F-91405 Orsay Campus, France
cUniversity of the West of Scotland, Paisley, UK
dNSCL, Michigan state University, USA
eI.P.N. Lyon, IN2P3-CNRS, Lyon Campus, France
fLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
gInstituto de Fisica Corpuscular, CSIC-Universitat de Valencia, E-46920 Valencia, Spain
hGANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen, France
iGSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
jPhysics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
kDepartment of Physics, Lund University, SE-22100 Lund, Sweden
lUrsinus College, Collegeville, PA 19426, USA

Abstract

In this paper, we provide a formalism for the characterization of the tracking arrays with emphasis on the proper corrections required to extract their photopeak efficiencies and peak–to–total ratios. The methods are first applied to Gammasphere, a well characterized 4π array based on the principle of Compton suppression, and subsequently to GRETINA. The tracking efficiencies are then discussed and some guidelines as to what clustering angle to use in the tracking algorithm are presented. It was possible, using GEANT4 simulations, to scale the measured efficiencies up to the expected values for the full 4π implementation of GRETA.

Keywords: Segmented germanium detectors, efficiency measurements, γ–ray tracking, Gammasphere, GRETINA, GRETA, γ–ray spectroscopy, nuclear structure.

Contents

1 Introduction 2

2 Efficiency and peak–to–total ratio measurements 2

2.1 The peak areas in a 60Co source spectrum 3

2.2 The efficiencies, true counts and (P/T) ratios . . 4

2.3 The external trigger method 4

3 Tracking 5

3.1 The tracking efficiency 5

3.2 The clustering angle (α) 6

4 Results and comparisons 7

4.1 The efficiency of Gammasphere 7

4.2 The efficiency of GRETINA at ANL 7

4.3 The efficiency of GRETINA at MSU 8

4.4 Angular correlations in tracking arrays 8

4.5 Comparing 60Co source spectra 9

4.6 Comparing the (P/T) ratios versus the efficiency curves for GRETINA 9

5 Discussion 9

6 Conclusions and outlook 11

7 Acknowledgments 12

Appendix A Deadtime and random rates 12

Appendix A.1 Deadtimes in Gammasphere 12

Appendix A.2 Deadtimes in tracking arrays 12

Email address: torben@anl.gov (T. Lauritsen)

June 4, 2016 1
The concept of escape suppression revolutionized the field of γ-ray spectroscopy, enabling significant increases in the resolving power of germanium-based detector arrays [1–3]. Now, the new concept of γ-ray tracking and recent advances in germanium (Ge) crystal segmentation technology are leading to another revolution where escape suppression shields are removed and only Ge crystals are used, filling as much of the space around the source of γ rays as possible [4].

The tracking concept is based on the ability to locate, within a few mm, each photon interaction point in the Ge detector and, consequently, to track the scattering sequence of an incident photon through the crystals. The method consists in the reconstruction of the full γ-ray energy by combining the appropriate interaction points [5–9].

This paper describes possible ways to determine array efficiencies over escape-suppressed arrays because the Compton suppression shields (which limit the Ge solid angle) are removed and replaced by active Ge detectors. For the first time, a nearly 4π sphere of Ge, with a good peak–to–total ratio, becomes possible. Moreover, the tracking technique provides identification of the first interaction point with good angular resolution and, therefore, allows for an improved Doppler correction. The expected performance for tracking detector arrays are thus well beyond those of escape-suppressed spectrometers like EUROBALL [10] and Gammasphere [11, 12]. The most advanced implementations of this concept to date are the two arrays AGATA (Advanced ΓΑmma Tracking Array) [13] and GRETINA (Gamma Ray Energy Tracking In beam Nu- clear Array) [14]. GRETINA is the early implementation of GRETA (Gamma Ray Energy Tracking Array) [15]. These arrays are built from large, segmented crystals of hyper-pure germanium (HPGe) and are the first to use the concept of γ-ray energy tracking. This technique enables experiments probing low cross sections and/or measurements using high-velocity reaction products like those possible with stable and γ or measurements using high–velocity reaction products like those possible with stable and γ-rays in Ge (Ge) crystal segmentation technology are leading to another (9–12), and need to be fully understood and carried out carefully. Both the efficiency and (P/T) depend on parameters that determine whether a tracking algorithm associates a set of interaction points with a single γ ray, multiple γ rays, or a scattered γ ray with partial energy collection. Thus, no single, absolute value of either quantity can be measured. Instead, one must examine the correlation between efficiency and (P/T) in order to find conditions that optimize both.

This paper describes possible ways to determine array efficiencies, with an emphasis on the proper corrections, and explores how different methods compare. We use a 60Co source to obtain efficiencies at 1333 keV; because this is a multiplicity two source (i.e., it emits two γ rays), we also investigate the required correction terms. First, we describe in detail the different methods proposed. Each approach is then validated using data from a well–understood, Compton–suppressed 4π array: Gammasphere. The approaches are then applied to data obtained with GRETINA in two geometries, one at Argonne National Laboratory (ANL) and one at Michigan State University (MSU). At the time of the measurements, the Gammasphere array consisted of 95 escape-suppressed Ge detectors; the results reported below have, therefore, been scaled to provide the characteristics of the more standard 100 detector set up. GRETINA was comprised of seven quad modules (28 crystals) in compact setups at its nominal distance (18.5 cm from the center position of the array to the front of the Ge crystals) [14]. The results for the tracking array is then scaled to the future full 4π implementation (GRETA) in order to compare the performance with Gammasphere.

