Title
Acceleraor Mass Spectrometric Measurements on Foraminifera from deep ocean sediments

Permalink
https://escholarship.org/uc/item/7wg582gk

Journal
Radiocarbon, 32(2)

ISSN
0033-8222

Authors
Trumbore, SE
Broecker, WS
Klas, M
et al.

Publication Date
1992

License
CC BY 4.0

Peer reviewed
RADIOCARBON
An International Journal of Cosmogenic Isotope Research

Editor: Austin Long
Managing Editor: Renee S Kra
Published by
Department of Geosciences
The University of Arizona

Published three times a year at The University of Arizona, Tucson, AZ 85712. © 1990 by the Department of Geosciences, The University of Arizona.

Subscription rate $90.00 (for institutions), $60.00 (for individuals) plus 5% state sales tax and foreign postage. The Proceedings of the Thirteenth International Radiocarbon Conference, Vol 31, No. 3, 1989 are $60.00. The Proceedings of the Twelfth International Radiocarbon Conference, Vol 28, Nos. 2A and 2B, 1986 are $60.00. No. 2B, the Special Calibration Issue, is available separately for $30.00. The full subscription for 1986 which includes the Proceedings is $80.00 (institutions) and $60.00 (individuals). The Proceedings of the Eleventh International Radiocarbon Conference, Vol 25, No. 2, 1983 are $50.00, and the Proceedings of the Tenth International Radiocarbon Conference, Vol 22, Nos. 2 and 3, 1980 are $60.00.

Back issues and price lists may be obtained from the office of RADIOCARBON.

All correspondence and manuscripts should be addressed to the Managing Editor, RADIOCARBON, 4717 East Ft Lowell Road, Department of Geosciences, University of Arizona, Tucson, AZ 85712. Tel: (602) 881-0857; BITNET: C14@ARIZRVAx; Fax: (602) 881-0554.

Offprints. The minimum reprint order for each article will be 100 copies without cover. No offprints will be furnished free of charge unless page charges are paid. The cost of additional copies will, of course, be greater if the article is accompanied by plates involving unusual expense. Copies will be furnished with a printed cover giving the title, author, volume, page, and year, when specially ordered.

Page charges. Each institution sponsoring research reported in a technical paper or a date list, will be asked to pay a charge of $80.00 per printed page. Institutions or authors paying such charges will be entitled to 100 free offprints without covers. No charges will be made if the author indicates that his institution is unable to pay them, and payment of page charges on an article will not in any case be a condition for its acceptance. Reduced rates will be in effect for some special issues.

Missing issues will be replaced without charge only if claim is made within three months (six months for India and Australia) after the publication date. Claim for missing issues will not be honored if absence results from failure by the subscriber to notify the Journal of an address change.

Illustrations should include explanation of symbols used. Copy that cannot be reproduced cannot be accepted. Whenever possible, reduce figures for direct publication. Line drawings should be in black India ink on white drawing board, tracing cloth, or coordinate paper printed in blue and should be accompanied by clear ozalids or reduced photographs for use by the reviewers. Photographs should be positive prints. Figures (photographs and line drawings) should be numbered consecutively through each article, using Arabic numerals. All measurements should be given in SI (metric units). Tables may be accepted as camera-ready copy.

Citations. A number of radiocarbon dates appear in publications without laboratory citation or reference to published date lists. We ask that laboratories remind submitters and users of radiocarbon dates to include proper citation (laboratory number and date list citation) in all publications in which radiocarbon dates appear.

Radiocarbon Measurements: Comprehensive Index, 1950-1965. This index covers all published 14C measurements through Volume 7 of RADIOCARBON, and incorporates revisions made by all laboratories. It is available to all subscribers to RADIOCARBON at $20.00 US per copy.

List of laboratories. Our comprehensive list of laboratories appears annually. We ask all laboratory directors to provide their telephone, telex and fax numbers as well as their E-mail addresses. Changes in names or addresses, additions or deletions should also be reported to the Managing Editor.
CONTENTS

FROM THE EDITOR

Gaining on Gutenberg
Austin Long .. iii

ARTICLES

AMS Radiocarbon Measurements on Foraminifera Shells from Deep-Sea Cores
Wallace S Broecker, Mieczyslawa Klas, Elizabeth Clark, Susan Trumbore, Georges Bonani, Willy Wölfl and Susan Ivy .. 119

Isotope-Ratio and Background Corrections for Accelerator Mass Spectrometry Radiocarbon Measurements
DJ Donahue, TW Linick and AJT Jull 135

