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transition state searches
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1Department of Chemical and Biomolecular Engineering, University of California, Berkeley,
California 94720, USA
2Department of Chemistry, University of California, Berkeley, California 94720, USA

(Received 3 January 2014; accepted 24 March 2014; published online 30 April 2014)

The cost of calculating nuclear hessians, either analytically or by finite difference methods, dur-
ing the course of quantum chemical analyses can be prohibitive for systems containing hundreds of
atoms. In many applications, though, only a few eigenvalues and eigenvectors, and not the full hes-
sian, are required. For instance, the lowest one or two eigenvalues of the full hessian are sufficient
to characterize a stationary point as a minimum or a transition state (TS), respectively. We describe
here a method that can eliminate the need for hessian calculations for both the characterization of
stationary points as well as searches for saddle points. A finite differences implementation of the
Davidson method that uses only first derivatives of the energy to calculate the lowest eigenvalues
and eigenvectors of the hessian is discussed. This method can be implemented in conjunction with
geometry optimization methods such as partitioned-rational function optimization (P-RFO) to char-
acterize stationary points on the potential energy surface. With equal ease, it can be combined with
interpolation methods that determine TS guess structures, such as the freezing string method, to gen-
erate approximate hessian matrices in lieu of full hessians as input to P-RFO for TS optimization.
This approach is shown to achieve significant cost savings relative to exact hessian calculation when
applied to both stationary point characterization as well as TS optimization. The basic reason is that
the present approach scales one power of system size lower since the rate of convergence is approx-
imately independent of the size of the system. Therefore, the finite-difference Davidson method is
a viable alternative to full hessian calculation for stationary point characterization and TS search
particularly when analytical hessians are not available or require substantial computational effort.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4871660]

I. INTRODUCTION

The feasibility of applying quantum chemical tools to re-
action kinetics studies is severely limited by the size of the
system under examination. In particular, the cost of calcu-
lating analytical second derivatives, or the nuclear hessian,
scales about one power of system size greater than the energy
or gradient.1, 2 In situations where analytical second deriva-
tives are not available, one is forced to use finite differences
to evaluate the hessian, which is even more expensive.1, 2 Al-
though its calculation is costly, the hessian matrix is essen-
tial for several reasons. From an analysis of the hessian one
can determine whether a stationary point on a potential en-
ergy surface corresponds to a minimum or saddle point. Some
eigenvector-following optimization techniques, such as the
partitioned-rational function optimization (P-RFO) method3–5

also rely on an initial hessian input for robust performance
and faster convergence. Reaction path searches initiated at the
transition state (TS) also require an exact hessian input.6–11

In most applications, however, it is not the full hessian
but only a few eigenvalues or eigenvectors that are neces-

a)Authors to whom correspondence should be addressed: Electronic ad-
dresses: mhg@bastille.cchem.berkeley.edu and bell@cchem.berkeley.edu

sary. When characterizing stationary points, if the exact hes-
sian matrix has all non-negative eigenvalues, the geometry is
classified as a minimum on the potential energy surface. If
the hessian has exactly one negative eigenvalue, the geometry
corresponds to a TS, with the negative mode representative
of the reaction coordinate. In order to verify whether a given
geometry corresponds to a minimum or a TS, one only needs
to calculate the lowest one or two eigenvalues, respectively.
The same principle can be applied to TS search methods that
require an initial hessian input. The P-RFO, for example, is
more reliable if the hessian input has exactly one negative
eigenvalue that resembles the reaction coordinate.12 Instead
of calculating the full hessian, therefore, the lowest eigenvalue
and eigenvector are sufficient to generate a matrix input with
the correct eigenvalue structure.

Some efforts have been made in this direction, particu-
larly to generate approximate hessians for initiating geometry
optimization. Lindh et al.13 have developed a method in which
a model hessian, constructed as a function of force constant
parameters, improved the efficiency of geometry optimization
via the quasi-Newton-Raphson method. However, the effi-
ciency was tested for only a small basis set and at the Hartree-
Fock level of theory, and the model hessian was limited to
systems involving atoms in the first three rows of the periodic

0021-9606/2014/140(16)/164115/9/$30.00 © 2014 AIP Publishing LLC140, 164115-1

http://dx.doi.org/10.1063/1.4871660
http://dx.doi.org/10.1063/1.4871660
http://dx.doi.org/10.1063/1.4871660
http://dx.doi.org/10.1063/1.4871660
mailto: mhg@bastille.cchem.berkeley.edu
mailto: bell@cchem.berkeley.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4871660&domain=pdf&date_stamp=2014-04-30