2. Efficiency and peak–to–total ratio measurements

The photopeak efficiency, , is defined as the probability that a single emitted γ ray is measured in the photopeak in the spectrum. The total efficiency, , is defined as the probability that a γ ray adds one or more counts anywhere in the spectrum. The ratio of these efficiencies is known as the (P/T) ratio. In the following, we describe our approaches to obtaining the photopeak efficiency and (P/T) ratio from 60Co source spectra. For this source, the efficiency is traditionally reported for the 1333-keV transition.

We chose the 60Co source both because it is commonly used for such measurements and because it allows efficiencies to be obtained using both the so–called calibrated source (CSM) and sum peak (SPM) methods [25–28]. Each of these two approaches can be applied to spectra generated from a given array in different ways. For both conventional and tracking arrays, two spectra can be created using the signals from the central contacts (CC) of the Ge detectors. One, henceforth referred
to as CCsum, is created by producing spectra for each individual detector and subsequently adding these together. The method is used, it is important to apply the proper corrections when extracting peak areas, taking into account all effects such as: one γ ray removes counts in the other one (in the case of a 60Co source) and/or the effect of having random background γ rays in addition to the γ rays from the source [26, 27]. These considerations are described in sections 2.1 and 2.2.

A third way of obtaining the efficiency at 1333 keV for a 60Co source is one of employing either an additional detector outside the array to trigger on the detection of the coincident 1173–keV transition, or in using an internal detector in the array in the same manner. These methods are described in Sec. 2.3. While these approaches can be applied to both conventional and tracking arrays, the latter are designed to produce tracked spectra and this requires further processing of the data. The additional factors required to take into account the tracking efficiency are presented in section 3.1.

2.1. The peak areas in a 60Co source spectrum

The CSM relies on a measurement of the observed area of the 1333-keV peak, taking into account a number of corrections, and knowledge of the source strength. The SPM relies on the precise determination of the areas of all three of the 1173-, 1333- and (sum) 2506-keV peaks in the 60Co source spectrum. In either case, the peak areas depend on several factors, including the efficiencies at both 1173 and 1333 keV. In fact, the observed areas of the three peaks in a 60Co source spectrum can be written as:

\[A^{\text{obs}}(1173) = S_{\epsilon_p}(1173)(1 - C_s(1333)) \times (1 - C_R)(1 - C_s(1173)), \]

\[A^{\text{obs}}(1333) = S_{\epsilon_p}(1333)(1 - C_s(1173)) \times (1 - C_R)(1 - C_s(1333)), \]

\[A^{\text{obs}}(2506) = \frac{1}{N} S_{\epsilon_p}(1173)S_{\epsilon_p}(1333)C_{T}(1 - C_R) \times (1 - C_s(1173))(1 - C_s(1333)), \]

where

\[C_s(e) = C_oC_f (e^{1 + C_s(e)})/N, \]

\[(P/T) \equiv \epsilon_p/\epsilon_f, \]

\[C_R = \frac{\epsilon_p\Delta t}{N} dR/\Delta t, \]

\[S = A_{\text{st}} L_{\gamma}. \]

\(\epsilon_f \) is the total array efficiency, \(\epsilon_p \) the array photopeak efficiency, and \((P/T)\) is the peak–to-total ratio, all of which are energy dependent. \(N \) is the number of crystals in the array with \(N \equiv 1173 \) for the calorimetric CCcal spectra and \(N > 1 \) for the CCsum spectra. \(S \) denotes the total number of \(\gamma \) rays emitted by the source (during the acquisition time \(t \)), corrected for any dead-time or loss in efficiency of the system through the live fraction \((L_F)\) [24]. \(A_s \) is the source activity and \(C_f \) corrects for the angular correlation between the 1173– and 1333–keV lines in the 60Co source [29, 30]. The small corrections for internal conversion and branching ratios for the \(\gamma \) rays from the 60Co source are ignored in the formulas; they are of the order of 0.01%.

To be consistent, one should report the \((P/T)\) ratio at an energy of 1333 keV like the efficiency. However, traditionally, the \((P/T)\) for a 60Co source is reported as

\[(P/T)_{\text{composite}} = \frac{A(1173) + A(1333)}{A_{\text{tot}}} \quad (9) \]

We shall use this composite \((P/T)\) ratio here as well, but will argue that \((A_{2506})\) needs to be added to the numerator unless it is tracked data. This ratio can be made from observed areas, \((P/T)^{\text{obs}}\), or for the corrected areas of the peaks (see discussion in Sec. 2.2). The composite \((P/T)\) ratio in Eq. 9 can be written as a weighted average of the energy dependent \((P/T)\) values in Eq. 6, using information from a measured response function [30] or spectra gated on the 1173– and 1333–keV lines. For Gammasphere, it is found that

\[(P/T)(1173) = (P/T)_{\text{composite}} \times 1.02212 \quad (10) \]

\[(P/T)(1333) = (P/T)_{\text{composite}} /1.02212 \quad (11) \]

The value of \(C_f \) depends on whether the CCsum or CCcal spectra are used as well as on the distance from the Ge crystals to the source. The nominal value of \(C_f \) is found to be 1.1111 at zero degrees [29]. For Gammasphere, taking into account the opening angle of the Ge detectors (± 7.5°), the attenuated \(C_f \) value is determined to be 1.109 for CCsum [30]. For CCcal spectra in Gammasphere, because the array covers almost 4 \(\pi \), \(C_f \) is close to one. For GRETINA, at the nominal distance, the \(C_f \) values are specified in Table 1 (see further discussion in Sec. 4.4). Just using the crystal center positions, the \(C_f \) values are calculated to be 1.0076 for GRETINA for CCcal spectra; but measured values will be used in the calculations.