Marine Turtle Bones From an Archaeological Site in Polynesia Yield Reliable Age Determinations
TS Dye .. 143

Radiocarbon Dating of the Neolithic Early Bronze Age Site of Mandalo, W Macedonia
Yannis Maniatis and Bernd Kromer 149

Preparative High-Performance Liquid Chromatographic Separation of Individual Amino Acids Derived from Fossil Bone Collagen
Gert Jaap van Klinken and Willem G Mook 155

DATE LISTS

Harwell Radiocarbon Measurements VIII
AJ Walker, Nigel Williams and RL Otlet 165

Museo de la Plata Radiocarbon Measurements II
AJ Figini, JE Carbonari and RA Huarte 197

University of Wisconsin Radiocarbon Dates XXVI
Raymond L Steventon and John E Kutzbach 209

NOTES AND COMMENTS

Calibrating New Zealand Radiocarbon Dates of Marine Shells
BG McFadgen and MR Manning ... 229

Applicability of 'New Technology' Scintillation Counters (Packard 2000 CA/LL and 2260 XL) for \(^{14}C\) Dating
GT Cook, AG Hold, P Naysmith and R Anderson 233

RADIOCARBON UPDATES

.. 235

LABORATORIES

.. 237

ANNOUNCEMENTS

..
The Editors of RADIOCARBON regret to announce that the publication of the Proceedings of the 13th International Radiocarbon Conference, Dubrovnik, Yugoslavia, Volume 31, Number 3, 1989, has been delayed. We are making every effort to rectify this situation.
FROM THE EDITOR

GAINING ON GUTENBERG

Although you may not be able to tell the difference from the first issue in the current volume, this second issue is another landmark for RADIOCARBON. With Volume 32, we began our larger format, nearly 80% larger printed area per page than the format for the first 31 volumes of this journal. Using "desktop publishing" technology, our staff prepared this issue entirely in-house. Thus eliminated are time-consuming and costly transcontinental trips the manuscripts have made for typesetting, proof correcting and final paging. Authors can expect faster publication, easier corrections and the opportunity for late modifications to manuscripts. We see this as a step toward better, tighter control over the quality of the output and a hedge against inflationary costs for the next few years.

The procedural change is, from the author’s and reader’s point of view, nearly invisible; but if you are interested in the details, read on. Immediately upon receipt, if the editor considers a manuscript to be of appropriate subject matter for RADIOCARBON, he will select reviewers, often in consultation with an associate editor. With advice from reviewers and associates, the editor decides whether to publish and how the manuscript must be modified. The next stage in the process is a dialogue between the authors and the managing editor, sometimes involving another iteration with reviewers that results in a mutually acceptable manuscript.

At this point, we request but do not require that the corresponding author submit the final manuscript in one of the acceptable word-processing formats as well as the traditional hard-copy version. Our program is WordPerfect 5.1, so naturally we would prefer any version of WordPerfect, if it is at all possible. Figures should be "camera-ready". We will prepare "typeset" copy as it would appear in the journal and return this to the corresponding author for final inspection and last-chance corrections. The editors and authors share responsibility for quality of the final manuscript. The camera-ready copy then goes for the first time to "press" for reproduction, binding and distribution.

We now have only ourselves to blame for typographical errors.

Austin Long
ASSOCIATE EDITORS

For Accelerator Physics

DAVID ELMORE West Lafayette, Indiana
ROBERT E M HEDGES Oxford, England
ERLE NELSON Burnaby, British Columbia, Canada

For Archaeology

ANDREW MOORE New Haven, Connecticut
MICHAEL B SCHIFFER Tucson, Arizona

For Atmospheric Sciences

GEORGE A DAWSON Tucson, Arizona
Auckland, New Zealand
KUNIHIKO KIGOSHI Tokyo, Japan
DAVID C LOWE Lower Hutt, New Zealand

For Geochemistry

PAVEL POVINEC Bratislava, Czechoslovakia
MINZE STUIVER Seattle, Washington

For Geophysics

G E KOCHAROV Leningrad, USSR
WILLEM G MOOK Groningen, The Netherlands

For Ice Studies

HAROLD W BORNS, JR Orono, Maine
ULRICH SIEGENTHALER Berne, Switzerland

For Oceanography

EDOUARD BARD Gif-sur-Yvette, France
ELLEN R M DRUFFEL Woods Hole, Massachusetts

For Paleobotany

CALVIN J HEUSser Tuxedo, New York
Radiocarbon

ACCELERATOR MASS SPECTROMETRIC RADIOCARBON MEASUREMENTS ON FORAMINIFERA SHELLS FROM DEEP-SEA CORES

SAMPLE PREPARATION

WALLACE S BROECKER, MIECZYSŁAWA KLAS and ELIZABETH CLARK
Lamont-Doherty Geological Observatory, Palisades, New York 10964