164115-2 Mallikarjun Sharada, Bell, and Head-Gordon J. Chem. Phys. 140, 164115 (2014)

table. A variational method implemented by Kumeda et al.14

minimizes the finite-difference formulation of the Rayleigh-
Ritz ratio using conjugate gradients. The crudely converged
eigenvalue and eigenvector corresponding to the reaction co-
ordinate are then used to initiate eigenvector following meth-
ods for TS search. More recently, an eigenvector follow-
ing method that uses the eigensolutions of a finite-difference
based Davidson approach has been proposed.15 The approach
uses all the eigensolutions generated by the Davidson method,
even if they have not fully converged. As a consequence, the
reliability of the saddle-point search based on this approxi-
mate hessian remains questionable. The Davidson approach
has also been used in a hybrid quantum mechanics/molecular
mechanics (QM/MM) approach along with RFO, since it can
determine the desired eigenvalues without requiring the stor-
age or calculation of the full hessian.16 Olsen et al. have also
reported the use of a Lanczos scheme for iteratively deter-
mining the lowest hessian mode for saddle point search.17 We
have previously reported a method that constructs the approx-
imate hessian based on an interpolated curvature obtained
from the freezing string method (FSM).18, 19 The technique
shows promising results when the approximate hessian input
is used with P-RFO. However, since the curvature is not op-
timized, the accuracy of the interpolated curvature and hence
the efficiency of optimization relies heavily on the quality of
the reaction path generated by FSM, which is not desirable.

The goal of our research is to develop a low-cost alter-
native to exact or finite difference hessians for applications
where only the lowest eigenvalues are required. This paper de-
scribes an approach that employs a finite differences form of
the Davidson method20 in conjunction with the P-RFO, which
can be applied to both stationary point characterizations as
well as TS searches. The Davidson method calculates one or
more lowest eigenvalues of a matrix without diagonalizing the
full matrix. It does so by diagonalizing a matrix constructed
using an orthonormal subspace of size smaller than that of
the original matrix, and subsequently minimizing the error
between the true and subspace eigensolutions. Any other it-
erative diagonalization method can also be used instead of the
Davidson method for calculating the lowest eigenvalues.21–23

The P-RFO approach uses quasi-Newton hessian update
methods in order to revise the (exact or approximate) hes-
sian input at every step. For stationary point characterization,
therefore, the lowest eigenvectors of this matrix at the end of
geometry optimization constitute the initial subspace for the
Davidson method. Depending on whether the optimization is
searching for a minimum or TS, this approach determines the
lowest one or two hessian eigenvalues and eigenvectors, re-
spectively, without calculating the exact hessian itself. The
Davidson approach is also extended to TS search, for which
it uses reaction coordinate information generated by the FSM
to calculate the lowest eigenvalue and eigenvector of the hes-
sian at the TS guess. This information is then incorporated
into a guess matrix that is employed as input to P-RFO in
lieu of the exact hessian for the TS search. The performance
of this method is examined for stationary point characteriza-
tion and TS search in terms of accuracy, the cost savings it
achieves relative to the full hessian calculation, and its scal-
ing with respect to system size. Extensive testing shows that

this method requires significantly less computational effort
when compared with calculation of the full hessian, and is
also nearly independent of system size, making it a very valu-
able tool for studying large systems.

II. METHOD

A. Characterization of minima and transition states

The Davidson method has been employed tradition-
ally in situations where the cost of full matrix diagonaliza-
tion is prohibitive, such as configurational interaction (CI)
calculations.24 However, the original Davidson procedure re-
quires the full matrix in order to determine its eigenvalues.
The method, therefore, needs to be modified in order to apply
to calculation of nuclear hessian eigenvalues. It can be made
hessian-free by recognizing the fact that the action of the hes-
sian matrix on the subspace vector is desired rather than the
matrix itself. This can be determined approximately using fi-
nite differences:15

Hexb1 = y1 ≈ ∇E (X0 + ξb1) − ∇E (X0 − ξb1)

2ξ
, (1)

where X0 is the converged geometry, b1 is the first component
of the orthonormal subspace, Hex is the exact hessian, ξ is
the finite difference stepsize taken to be 0.01 a0,25 and ∇E
represents gradient of the energy.

The vectors comprising the initial orthonormal subspace,
{bi}, typically span the dominant components of the desired
eigenvalue(s). Depending on whether P-RFO is searching for
a minimum or a TS, the subspace can be constructed using the
lowest one or two eigenvectors of the updated hessian at con-
vergence, respectively. This choice may not be reliable when
the system possesses symmetry, since the initial subspace may
be orthogonal to the corresponding lowest eigenvector(s). For
systems with symmetry, therefore, we choose the initial guess
as a linear combination of the lowest few eigenvectors of the
updated hessian at convergence, with randomly determined
scalar coefficients. The action of the hessian on the subspace
vector(s) is determined from Eq. (1).