Table 1: The angular correlation factors, \(C_f \), used in this work. The values for GRETINA, for the CCcal spectra, are obtained from measurements presented in Sec. 4.4. GRETINA and Gammasphere are abbreviated GS and GT, respectively, in this table.

<table>
<thead>
<tr>
<th></th>
<th>CCsum</th>
<th>CCcal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_f) (GS)</td>
<td>1.109</td>
<td>1.007</td>
</tr>
<tr>
<td>(C_f) (GT) (ANL)</td>
<td>1.107</td>
<td></td>
</tr>
<tr>
<td>(C_f) (GT) (MSU)</td>
<td>1.107</td>
<td></td>
</tr>
</tbody>
</table>

The combined terms \(C_s(e) \) in Eq. 1–2 correct for the fact that one of the \(\gamma \) rays from the 60Co source may hit the detector and remove counts that should belong to the photopeak of the other transition. If only this effect is included, \(C_s \equiv 1 \) [30]. Setting \(C_o > 1 \) allows for corrections beyond what is already reflected in any decrease of the \((P/T)\) ratio caused by scattered \(\gamma \) rays.

June 4, 2016

nim3
Combining eqs. 1–3, we find that the true, corrected counts in the peaks are given by:

\[
A_{\text{true}}^{(1173)} = S \epsilon_p^{(1173)} \frac{A_{\text{obs}}^{(1173)}}{(1 - C_s(1333))(1 - C_R(1 - C_s(1173)))},
\]

\[
A_{\text{true}}^{(1333)} = S \epsilon_p^{(1333)} \frac{A_{\text{obs}}^{(1333)}}{(1 - C_s(1333))(1 - C_R(1 - C_s(1333)))},
\]

\[
A_{\text{true}}^{(2506)} = S \epsilon_p^{(1173)} \epsilon_p^{(1333)} C_f \frac{A_{\text{obs}}^{(2506)}}{(1 - C_R)(1 - C_s(1173))(1 - C_s(1333))},
\]

Finally, for the calibrated source method (CSM), the efficiency is given by:

\[
\epsilon_p^{(1333)} = \frac{A_{\text{obs}}^{(1333)}}{S(1 - C_R(1 - C_s(1333))) C_s(1 + C_s(1173)) A_{\text{obs}}^{(2506)}} \frac{N(P/T)(1333)}{N(P/T)(1333)},
\]

On the other hand, for the calibrated source method (CSM), the efficiency is given by:

\[
\epsilon_p^{(1333)} = \frac{A_{\text{obs}}^{(1333)}}{S(1 - C_R(1 - C_s(1333))) C_s(1 + C_s(1173)) A_{\text{obs}}^{(2506)}} \frac{N(P/T)(1173)(1 - C_R)(1 - C_s(1173))(1 - C_s(1333))}{N(P/T)(1173)}.
\]

2.2. The efficiencies, true counts and \((P/T) \) ratios

Eqs. 1–3 indicate how the observed peak areas relate to the actual array efficiencies. Once the peak areas have been correctly determined, efficiencies, true peak areas and peak–to–total ratios can be extracted.

For the summed peak method (SPM), the efficiency is given by:

\[
\epsilon_p^{(1333)} = N \left\{ \frac{A_{\text{obs}}^{(2506)}}{A_{\text{obs}}^{(1173)} C_f} \right\} / \left\{ 1 - C_s(1333) + \frac{A_{\text{obs}}^{(2506)} C_s(1 + C_s(1173))}{A_{\text{obs}}^{(1173)}} \frac{N(P/T)(1333)}{N(P/T)(1333)} \right\}.
\]

For Compton–suppressed arrays, the composite \((P/T) \) ratio is traditionally determined using the CCM spectrum. This spectrum is most relevant for the spectra used in \(\gamma \)-ray spectroscopy with Compton–suppressed arrays. For tracking arrays, where photons can scatter freely between the crystals, obtaining the \((P/T) \) ratio for the array using the CCM spectrum is possible, but the additional correction factors mean that the result is less precise.

The proper \((P/T) \) ratio values to use in eqs. 1–3, in order to determine \(\epsilon_p \), are the observed values. Since \((P/T) \) is not known until the efficiency is found from Eq. 13 or Eq. 14, followed by eqs. 15–19, a simple iteration procedure is applied to find the \((P/T) \) value that reproduces itself.