MASS SPECTROMETRY

SUSAN TRUMBORE¹, GEORGES BONANI, WILLY WÖLFLI and SUSAN IVY
ETH Honggerberg, CH-8093 Zurich, Switzerland

ABSTRACT. Radiocarbon ages determined by the AMS method on hand-picked foraminifera shells are reported. The results allow estimates of the ventilation rate of the deep Atlantic and Pacific Oceans during glacial time. They also extend our knowledge of the chronology of events associated with the transition from full glacial conditions ca 15,000 years ago to full interglacial conditions ca 8000 years ago. This and the previous lists (Broecker et al 1988c) contain all the results obtained as part of this program through the fall of 1989.

INTRODUCTION

In this paper we present radiocarbon ages obtained by accelerator mass spectrometry (AMS) (Suter et al 1984) on hand-picked foraminifera shells from deep-sea cores. All the ages obtained as part of this program up to the fall of 1989 are included in either this or the previous list (Broecker et al 1988c). In the sections that follow, we comment on the results from particular cores or groups of cores. Note that none of the ages given here have been corrected for the reservoir age. Four hundred years should be subtracted from the planktonics if they are to be compared with ages for terrestrial plants.

CEARA RISE

We studied a series of three cores taken at 2.8, 3.5 and 4.0km depths on the Ceara Rise in cooperation with Bill Curry of Woods Hole Oceanographic Institute (WHOI) in order to determine the surface-to-deep-water 14C age difference for the glacial Atlantic. Broecker et al (1988a,b) published an interpretation of the results on one of these cores. We dated several species of planktonic forams as well as mixed benthics. Tables 1-3 list the abundance data and the 14C ages.

¹Currently at Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratories, Livermore, CA 94550
TABLE 1
KNORR 110-82GC Equatorial Atlantic Ceara Rise
Location (4°20.2'N, 43°29.2'W) Depth 2816m