For characterization of minima, the first eigenvalue is
given by

λ
(1)
1 = yT

1 b1, (2)

where the superscript corresponds to the current iteration. The
residual for the first iteration, therefore, is

q
(1)
i = yi,1 − λ

(1)
1 bi,1, i = 1, . . . , 3N, (3)

where N is the number of atoms. Subsequent iterations can be
carried out using the standard Davidson procedure.19 The di-
agonal elements of the P-RFO updated matrix, H, are used in
the preconditioner in order to accelerate convergence towards
the desired eigenvalue:

w
(M+1)
i =

(
λ

(M)
1 − Hi,i

)−1
q

(M)
i , i = 1, . . . , 3N. (4)

The vector, w(M+1), is then orthonormalized against previous
vectors in the subspace to generate the new subspace vec-
tor, bM+1, in the Mth cycle. If P-RFO has found the mini-
mum correctly, the Davidson approach should converge to an
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TABLE I. Summary of the finite difference Davidson procedure for characterization of stationary points, for systems with and without symmetry. The lowest
eigenvalue is calculated for characterizing minima, and the lowest two eigenvalues are for TSs.

Stationary point Initial subspace {bi} from P-RFO updated hessian, H Convergence conditions (Equation (5))

Minimum (no symmetry) Lowest eigenvector (i) or (ii)
Minimum (symmetry) Linear combination of lowest eigenvectors |qk| ≤ ξ2

Transition state 1st eigenvalue – lowest eigenvector (i) and (ii)
2nd eigenvalue – second eigenvector (i) or (ii)

eigenvalue that is greater than or equal to zero. The iterations
terminate when one of the following convergence criteria is
satisfied:

(i)
(
λ

(M)
k − λ

(M−1)
k

)
/λ

(M−1)
k ≤ ξ or

(ii) |qk| ≤ ξ, (5)

where superscript denotes the iteration, λk corresponds to the
eigenvalue (k = 1 for minima), and qk is the residual corre-
sponding to the kth eigenvalue. When the system has sym-
metry, only condition (ii) is imposed, with tighter tolerance,
ξ 2, in order to ensure that the procedure that begins with a
random guess locates the correct eigenvalue.

A subspace consisting initially of two orthonormal vec-
tors is used to characterize TSs. The finite difference expres-
sion in Eq. (1) is used to determine the action of the hessian
on both b1 and b2.The two sets of vectors, (b1, b2) and (y1,
y2), are used to construct the smaller matrix that is then diag-
onalized. The original Davidson procedure is followed sub-
sequently to obtain the lowest eigenvalue. The search for the
second eigenvalue begins with the augmented subspace ob-
tained upon convergence of the first eigenvalue. Convergence
of the second eigenvalue is assumed when one of the two
conditions in Eq. (5) are satisfied. A more rigorous condition
is imposed on the first eigenvalue, requiring both criteria in
Eq. (5) to be satisfied for convergence. This is found to be es-
sential, particularly in cases where the P-RFO begins in the
absence of any hessian information and as a result, the up-
dated matrix is not a good approximation to the exact hessian.
If the optimizer finds the TS correctly, then the lowest eigen-
value determined by the Davidson procedure is negative. The
second eigenvalue is zero, since the six eigenvalues follow-
ing the lowest mode correspond to translations and rotations
in cartesian coordinates.26 A summary of the procedure for
characterization of minima and transition states is given in
Table I.

B. Transition state search

The speed and reliability of P-RFO for TS search is vastly
enhanced when a hessian input with the correct eigenvalue
structure is employed as opposed to a unit-matrix or diagonal-
matrix input. Although the best input is the exact hessian at
the TS guess, it is not always computationally viable. In such
cases, an approximate one can be calculated either from force
fields or by using a lower level of theory.12

An approximate hessian with exactly one negative eigen-
value can also be constructed using the finite difference
Davidson approach. Any double-ended interpolation method
that calculates the TS guess structure from reactant and prod-

uct geometries also generates an approximate reaction coor-
dinate at the guess. In this case, the reaction coordinate gen-
erated by FSM is taken as b1. The remaining steps are similar
to the finite-difference Davidson approach for calculation of
the lowest eigenvalue. The criteria for convergence are given
by Eq. (5).

The converged eigenvalue and eigenvector must then be
incorporated into a guess matrix. There are several possible
choices for this guess, the simplest being a unit matrix. How-
ever, a better initial guess is the one that contains chemical
information such as bond stretches, bends, etc. Therefore, a
diagonal matrix in primitive internal coordinates, Hprim, is
transformed to delocalized internal coordinates,31 and subse-
quently, cartesian coordinates:

Hint = UT HprimU, (6)

Hcart = BT HprimB. (7)

Hcart is then updated with the eigenvalue and eigenvector ob-
tained from the Davidson method:

H = Hcart − 0.5
3N∑
j=1

(
eT
j Hcart t1

) (
t1e

T
j + ej t

T
1

) + λ1t1t
T
1 ,

(8)
where ej’s are the eigenvectors of Hcart, and t1 and λ1 are the
converged eigenvector and corresponding eigenvalue, respec-
tively. Equation (8) removes existing components of the guess
matrix along the lowest eigenvector and replaces them with
the correct components. The resulting matrix has exactly one
negative eigenvalue by design, and serves as a substitute to
the exact hessian input to P-RFO.