2.3. The external trigger method

A third approach, using the CCM spectrum, provides another way to measure the efficiency of an array. If a \(^{60}\text{Co} \) source is placed at the target position and an external detector is used to detect the 1173–keV line, then the counts in the 1333–keV peak of the CCM spectrum can be written as:

\[
A_{\text{obs}}^{(1333)} = A_{\text{obs}}^{(1173)} \times \epsilon_p^{(1333)} C_f(1 - C_R).
\]
where \(A_{\text{obs}}^{\gamma}(1173) \) is the number of counts seen in the 1173–keV peak in the external detector. Using this method, it should only be necessary to correct for random events in the coincidence time window and for angular correlation effects. It follows that:

\[
\epsilon_p(1333) = \frac{A_{\text{obs}}^{\gamma}(1333)}{A_{\text{ext}}^{\gamma}(1173)C_F(1 - C_R)} \quad (22)
\]

The external detector could be made part of the tracking array data acquisition system (DAQ). In that case, one can keep track of how many times a 1333–keV line is seen in the tracking array when the channel with the external detector has observed a photopeak absorption of 1173 keV. This ensures that a 1333–keV \(\gamma \) ray has indeed been emitted.

A variation of this method is to identify events in which the 1173–keV transition was detected in one of the array’s crystals, and then exclude that specific crystal from the counts contributing to the CCcal spectrum. The exclusion of one crystal from the CCcal spectrum can be taken into account by adding a correction factor to Eq. 22, where \(N \) is the number of crystals.

3. Tracking

The previous sections lay out the procedures for obtaining the array’s efficiency at 1333 keV and for measurements of the \((P/T)\) ratio for two types of untracked spectra, CCsum and CCcal. These spectra enable direct comparisons between conventional, escape-suppressed and new–generation tracking arrays.

However, we are ultimately interested in the sensitivity of the tracking arrays when used in the tracking mode. In the following, both the tracking efficiency and the tracking deficiency are considered, and we argue that the latter is an important quantity to evaluate.

3.1. The tracking efficiency

In tracking arrays, the signals from the preamplifiers are digitized into signal traces of a few micro–seconds length at typically 100 MHz sampling. In the decomposition, or pulse shape analysis, traces from the segments of the crystals are analyzed and the interaction positions are inferred from fits that compare these traces with a basis data set. Tracking algorithms are then used to reconstruct the trajectories of the incident \(\gamma \) rays in order to determine their energy and direction. To accomplish this, the algorithms must group interaction points into those likely originating from a given \(\gamma \) ray and establish their scattering sequence (or order). Tracking algorithms can be divided into two classes: those based on back tracking [5] and those based on clustering and forward tracking [6]. The latter approach is used in this work.

For photon energies of interest (tens of keV to 20 MeV), the main physical processes that occur when a photon interacts in germanium are Compton scattering, Rayleigh scattering, pair creation and photo absorption. Since Compton scattering is the dominant process between 150 keV and 10 MeV, all current tracking algorithms are based on the properties of this interaction process.

How closely the interaction points follow the Compton scattering formula

\[
E_{\gamma} = \frac{0.511}{1 + \frac{0.511}{E_{\gamma}} \cos(\theta)} \quad (23)
\]

is evaluated by the Figure of Merit (FOM)

\[
FOM = \frac{1}{n} \sum_{i=1}^{N} \sqrt{\left(\frac{\theta_{i}^{\text{theo}} - \theta_{i}^{\text{obs}}}{n_i - 1}\right)^2} ; n_i > 1 \quad (24)
\]

where \(\theta_{i}^{\text{obs}} \) are the observed scattering angles and \(\theta_{i}^{\text{theo}} \) are the angles (in radians) from the Compton scattering formula, based on the energy deposited, \(E_{\gamma}, \) at the interaction points and \(n_i \) is the number of interaction points. If the angle \(\theta \) becomes unphysical, based on the scattering energy, a penalty in the FOM sum, Eq. 24, is added. For photons with more than one interaction point, typically upper limits on the FOM for a \(\gamma \) ray to be considered “good” are in the range from zero up to 0.6 < FOM < 0.8. Gamma rays that have been assigned higher FOM by the tracking algorithm are rejected. An interaction point that is not clustered with other ones (i.e., when \(n_i = 1 \)) is referred to as a single–interaction point \(\gamma \) ray. Such photons cannot be tracked and are assigned a FOM of zero, unless they are located beyond their range in the crystals, in which case they are assigned a FOM value of 1.85 (see Appendix B).

With a calibrated \(^{60}\)Co source, the number of 1333–keV \(\gamma \) rays absorbed in the tracking array should be \(A_{\gamma}(1333) \) (see eqs. 1–5). Thus if, in the tracked spectrum, \(A_{\gamma}(1333) \) counts are measured instead, the tracking efficiency for a given FOM cut is:

\[
\epsilon_{\text{track}} = \frac{A_{\gamma}(1333)}{S \epsilon_p(1333)} \quad (25)
\]

If an uncalibrated \(^{60}\)Co source is used, this ratio can still be found using Eq. 16 as

\[
\epsilon_{\text{track}} = \frac{A_{\gamma}(1333)}{S \epsilon_p(1333)} = \frac{A_{\gamma}(1333)}{A^{\text{true}}(1333)} \quad (26)
\]

where \(A^{\text{true}}(1333) \) is the true counts in the CCcal spectrum defined in Eq. 16. For tracked data, the experimental photopeak efficiency is the array efficiency, eqs. 13 and 14, multiplied by this tracking efficiency. These are the efficiencies that we obtain below and that we present in Fig. 6.