<table>
<thead>
<tr>
<th>ETH no.</th>
<th>Depth (cm)</th>
<th>Coarse fraction (%)</th>
<th>Foram sp.</th>
<th>Abund (no/gm)</th>
<th>Abund (mg/gm)</th>
<th>No. tests analyzed</th>
<th>Weight analyzed (mg)</th>
<th>Date of AMS analysis</th>
<th>Age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2128</td>
<td>25-28</td>
<td>14.5</td>
<td>G. sacc</td>
<td>557</td>
<td>30.8</td>
<td>222</td>
<td>12.3</td>
<td>Jun 86</td>
<td>14,150±160</td>
</tr>
<tr>
<td>2652</td>
<td></td>
<td></td>
<td>G. nubera</td>
<td>1010</td>
<td>22.8</td>
<td>500</td>
<td>11.3</td>
<td>Jan 87</td>
<td>13,870±260</td>
</tr>
<tr>
<td>2129</td>
<td></td>
<td></td>
<td>P. obliqu</td>
<td>38</td>
<td>2.0</td>
<td>254</td>
<td>13.2</td>
<td>Jun 86</td>
<td>12,610±140</td>
</tr>
<tr>
<td>2241</td>
<td></td>
<td></td>
<td>N. duter</td>
<td>143</td>
<td>8.8</td>
<td>213</td>
<td>13.0</td>
<td>Jul 86</td>
<td>13,860±190</td>
</tr>
<tr>
<td>2130</td>
<td></td>
<td></td>
<td>M. benth</td>
<td>5.8</td>
<td>0.24</td>
<td>233</td>
<td>9.5</td>
<td>Jun 86</td>
<td>14,930±200</td>
</tr>
<tr>
<td>2018</td>
<td>30-33</td>
<td>6.8</td>
<td>G. sacc</td>
<td>215</td>
<td>14.9</td>
<td>194</td>
<td>13.5</td>
<td>Apr 86</td>
<td>15,100±250</td>
</tr>
<tr>
<td>4436</td>
<td></td>
<td></td>
<td>G. sacc</td>
<td>215</td>
<td>14.9</td>
<td>167</td>
<td>7.6</td>
<td>Dec 88</td>
<td>15,080±120</td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td>G. nubera</td>
<td>526</td>
<td>10.1</td>
<td>453</td>
<td>8.7</td>
<td>Apr 88</td>
<td>15,450±260</td>
</tr>
<tr>
<td>4438</td>
<td></td>
<td></td>
<td>G. nubera</td>
<td>526</td>
<td>10.1</td>
<td>938</td>
<td>8.4</td>
<td>Dec 88</td>
<td>15,130±120</td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td>P. obliqu</td>
<td>5.7</td>
<td>0.36</td>
<td>-</td>
<td>-</td>
<td>Apr 86</td>
<td>-</td>
</tr>
<tr>
<td>4437</td>
<td></td>
<td></td>
<td>N. duter</td>
<td>62</td>
<td>3.7</td>
<td>186</td>
<td>11.1</td>
<td>Apr 86</td>
<td>15,170±260</td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td>M. benth</td>
<td>6.7</td>
<td>0.21</td>
<td>298</td>
<td>9.3</td>
<td>Apr 88</td>
<td>16,350±280</td>
</tr>
<tr>
<td>2651</td>
<td>35-38</td>
<td>7.4</td>
<td>G. sacc</td>
<td>216</td>
<td>16.3</td>
<td>163</td>
<td>12.3</td>
<td>Jan 87</td>
<td>16,090±320</td>
</tr>
<tr>
<td>2650</td>
<td></td>
<td></td>
<td>G. nubera</td>
<td>496</td>
<td>8.7</td>
<td>400</td>
<td>7.0</td>
<td>Jan 87</td>
<td>15,870±290</td>
</tr>
<tr>
<td>2244</td>
<td></td>
<td></td>
<td>P. obliqu</td>
<td>1.6</td>
<td>0.08</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2246</td>
<td></td>
<td></td>
<td>N. duter</td>
<td>58</td>
<td>3.5</td>
<td>229</td>
<td>13.7</td>
<td>Jul 86</td>
<td>16,060±220</td>
</tr>
<tr>
<td>2131</td>
<td>40-43</td>
<td>8.9</td>
<td>G. sacc</td>
<td>220</td>
<td>15.5</td>
<td>183</td>
<td>13.0</td>
<td>Jun 86</td>
<td>16,710±250</td>
</tr>
<tr>
<td>2132</td>
<td></td>
<td></td>
<td>G. nubera</td>
<td>458</td>
<td>13.2</td>
<td>548</td>
<td>15.8</td>
<td>Jun 86</td>
<td>17,040±250</td>
</tr>
<tr>
<td>2133</td>
<td></td>
<td></td>
<td>P. obliqu</td>
<td>1.4</td>
<td>0.07</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2134</td>
<td></td>
<td></td>
<td>N. duter</td>
<td>87</td>
<td>6.3</td>
<td>181</td>
<td>13.2</td>
<td>Jun 86</td>
<td>17,610±280</td>
</tr>
<tr>
<td>2135</td>
<td></td>
<td></td>
<td>M. benth</td>
<td>4.5</td>
<td>0.23</td>
<td>193</td>
<td>10.2</td>
<td>Jun 86</td>
<td>17,870±370</td>
</tr>
<tr>
<td>2653</td>
<td>45-48</td>
<td>8.6</td>
<td>G. sacc</td>
<td>186</td>
<td>22.8</td>
<td>86</td>
<td>9.5</td>
<td>Jan 87</td>
<td>17,780±360</td>
</tr>
<tr>
<td>2654</td>
<td></td>
<td></td>
<td>G. nubera</td>
<td>766</td>
<td>14.0</td>
<td>500</td>
<td>12.7</td>
<td>Jan 87</td>
<td>17,430±340</td>
</tr>
<tr>
<td>2248</td>
<td></td>
<td></td>
<td>P. obliqu</td>
<td>4.2</td>
<td>0.22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2249</td>
<td></td>
<td></td>
<td>N. duter</td>
<td>53</td>
<td>3.4</td>
<td>199</td>
<td>12.9</td>
<td>Jul 86</td>
<td>17,660±260</td>
</tr>
</tbody>
</table>

Oxygen and carbon isotope results for benthic foraminifera from Ceara Rise core KNORR 110-82GGC (Curry et al 1988). This core comes from a depth of 2.8km. Shown on the left are mean 14C ages for planktonic foraminifera (corrected for a 400-yr age of surface-water carbon). Shown on the right are the benthic-planktonic age differences obtained for these same samples. The mean difference for five depth horizons is 670 yr. Note that glacial water at this site is depleted by ca 1.0‰ in 13C relative to that for the late Holocene.
TABLE 2

KNORR 110-66GGC Equatorial Atlantic Ceara Rise
Location (4°33.8'N, 43°22.9'W) Depth 3547m