III. RESULTS

A. Characterization of transition states

The reliability, performance, and scaling of the Davidson
method for stationary point characterization is examined with
Test Set 1. This set consists of n-butyl lithium initiated buta-
diene oligomerization transition-state and product structures.
The converged TS and product geometries for trimerization
are shown in Figure 1. The TS guesses are generated from
the monomer TS27 by successively adding 1,3-butadiene to
the growing chain. In this way, TS guesses for the formation
of oligomers ranging from the trimer (44 atoms) to the unde-
camer (124 atoms) are generated. The guess geometries are
then refined to true TS structures with the P-RFO method us-
ing exact hessian inputs. The Davidson procedure is applied
when the optimization converges. In order to examine the
benefit of coupling P-RFO optimization with Davidson
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FIG. 1. Representative optimized structures for characterization of station-
ary points in Test set 1 comprising butadiene oligomers via alkyl lithium
initiation. Brown atoms correspond to lithium, cyan represent carbon, and
white represent hydrogen atoms. The TS and product structures correspond
to 1-carbon attack by 1,3-butadiene of the allyl end of the chain.27 The chain
grows linearly as a result, and all the structures in this test set correspond
to trans isomers. (a) Transition state for trimerization of n-butyl lithium.
(b) Product of trimerization of n-butyl lithium.

characterization, the method is also implemented without us-
ing any information from the updated hessian.

All calculations are carried out using a developmental
version of Q-Chem 4.1,28 and are run in parallel using 8
cores, each containing 4 GB RAM. Structures in Test Set 1
are treated at the B3LYP/6-31G level of theory.29, 30 P-RFO
searches are carried out in delocalized internal coordinates31

with an upper limit on step-size per iteration of 0.1 a0. The
cost and accuracy of the Davidson method for calculating the
lowest two eigenvalues and thereby characterizing converged
TS geometries is compared with the cost of calculating the
full hessian.

The CPU time required to calculate the lowest eigenval-
ues with the Davidson method is determined by multiplying
the number of force calculations in the finite-difference steps
with the average time to calculate the gradient. This is then
compared with the CPU time required for full analytical hes-
sian calculation. For TS characterization, the eigenvalue and
eigenvector corresponding to the reaction coordinate are also
compared with eigensolutions of the exact hessian in order to
verify convergence of the Davidson procedure.

Figure 2 compares the cost of full hessian calculation
with the Davidson approach for characterizing oligomeriza-
tion TSs. In all cases, the Davidson approach converges to
the lowest eigenvalue within 2% error. The lowest eigenvec-
tor is also fully converged as verified by calculating its scalar
product with the corresponding eigenvector of the exact hes-
sian. When the Davidson approach begins with an updated
hessian, the initial guess vector is a good approximation to
the true reaction coordinate. In addition, preconditioning with
the diagonal elements of the approximate hessian facilitates
rapid convergence. The method is largely independent of sys-
tem size, whereas the full hessian scales approximately cubi-

FIG. 2. Cost comparison between Davidson method and exact hessian calcu-
lation for characterization of TSs for Test Set 1. Oligomer sizes are plotted on
the horizontal axis. The vertical axis represents the computational time (min)
associated with either full hessian calculation or Davidson method for finding
the two lowest eigenvalues. In all cases, P-RFO is initiated with an exact hes-
sian input. Data labeled “with updated hessian” corresponds to the case when
Davidson iterations begin with the P-RFO updated hessian. The “without up-
dated hessian” label represents the cost of using the Davidson method with no
hessian information. Full hessian calculation becomes intractable as system
size increases. The Davidson approach with the updated hessian is largely
independent of system size and can be up to 5 times less expensive relative to
exact hessian calculation. In the absence of a P-RFO updated hessian, the ap-
proach is slower to converge. Therefore, it is recommended that the Davidson
procedure be used in conjunction with a quasi-Newton optimizer for rapid TS
characterization.

cally. For smaller systems, therefore, the Davidson approach
is twice as fast as calculating the full hessian, and nearly 5
times faster for the largest system in the test set. On the other
hand, if applied independent of the optimizer with no updated
hessian information, the Davidson method is much slower to
converge. Although computational effort is still lower than
full hessian calculation, it is clear that the method is practi-
cal only when approximate hessian information, such as the
P-RFO update, is available.