For tracked spectra, the area of the 2506–keV peak should not be included in the \((P/T)\) ratio as it should ideally be absent since such events should have been tracked and resolved into two \(\gamma \) rays of 1173 and 1333 keV. Thus, we suggest that the proper \((P/T)\) ratio to be used and reported for tracked spectra is simply:

\[
(P/T)^{\text{tracked}} = \frac{A_{\gamma}(1173) + A_{\gamma}(1333)}{A_{\text{tot}}} \quad (27)
\]
Figure 2, which is an integral of the curve in Fig. 1, suggests points for the γ rays to be used if a given probability for collecting all the interaction points in Fig. 1. This curve reveals the minimum clustering angle to size of the tracking array examined in this work). The concept of FOM cuts has been found to be small (less than 1% for the following. For a 60Co source, the tracking deficiency as a function of FOM cuts has been found to be small (less than 1% for the size of the tracking array examined in this work). The concept of the tracking deficiency can be generalized for any source as:

\[
TrD = \frac{\sum_i \sum_j A_T(E_i + E_j)}{\sum_i A_T(E_i)},
\]

where the sum is over peak areas of γ rays in coincidence and where \(i < j < k\).

3.2. The clustering angle (α)

One of the most critical parameters in tracking algorithms is the clustering angle used to associate a set of interaction points in a cascade to be wrongly “double-clustered”, \(P_{dc}\), is approximately:

\[
P_{dc} \approx \varepsilon_T (1 - \prod_{i=1}^{m-1} \left(1 - \frac{i \varepsilon_T}{n} \right))
\]

\[
n = \frac{2}{1 - \cos(\alpha/2)}
\]

where \(\alpha\) is the clustering angle, \(\varepsilon_T\) the total array efficiency and \(m\) is the multiplicity of the γ-ray cascade from a source or from in–beam reaction residues; \(n\) is the number of clusters for the clustering angle \(\alpha\). If one wants to keep this double–clustering probability below 1%, 5% or 10%, for a given clustering angle and calculated for the full GRETA array with 120 crystals, the maximum γ-ray multiplicity, \(m\), that can be accepted is given in Table 2. Thus, for typical heavy–ion induced fusion reactions producing high multiplicity γ-ray cascades, the choice of clustering angle is a compromise between tracking widely–scattered γ rays and reducing the number of false double clusters.

The above discussion provides some guidance as to the value of the clustering angle to use for a given data set. One could try to optimize the α angle by maximizing at the product \([P \times B]/P\) for a representative line in the spectra. Here, \(P\) is the area of the peak and \(B\) is the background level under the same peak. This measure optimizes both the efficiency and the \((P/B)\) ratio of the tracked spectra, thus finding the best compromise for the clustering angle.

\[\text{Figure 1: The measured angle spread of interaction points for the γ rays from a 60Co source in the GRETINA tracking array based on the decomposed (pulse shape analyzed) data from the spectrometer.}\]
Figure 2: The minimum clustering angle needed to group interaction points into a γ ray for GRETINA with the resulting clustering efficiency given on the y axis. These curves are obtained by a simple integration of the curve displayed in Fig. 1.

4. Results and comparisons

As mentioned in the introduction, a suitable approach to test the formulas and procedures discussed above is to first apply these to data from Gammasphere. The results are presented in section 4.1. The array efficiency is extracted for GRETINA in section 4.2. Sec. 4.4 presents tracking angular correlation results while Sec. 4.5 compares the 60Co spectra obtained in the Gammasphere and GRETINA arrays. Finally, Sec. 4.6 compares the (P/T) versus efficiency data for the arrays.

Table 2: The maximum multiplicity, m, that can be accepted for a given clustering angle, α, in order to keep the double clustering probability, P_{dc}, in the full GRETA array below the limits of 1, 5 or 10% for a 60Co source. For GRETINA, the photopeak efficiency has been extrapolated to be 34% (see Sec. 4.2) and a (P/T) ratio of the order of 0.6 is expected. Thus, the total array efficiency (see Eq. 30), is expected to be about 62%, the value used to produce this table.

<table>
<thead>
<tr>
<th>α [deg]</th>
<th><1%</th>
<th><5%</th>
<th><10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>7</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

4.1. The efficiency of Gammasphere

Table 3 presents measurements of the efficiency for Gammasphere. Two calibrated 60Co sources were used, one isotopically pure and one mixed. The mixed-isotope source was weak and calibrated, containing 60Co, 137Cs and small traces of other radioisotopes. With these data, a good test of the random correction terms in the efficiency formulas is possible. With two sources, two methods and both the CCsum and CCal spectra, there are eight measurements and the results are compared in Table 3.

<table>
<thead>
<tr>
<th>Source</th>
<th>CCsum spectrum, $C_T=0.040(5)$</th>
<th>CCal spectrum, $C_T=0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ_1</td>
<td>8.6(9)%</td>
<td>8.0(3)%</td>
</tr>
<tr>
<td>ϵ_2</td>
<td>8.8(2)%</td>
<td>7.6(8)%</td>
</tr>
<tr>
<td>C_{C}</td>
<td>0.47(5)</td>
<td>0.49(2)%</td>
</tr>
<tr>
<td>C_{T}</td>
<td>1.10(5)</td>
<td>1.10(5)</td>
</tr>
<tr>
<td>ϵ_3</td>
<td>7.9(2)%</td>
<td>8.3(3)%</td>
</tr>
<tr>
<td>ϵ_4</td>
<td>7.9(2)%</td>
<td>7.8(4)%</td>
</tr>
<tr>
<td>C_{C}</td>
<td>0.46(5)</td>
<td>0.54(5)</td>
</tr>
<tr>
<td>C_{T}</td>
<td>1.10(5)</td>
<td>1.10(5)</td>
</tr>
</tbody>
</table>