Based on these observations, a compromise can be con-
sidered that not only guarantees convergence of the P-RFO
but also lowers costs associated with hessian calculations, par-
ticularly for large molecules. The full hessian can be quickly
calculated using a very small basis set prior to TS search. The
lowest eigenvalue and eigenvector can then be incorporated
into a guess matrix as discussed earlier. The resulting ap-
proximate hessian is used for optimization using the P-RFO.
This will ensure convergence of the P-RFO to the right saddle
point and improve the performance of the Davidson method
for characterization by providing a better initial guess of the
subspace vector.

In order to ensure that this approach does not incorrectly
characterize a higher-order saddle point as a TS, P-RFO op-
timization is carried out on a decanol molecule with a linear
C-O-H bond. The optimization is carried out in the absence
of a hessian input, and the system is treated at the B3LYP/
6-31G level of theory. The converged structure corresponds to
a second-order saddle point, and the hessian consists of two
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FIG. 3. Cost comparison between Davidson method and exact hessian cal-
culation for characterization of minima for Test Set 1. In all cases, P-RFO
is initiated without a hessian input, and the optimization begins with a diag-
onal matrix as a guess hessian. The Davidson method with the P-RFO up-
dated hessian input characterizes the stationary point at significantly lower
cost compared to full hessian calculation, with savings that increase approx-
imately linearly with system size. Moving from left to right, the Davidson
approach with the P-RFO updated hessian requires as much as 29 times less
computational effort compared to the full hessian. Although the approach is
more expensive in the absence of the P-RFO input, it is still more economical
than full hessians for large systems.

degenerate negative eigenvalues, both of which are correctly
calculated by the Davidson method. In addition, this approach
is about 1.6 times faster than full hessian calculation. Higher-
order saddle points are, therefore, accurately detected by this
procedure.

B. Characterization of minima

The connectivities of the converged oligomerization TS
structures in Test Set 1 are manually modified to resemble the
product oligomers. These geometries are then refined to the
correct product structure using the P-RFO method. Unlike TS
search, all product optimizations are carried out in the absence
of exact hessian inputs. The optimization, therefore, begins
with a diagonal matrix as the hessian guess. The optimization
parameters are identical to those for oligomer TS search.

For a minimum on a potential energy surface in cartesian
coordinates, the lowest six modes typically correspond to ex-
ternal degrees of freedom. Consequently, the eigenvalues cor-
responding to these modes are zero. In Figure 3, the CPU time
for full hessian calculation is compared with the time taken by
the Davidson approach to converge to one of these modes. For
the largest system consisting of 124 atoms, the cost of calcu-
lating the hessian is nearly 60 times the cost of the gradient.
On the other hand, when the Davidson approach begins with
the P-RFO updated hessian, the residual converges in the first
finite-difference step itself, incurring a cost equal to only 2
gradients. As a result, the Davidson method with the P-RFO
input is between 20 and 29 times faster than the full hessian
calculation for this test set. The method is slower to converge
without the P-RFO input, similar to what is observed in TS

characterization, but still twice as fast as the full hessian for
the largest system in this test set.

The efficiency of applying the Davidson procedure is also
tested in situations where the analytical hessian is not avail-
able. Since finite difference hessians are more expensive than
analytical hessians, calculating second derivatives for even
small molecules requires significant computational effort. The
Davidson approach is tested in one such instance. Geometry
optimization of fluoromethane (CH3F), in the absence of a
hessian input, is carried out using MP2/6-311G(d,p) level of
theory with P-RFO parameters identical to those used in the
oligomer optimizations. The time required to characterize the
stationary point using the Davidson method is then contrasted
with that for full finite difference hessian calculation. Calcu-
lation of the finite difference hessian requires 54.49 s of CPU
time. The Davidson procedure can characterize the minimum
in 5 iterations with a total CPU time of 7.29 s – nearly 7.5
times faster than the finite difference hessian, a gain that will
only increase with system size. This approach is, therefore,
not only useful for large molecules for which analytical hes-
sians can become intractable but also systems that are treated
with theory for which analytical hessians are unavailable.

A triflate anion in its eclipsed conformation is a molecule
with Cs symmetry. Geometry optimization is carried out in
parallel (8 cores) at BP86/6-311+G* level of theory. Al-
though the P-RFO searches for a minimum, it converges to
a first-order saddle point with the negative eigenvalue charac-
teristic of a soft mode (54i cm−1). If the Davidson approach
begins with a subspace consisting of the lowest eigenvector of
the P-RFO updated hessian, it rapidly converges to an eigen-
vector that is orthonormal to the soft mode. When the sub-
space guess is a linear combination of the lowest eigenvectors,
it converges correctly to within 3% of the lowest eigenvalue.
Although the Davidson approach is more expensive, requir-
ing 39 min (40 gradients), while the full hessian calculation
needs only 24 min, the former is expected to scale more fa-
vorably with system size. The linear combination-based sub-
space guess can also be used for systems without symmetry in
place of the single eigenvector in order to calculate the low-
est and second eigenvalues for minima and TSs, respectively.
For the minima in Test Set 1 with more than 50 atoms, replac-
ing the lowest eigenvector with a linear combination increases
the cost of characterization by only 2 gradients. This is still 15
times faster than full hessian calculation for the largest system
in the test set.

C. Transition state search

A diverse set of reactions is chosen to evaluate the cost
and performance of the P-RFO with the Davidson-based ap-
proximate hessian input relative to that with the full hessian.
The reactions comprising Test Set 2, shown in Table II, are
largely similar to those used in our previous work.19 The TS
guess structures are generated using FSM with a maximum of
three perpendicular steps per iteration and roughly 20 nodes
on the string. They are then refined to the correct TSs using
P-RFO with both exact hessian as well as Davidson-based ap-
proximate hessian inputs. The two approaches are compared
in terms of both hessian as well as optimization costs.
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TABLE II. Test Set 2 for comparing the costs associated with exact and Davidson-based approximate hessian inputs, as well as cost of TS optimization with
these inputs using the P-RFO method. The TS guesses are generated using FSM-BFGS with ngrads = 3 and nnodes = 20.19

Reaction Description Number of Atoms Basis set Theory

Formaldehyde decomposition H2CO ↔ H2+CO 4 6-31G B3LYP
Silane formation SiH2 + H2 ↔ SiH4 5 6-31G B3LYP
Ethanal rearrangement CH3CHO ↔ CH2CHOH 7 STO-3G HF
Ethane dehydrogenation CH3CH3 ↔ CH2CH2 + H2 8 6-31G** B3LYP
Bicyclobutane ring opening Bicyclobutane ↔ CH2CHCHCH2 10 STO-3G HF
Hexadiene ring formation Cis,cis-2,4-hexadiene ↔ 3,4-dimethylcyclobutene 16 STO-3G HF
Diels Alder reaction CH2CHCHCH2 + CH2CH2 ↔ cyclohexene 16 6-31G B3LYP
Alanine dipeptide rearrangement C5 ↔ C7AX 22 6-31G B3LYP
Ireland Claisen rearrangement35 Silyl ketene acetal ↔ silyl ester 56 6-31G B3LYP
Cellotriose dehydration36 1,2 dehydration 66 6-31G B3LYP

All calculations are carried out using a developmental
version of Q-Chem 4.1 on single cores. For ease of visualiza-
tion, both the hessian and optimization times are divided by
the time required to calculate one energy and gradient. The
resulting hessian cost is compared to the number of finite-
difference steps required in the Davidson procedure. The
number of P-RFO cycles required to converge to the correct
TS is compared for the exact and approximate hessian inputs
to determine whether the use of an approximation adversely
affects the performance of P-RFO. TS searches for Test Set 2
are also carried out in delocalized internal coordinates with an
upper limit on step-size per iteration of 0.1 a0. Figure 4 shows
the total cost of TS search with exact and approximate hessian

FIG. 4. Comparison of total costs between TS searches with exact and ap-
proximate hessian inputs using Test Set 2. The vertical axis represents the
computational cost reported in terms of number of equivalent gradient cal-
culations (cycles) by dividing computational time by the time required to
calculate one energy and gradient. The total cost is broken down into its
two components – firstly the cost of generating the exact or Davidson-based
hessian as inputs to optimization, and secondly cost of optimization using
P-RFO with this hessian input. With increasing size, the cost of calculating
the exact hessian input constitutes a significant fraction of total cost. This can
be avoided with the low cost, size-independent Davidson-based hessian. The
penalty paid for using an approximate input is small compared to total cost
savings achieved relative to TS search with the exact hessian.

inputs. The total cost is broken down into two components –
the cost of calculating the exact/approximate hessian input,
and the number of optimization steps required with this input.
The results are shown in increasing order of system size.

Analytical hessians are relatively inexpensive for small
systems consisting of fewer than 10 atoms. Therefore, the
cost of hessian calculation is only a small fraction of total
TS search cost. In such cases, the Davidson method does not
offer any significant cost advantage. Although there is little
benefit to using the Davidson-based hessian, it is interesting
to note that the convergence of the optimizer is not adversely
affected when an approximation replaces the exact hessian in-
put, as long as it has the correct eigenvalue structure.

As the size of the system increases, the relative contri-
bution of the hessian calculation to the total computational
effort also rises. The cost of the hessian calculation is in fact
higher than the optimization cost for the largest system in the
test set, the dehydration of cellotriose. It can be inferred that
further increase in the system size will result in domination
of the hessian cost in the total cost of TS search. Significant
reduction in computational effort can, therefore, be achieved
by using an approximate hessian that scales more favorably
with system size.