For the CSM method, in calculating the live fraction L_T (see Eq. 8) for Gammasphere, we take into account various deadtimes of the system as well as other inefficiencies of the DAQ readout system, see Appendix A.1. Using all the methods and sources, with proper corrections, the efficiency of Gammasphere is determined to be 8.2(1)% with a (P/T) ratio of 0.52 using the weighted sum of all the results. The (P/T) ratio and efficiency are somewhat lower than those reported in Ref. [30] because the light collection efficiency in the BGO Compton Suppressors has deteriorated somewhat over time. In 2007, the efficiency of Gammasphere was measured to be 8.9(1)% with a (P/T) ratio of 0.54, using slightly less accurate formulas compared to those presented in this work. For the comparison with the GRETINA tracking array, the 2007 optimal Gammasphere performance regarding the (P/T) will be used as the standard.

4.2. The efficiency of GRETINA at ANL

At the time of these measurements, GRETINA consisted of 28 crystals. The array efficiency at 1333 keV was measured with two sources, as was the case with Gammasphere (see Sec. 4.1). The clustering angle for tracking was set to 20°. The results are presented in Table 4. As discussed in Sec. 3, the tracking efficiency is obtained by comparing the number of counts in the photopeaks of the tracked spectrum with the corrected counts.
The efficiency was also measured with an external detector (as described in section 2.2) to be 6.39(17)%.

The fact that tracking algorithms cluster together interactions within a given solid angle impacts angular correlation measurements from tracked data. The extent of this impact is illustrated by extracting angular correlation information for the γ rays from a 60Co source. The procedure is as follows: for each event where one 1173– and one 1333–keV γ ray are present, the angle between the first interaction points for the two photons is found and is histogrammed, herewith revealing the set of correlated events.

This event is also stored and used when the next coincidence event is encountered to construct angles between uncorrelated first interaction points from pairs of γ rays originating from events measured at different times. The ratio of the spectrum of correlated events to that of uncorrelated ones reveals the angular correlation and is presented in Fig. 3 for GRETINA, while using a clustering angle of 10°. Conveniently, the uncorrelated spectrum also allows us to experimentally determine the C_f value discussed in Sec. 2.1. The angular correlation function $\omega(\theta) = 1 + 0.102041P_2(\cos\theta) + 0.00907P_4(\cos\theta)$, is simply weighted with the normalized uncorrelated spectrum.

Figure 3: Angular correlation extracted from tracked GRETINA (GT) data for a 60Co source using a clustering angle of 10°. For the tracking, a FOM acceptance from zero to 0.8 was used and the theoretical spectrum is shown without any attenuation. See text for details.

The drop at small angles in Fig. 3 comes from the fact that, if two γ rays are within the pre–determined clustering angle, they will (using current tracking codes) mostly be added up rather
than be recognized as individual photons (see the tracking deficiency discussion in Sec. 2.2). As can be seen in Fig. 3, the effective clustering angle is slightly larger than the 10° specified for the tracking because two nearby γ rays may have some interaction points that are within the clustering angle.

The tracking arrays offer an angular resolution of 1°–2°. If needed, the γ–γ angular correlation can be extended towards lower angles using a "mix before track" method developed within the AGATA collaboration [33].

4.5. Comparing 60Co source spectra

Figure 4 provides the FOM distributions (see Sec. 3.1) for 60Co sources. In GRETINA, ~7% of the γ rays are assigned a single–interaction point γ rays that occurred too deep in the crystals are marked with a FOM=1.85 rather than zero. Overflows are marked with at FOM of 2.0. See text for details.

Figure 5 compares 60Co source spectra from GRETINA at ANL, with and without single interactions at ANL, and Gammasphere (GS). In all cases, the spectra have been normalized to have the same number of counts in the photopeaks.

bound of 200 keV because Gammasphere was equipped with Ta/Cu absorbors which affect spectra below this energy. At the time the data was recorded, GRETINA had Ta absorbors in front of the seven modules. Hence, a lower bound of 200 keV was applied to all the tracked spectra and provides for a fair comparison of the measured (P/T) ratios.

4.6. Comparing the (P/T) ratios versus the efficiency curves for GRETINA

The (P/T) ratio vs. photopeak efficiency curves for GRETINA can be found in Figs. 6 and 8, for clustering angles of 20° and 10°, respectively. The clustering angle is typically chosen between these limits, depending on the γ–ray multiplicity (see discussion in Sec. 3.2). The two curves in the figures demonstrate the effect of including (wsi) and excluding (nsi) photons with a single–interaction points. The curves are provided for FOM cuts of 0–0.2, 0.4 ... 2.0 (from left to right) where a FOM cut of 0–2.0 is equivalent to no cut at all.

5. Discussion

As can be seen in Figs. 6–8, in GRETINA there is not much difference between the nsi and wsi curves in terms of efficiency (see also Table 4). Indeed, when extracting the probability for a photopeak event as a function of the number of interaction points, after tracking, it is clear that there are many single–interaction points that do not contribute to the photopeaks for
In the GRETINA decomposition, the fits of the segment traces [14] allow for more than one interaction per segment. One might suspect that the fitting function sometimes places two interaction points in a segment where there should have been only one – because it results in a better χ^2 in the fitting procedure. Hence, it is possible that, in general, the GRETINA decomposition overestimates the number of interaction points associated with a photon.

Both the array efficiency and, especially, the tracking efficiency depend on the degree to which a tracking array is compact, i.e., how closely the crystals are packed in the array. A measure of the compactness of a tracking array may be obtained as follows: for each crystal, one can count how many of the sides of the crystal have a near (contact) neighbor, add up the numbers for the individual crystals and divide by the number of crystals times six (i.e., the total number of sides). With 28 crystals during the campaign at ANL, a compactness value of 63% is obtained (see section 4.2). In an earlier setup at MSU, a compactness of 70% was achieved (see section 4.3). The detailed effect of compactness on the tracking performance is under investigation [35].

Table 6: Distribution of the number of interaction points in the tracked photopeak γ rays for a 60Co source in GRETINA and those obtained from a GEANT4 simulation with the parameters outlined in the text.

<table>
<thead>
<tr>
<th>number of interaction points</th>
<th>GRETINA photopeak</th>
<th>GEANT4 photopeak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2%</td>
<td>10%</td>
</tr>
<tr>
<td>2</td>
<td>21%</td>
<td>27%</td>
</tr>
<tr>
<td>3</td>
<td>35%</td>
<td>31%</td>
</tr>
<tr>
<td>4</td>
<td>24%</td>
<td>21%</td>
</tr>
<tr>
<td>5</td>
<td>13%</td>
<td>10%</td>
</tr>
<tr>
<td>6</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>7</td>
<td>1%</td>
<td>1%</td>
</tr>
</tbody>
</table>

In the GRETINA decomposition, the fits of the segment traces [14] allow for more than one interaction per segment. One might suspect that the fitting function sometimes places two interaction points in a segment where there should have been only one – because it results in a better χ^2 in the fitting procedure. Hence, it is possible that, in general, the GRETINA decomposition overestimates the number of interaction points associated with a photon.

Finaly, using a 60Co source, we suggest that it is possible to numerically compare Gammasphere and GRETINA by evaluating a figure of merit defined as $[\epsilon_p \times (P/T)]$, and using the optimum place on the (P/T) ratio vs photopeak efficiency curves presented in Figs. 6–8. Using spectra from the GRETINA tracking.
array with a clustering angle of 20°, and excluding (or including) the single–interaction points, the results are given in the second (third) column of Table 7.

If one takes \(\epsilon_p \times (P/T) \) as the measure, with 100 modules in Gammasphere and 28 crystals in GRETINA, Gammasphere is about twice as sensitive as GRETINA. However, when scaled to an occupancy of 23.3% (i.e., that of GRETINA), GRETINA is approximately twice as sensitive as Gammasphere (see Table 7). If a figure of merit of \([\epsilon \times (P/T)]^2 \) was used (Table 7), which would be more relevant for gated coincidence spectra [23], GRETINA would be about four times as sensitive as Gammasphere. The \([\epsilon_p \times (P/T)] \) figure of merit used here is, of course, only one of many possible measures. In many in–beam experiments, the superior angular resolution and, thus, Doppler correction offered by the tracking arrays will be of much more importance [36].

Table 7: Numerical comparison of Gammasphere and GRETINA using the figure of merit measure of \([\epsilon_p \times (P/T)] \), including single–interaction \(\gamma \) rays (wsi) and excluding them (nsi). See text for details.

<table>
<thead>
<tr>
<th>device</th>
<th>([\epsilon_p \times (P/T)])</th>
<th>([\epsilon_p \times (P/T)]^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gammasphere</td>
<td>0.0427</td>
<td>0.0002</td>
</tr>
<tr>
<td>GRETINA</td>
<td>0.0236</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

6. Conclusions and outlook

We have found that, generally speaking, tracking \(\gamma \) detector arrays are more challenging to characterize than the Compton–suppressed \(\gamma \)–ray spectrometers of the previous generation.

Figure 8: Same as Fig. 6; but now using a clustering angle of 10°.

Figure 9: The absolute efficiency of Gammasphere and GRETINA (with 28 crystals) as a function of energy.

Table 8: Comparison of Gammasphere and GRETINA using the figure of merit measures of \([\epsilon_p \times (P/T)] \) and \([\epsilon_p \times (P/T)]^2 \) and where Gammasphere data have been scaled to have the same occupancy as GRETINA. The (nsi) results exclude single interactions and the (wsi) results include them. See text for details.

<table>
<thead>
<tr>
<th>device</th>
<th>([\epsilon_p \times (P/T)])</th>
<th>([\epsilon_p \times (P/T)]^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gammasphere</td>
<td>0.0110</td>
<td>1.21 \times 10^{-4}</td>
</tr>
<tr>
<td>GRETINA</td>
<td>0.0236</td>
<td>5.57 \times 10^{-4}</td>
</tr>
</tbody>
</table>

However, based on current extrapolations to a full 4\(\pi \) array, they will provide superior performance mainly due to the large HPGe coverage while maintaining a good \((P/T) \) ratio. Possible improvements in electronics, signal–decomposition and tracking algorithms could translate into a better \((P/T) \) ratio and further enhance their potential.

In this work, an attempt was made to provide a formalism to determine the array photopeak efficiencies, tracking efficiencies and true peak–to–total ratios. Some guidelines regarding clustering angles to be used in the \(\gamma \)–ray tracking algorithm have also been proposed.