In Test Set 2, the cost of approximate hessian construc-
tion with the Davidson method does not exceed 9 finite-
difference steps, or 18 gradients. Significant savings are
achieved for the largest systems, Ireland-Claisen rearrange-
ment and cellotriose dehydration, for which this method is
3.5 and 7 times less expensive than full hessian calculation,
respectively. Again, the cost penalty associated with using an
approximate input for optimization in place of an exact hes-
sian is small. For cellotriose dehydration, although P-RFO re-
quires 26 more steps to converge with the approximate hes-
sian input relative to the exact hessian, the total cost of the TS
search is still less with the approximate input.

The combined performance of the Davidson approach in
TS search and optimization is shown in Table III. In addi-
tion to the costs associated with hessian construction (labeled
“Hessian”) and subsequent optimization (labeled “Opt.”) pre-
sented in Figure 4, the cost of characterization (labeled
“Charac.”) with the Davidson method is also shown. The
column labeled “Total” also includes, in parentheses, the to-
tal cost if the full hessian is used in place of the Davidson
method.
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TABLE III. Costs involved in TS search and characterization starting with the guess structure, using P-RFO with an exact hessian input and a Davidson-based
hessian input. Costs are reported in terms of number of cycles obtained by dividing computational time by the time required to calculate one energy and gradient.
Costs for calculation of an exact/approximate hessian prior to optimization, P-RFO optimization, and characterization using the Davidson method are labeled
“Hessian,” “Opt.,” and “Charac,” respectively. “Total” indicates the sum of all three components, with the values in parentheses corresponding to the total
cost if characterization is carried out with a full hessian instead of the Davidson method. Davidson-based hessian construction and characterization can lead to
significant overall cost reduction for large systems, as demonstrated by Ireland Claisen rearrangement and cellotriose dehydration reactions.

Exact hessian input Davidson-based hessian input

Costs (#cycles) Hessian Opt. Charac. Total Hessian Opt. Charac. Total

Formaldehyde decomposition 7 35 12 54 (49) 8 38 14 60
Silane formation 8 4 6 18 (20) 6 7 6 19
Ethanal rearrangement 4 46 20 70 (54) 8 52 20 80
Ethane dehydrogenation 12 34 16 62 (58) 16 39 18 73
Bicyclobutane ring opening 6 73 30 109 (85) 8 83 26 117
Hexadiene ring formation 7 35 22 64 (49) 10 39 20 69
Diels Alder reaction 20 29 12 61 (69) 10 30 18 58
Alanine dipeptide rearrangement 26 44 34 104 (96) 18 34 34 86
Ireland Claisen rearrangement 49 42 24 115 (140) 14 48 24 86
Cellotriose dehydration 54 50 22 126 (158) 8 75 16 99

It is interesting to note that characterization costs are rel-
atively insensitive to whether the P-RFO begins with an exact
or an approximate hessian. Therefore, as long as the hessian
input to P-RFO has the correct eigenstructure and reaction co-
ordinate information, the Davidson approach is both speedy
and reliable. For smaller molecules, as observed with approx-
imate hessian construction, the cost of characterization with
the Davidson method is typically higher than that of the full
hessian. For the largest systems, however, using the Davidson
approach for both hessian construction and TS characteriza-
tion can result in nearly 40% cost reduction relative to using
exact hessians.

The finite difference Davidson approach for search and
characterization, therefore, promises significant cost reduc-
tion for saddle point searches in systems of very high dimen-
sionality. There is an additional benefit to using a combination
of FSM, Davidson-based hessian construction, P-RFO, and
subsequent characterization with the Davidson method. The
process of finding a TS from reactant and product structures
can be fully automated with minimal user intervention, as de-
scribed in our previous work.19 However, it must be noted that
in situations where the reaction coordinate is strongly coupled
to other modes, construction of an approximate hessian with
a single accurate eigenvalue may not be sufficient. In such
cases, one may have to calculate the full hessian from force
fields or by using a lower level of theory.12

D. Applications: Catalysis

DFT calculations for studying reactions involving an
organometallic complex can be very expensive owing to the
presence of one or more metal atoms. In such cases, the cost
of calculating the full hessian can be prohibitive. Diaryldithi-
olene complexes of Co with different aryl substituents have
been examined as potential electrocatalysts for proton reduc-
tion in the hydrogen evolution reaction (HER), for the conver-
sion of solar energy to fuels.32 The transition states for the H2

evolution step in the catalytic cycle with two such complexes

are chosen in order to examine the cost reduction achieved
using the Davidson approach for TS characterization.