Throughout this work, a \(^{60}\text{Co} \) source was used to characterize the arrays. Many optimizations of the tracking parameters will remove low–energy \(\gamma \) rays in the \(^{60}\text{Co} \) spectra and, thus, appear to improve the peak–to–total ratio. However, further analysis often reveals that the photopeaks associated with low energies are much reduced as well. We suggest that a \(^{164}\text{Ho} \) source is a better choice to use for the characterization of tracked spectra. This source has transitions that are in coincidence with each other and this will allow to improve the tracking algorithms and optimize their parameters. In addition, it has low-energy lines that a \(^{60}\text{Co} \) source lacks and it has a strong branch with four \(\gamma \) rays.
rays in coincidence with respective energies of: 711.7, 810.3, 857.4, 184.4 and 80.6 keV. Other γ rays in coincidence can be used as well. Work is in progress on improving the tracking of data from the GRETINA spectrometer using this source [37].

We have developed software that can translate AGATA data into data in the GRETINA data format (i.e., data containing the interaction point coordinates, energies and timestamps of the γ-rays in the crystals). This would allow for a direct comparison of the performance of the two tracking arrays. Unfortunately, results of an analysis of AGATA data will be published elsewhere [38].

7. Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02-06CH11357. This research used resources of the ANL’s ATLAS facility, which is a DOE Office of Science User Facility. LBNL is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and L. Riley acknowledges support from NSF through grant no. PHY-1303480. This work was also supported by the French National Center of Research, CNRS. D. R. was partially supported by the P2I0 Excellence Laboratory. We acknowledge valuable discussions with J. Lujanvall and A. Lopez-Martens.

Appendix A. Deadtime and random rates

If calibrated sources are used to determine the efficiencies of the spectrometers, the deadtimes of the DAQ systems need to be determined. This, of course, also holds if the array is used to determine absolute cross sections.

Appendix A.1. Deadtimes in Gammasphere

In the analog Gammasphere data acquisition system (DAQ), there are two deadtimes. The first is in the pre-trigger circuit and is about 1–2 μs. The second deadtime is in the readout system and is about 19–21 μs depending on the setup. The total DAQ live fraction is taken to be the product of the resulting live fractions. The fact that the analog DAQ stops, for the order of a minute, every time the analog Gammasphere event builder is reset must also be taken into account, herewith resulting in an additional deadtime. This deadtime can be found by inspection of the rate spectra.

The formulas of Ref. [24] were used to calculate the live fractions. The rates in Gammasphere for the the mixed and pure sources were 1.47– and 11.0 kHz, respectively and the live fractions were found to be 0.967 and 0.711, see Table 3. The C R values for the mixed source are determined to be 26(6)10 and 31(7)10–8 for the CCcal and CCsum spectra, respectively. For the pure source a value of zero was used.

Appendix A.2. Deadtimes in tracking arrays

Both GRETINA and digital Gammasphere (DGS) have DAQ systems that, as opposed to the analog Gammasphere DAQ system, only have channel deadtimes. Thus, unlike analog Gammasphere, the DAQs for GRETINA and DGS are never totally blocked at any given time, but the overall efficiency is, however, reduced by the unavailability of the channels that are busy (i.e., dead). Using the CSM with the CCcal spectrum, it is mathematically possible to take this into account in Eq. 8, through the Lf factor – even though, in this case, Lf reflects a reduction in efficiency rather than a traditional live fraction of the DAQ. For the CCcal spectrum, the channel live fraction is also the overall array live fraction. However, for the CCsum as well as tracked spectra, the overall array live fraction will be different and will depend on, among other things, the γ-ray multiplicity.

The rate in GRETINA was 3.49 kHz when the weak mixed source was placed at the target position. The channel deadtime was measured to be 22 μs. To be able to handle the rate in GRETINA caused by the ‘pure’ source, the DAQ was pulsed on and off with an on fraction of 8.92(8)%.. The average rate was observed to be 445 Hz, so the actual rate, while the GRETINA DAQ was on, was therefore 5.00 kHz. It follows that the per–crystal counting rates for the two sources were 125 Hz and 179 Hz, resulting in effective live fractions of 0.997 and 0.996, respectively, for the mixed and ‘pure’ source. Thus, for both sources, the effect of deadtime is negligible. The random rates for the mixed source resulted in C R = 25(5)10–6 and 89(17)10–8 for the CCcal and CCsum spectra, respectively. For the pure source the C R value was set to zero.

Appendix B. Range of γ rays in Ge

Photons penetrating a Ge crystal are absorbed with a probability of

\[p(z) = 1 - e^{-\left(\frac{\mu}{\rho}\right)z} \]

(B.1)

where z is the depth in the crystal from the front face, \(\rho \) the density of Ge and (\(\mu/\rho \)) the mass attenuation coefficient for Ge which depends on the energy of the photon and are tabulated in Ref. [39]. One can, for a given energy of a γ ray, determine the depth in the crystal, z85%, where the γ ray has been fully absorbed with a 85% probability. Fig. B.10 shows the 85% range values for energies relevant for γ-ray spectroscopy. These range values are used in the tracking procedure to mark (with a FOM of 1.85) single–interaction γ rays that have less than a 15% probability for having interacted at the z range determined by the decomposition and tracking algorithms.

References

Figure B.10: The depth in a Ge crystal at which a γ ray has been absorbed with a 85% probability. See text for details.