TS optimizations are carried out in parallel (12
cores) using TS guess structures and exact hessian inputs
for protonated bromo- and methoxy- derivatives of Co-
diaryldithiolene. The system is treated at unrestricted BP86/6-
31++G** level of theory with the exception of the Co atom,
for which the Wachters+f basis set33 is used. The structure
of the optimized bromo-derivative TS is shown in Figure 5.
The cost of calculating the full hessian is equivalent to 43 and
160 gradients, corresponding to about 4 and 5.4 days of com-
putational time for the bromo- and methoxy-TS, respectively.
On the other hand, the Davidson method converges within 3
iterations (6 gradients) in both cases. It is, therefore, 7 times
faster than the full hessian calculation for the bromo-TS and
nearly 27 times faster for the methoxy-TS, demonstrating sub-
stantial cost reduction in stationary point characterizations
for systems containing metal atoms. It can be argued that
since P-RFO begins with an exact hessian, the updated hes-
sian input to Davidson is close to the true hessian, thereby

FIG. 5. Anionic transition state for H2 evolution from the bromo-derivative
of cobalt-diaryldithioline. Cobalt is in the center surrounded by sulfur atoms
(yellow), and the aryl groups are para-substituted with bromo groups (violet).
The Davidson approach for characterization is 7 and 27 times faster than
full hessian calculation for the bromo- and methoxy-based TSs, respectively,
thereby leading to substantial reduction in computational effort.
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leading to rapid convergence. However, one can also construct
an approximate hessian input to P-RFO, using the methods
described earlier, without adversely affecting the performance
of the Davidson approach, as demonstrated by the results in
Table III.

Studying reaction kinetics in the pores of Brønsted acid
catalysts such as zeolites can be computationally expen-
sive since the role of the extended framework cannot be
neglected.34 The representation of the catalyst must include
the non-reactive pore framework in addition to the active site
containing the acidic proton. As a result, TS determination
for propane dehydrogenation in H-MFI with even a small 23
tetrahedral (T) atom cluster model involves calculations on a
system containing 100 atoms. The T5 region containing the
active site and the adsorbate are allowed to relax. Input struc-
tures to the FSM consist of reactant and product geometries
for the dehydrogenation of propane to propene and hydro-
gen – adsorbed propane and adsorbed propene plus H2, re-
spectively. The FSM parameters are identical to those used
in Test Set 2. The P-RFO step size is 0.05 a0 and search is
carried out in cartesian coordinates. The system is treated at
B3LYP/6-31G level of theory and optimizations are run in
parallel (12 cores). The optimized TS for propane dehydro-
genation in MFI is shown in Figure 6.

FIG. 6. Transition state for propane dehydrogenation in a T23 cluster of H-
MFI (B3LYP/6-31G). The yellow atoms correspond to Si linked by O atoms
in red, and the cluster is terminated with H atoms. The Al atom, shown in
green, is representative of the active site where a neighboring O contains an
acidic proton. The ball-and-stick representation is used for the active site and
substrate, which are allowed to relax during optimization. Dehydrogenation
is characterized by a late TS, where the H2 molecule is nearly formed and re-
generation of the acid site by proton migration from the substrate is initiated.
For this system, the cost of calculating an approximate hessian for TS opti-
mization is 6 times less than full hessian calculation. The penalty associated
with using an approximate hessian input to the optimizer is also very low.

The cost of calculating the full hessian is equivalent to
about 62 gradients, with an optimization cost of 263 gradients.
The cost of constructing an approximate hessian, on the other
hand, is only 10 gradients, and the optimizer performance is
similar to that with the exact hessian input, costing 271 gra-
dients. Therefore, even for complex reactions the Davidson
method for approximate hessian construction is a viable al-
ternative to full hessian input for the P-RFO, which cannot
only cut costs associated with hessian computation but also
not degrade the performance of the P-RFO.

IV. CONCLUSIONS

The finite-difference implementation of the Davidson
method utilizes updated hessian information generated by P-
RFO for stationary point characterization to find the lowest
eigenvalues of the exact hessian matrix without actually cal-
culating the matrix itself. This approach performs remarkably
well, with significant cost savings relative to full hessian cal-
culation for both minima and saddle point characterization.
In addition, the rate of convergence is independent of system
size, making this method ideally suited for large molecules.
The cost of characterization of the largest test case, the butyl
lithium undecamer TS (124 atoms) with the Davidson method
is 5 times faster than the full hessian cost, and that of the
undecamer product is 29 times faster. The efficiency of this
approach is also demonstrated for a small molecule with the-
ory for which analytical hessians are not available and finite-
difference hessians are possibly more expensive. A similar
procedure is used to construct low-cost approximate hessian
inputs for TS optimization with P-RFO. For larger systems
where hessian calculation constitutes a large fraction of the
total TS search cost, the Davidson approach can significantly
lower the hessian component of cost without adversely affect-
ing the convergence of the optimizer. Therefore, the finite-
difference Davidson method is a useful tool for both station-
ary point characterizations as well TS searches, particularly
when the system contains a large number of atoms, or when
analytical hessians are not available.
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