<table>
<thead>
<tr>
<th>ETH no.</th>
<th>Depth (cm)</th>
<th>Coarse fraction (%)</th>
<th>Foram sp.</th>
<th>Abund (no/gm)</th>
<th>Abund (mg/gm)</th>
<th>No tests analyzed</th>
<th>Weight analyzed (mg)</th>
<th>Date of AMS analysis</th>
<th>Age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5070</td>
<td>45-50</td>
<td>6.4</td>
<td>G sacculifer</td>
<td>262</td>
<td>16</td>
<td>157</td>
<td>9.6</td>
<td>Jun 89</td>
<td>16,450±150</td>
</tr>
<tr>
<td>5071</td>
<td>5072</td>
<td>M benth</td>
<td>4.7</td>
<td>0.08</td>
<td>496</td>
<td>8.9</td>
<td>Jun 89</td>
<td>17,030±150</td>
<td></td>
</tr>
<tr>
<td>5074</td>
<td>49-53</td>
<td>6.6</td>
<td>G sacculifer</td>
<td>297</td>
<td>20</td>
<td>131</td>
<td>8.8</td>
<td>Jun 89</td>
<td>16,800±150</td>
</tr>
<tr>
<td>5075</td>
<td>5073</td>
<td>M benth</td>
<td>5.2</td>
<td>0.11</td>
<td>348</td>
<td>7.6</td>
<td>Jun 89</td>
<td>17,690±150</td>
<td></td>
</tr>
<tr>
<td>5076</td>
<td>53-58</td>
<td>6.9</td>
<td>G sacculifer</td>
<td>250</td>
<td>15</td>
<td>148</td>
<td>8.9</td>
<td>Jun 89</td>
<td>18,130±160</td>
</tr>
<tr>
<td>5077</td>
<td>5078</td>
<td>N dutertrei</td>
<td>7.8</td>
<td>4.5</td>
<td>139</td>
<td>8.1</td>
<td>Jun 89</td>
<td>18,060±180</td>
<td></td>
</tr>
<tr>
<td>5285</td>
<td>56-61</td>
<td>6.2</td>
<td>M benth</td>
<td>4.2</td>
<td>0.08</td>
<td>351</td>
<td>6.9</td>
<td>Jun 89</td>
<td>18,630±180</td>
</tr>
<tr>
<td>5286</td>
<td>5284</td>
<td>N dutertrei</td>
<td>7.9</td>
<td>4.2</td>
<td>162</td>
<td>8.7</td>
<td>Jul 89</td>
<td>19,980±190</td>
<td></td>
</tr>
</tbody>
</table>

Figures 1-3 give a summary of the benthic-planktonic age differences. The mean deep-water age obtained for all three cores is 650 years (based on 14 pairs). No significant difference exists in the age obtained for the three depths, i.e., 670 yr at 2.8km, 520 yr at 3.5km and 720 yr at 4.0km.

As shown in the tables, the abundance of G sacculifer is three times lower in the deep core than in the shallower ones, whereas that of *N dutertrei* is somewhat higher. As the cores are from nearly the same location, we would logically attribute this deficiency of *G sacculifer* to preferential dissolution and shell breakup. Coupled with bioturbation, this should lead to a younger age for *G sacculifer* than for *N dutertrei*. However, we see only small age differences at all depths (average of 45 yr at 2.8km, 122 yr at 3.5km and 120 yr at 4.0km). In particular, we see no increase in this age difference at 4.0km where the abundance of *G sacculifer* relative to that of *N dutertrei* is much lower.

Fig 2. Oxygen and carbon isotope results for benthic foraminifera from Ceara Rise core KNR 110-66GGC (Curry et al 1988). The depth of this core is 3.5km. Shown on the left are mean 14C ages for planktonic foraminifera (corrected for a 400-yr age of surface-water carbon). Shown on the right are the benthic-planktonic age differences obtained on these same samples. The mean difference for four levels is 520 yr. Note that glacial water at this site is depleted by a ca 0.6%o in 13C relative to that for the late Holocene.
Table 3

KNORR 110-50GGC Equatorial Atlantic Ceara Rise
Location (4°51.9'N, 43°12.3'W) Depth 3995m

<table>
<thead>
<tr>
<th>ETH</th>
<th>Depth (cm)</th>
<th>Coarse fraction (%)</th>
<th>Foram sp.</th>
<th>Abund (no/gm)</th>
<th>Abund (mg/gm)</th>
<th>No tests analyzed</th>
<th>Weight analyzed (mg)</th>
<th>Date of AMS analysis</th>
<th>Age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4786</td>
<td>17-20</td>
<td>5.9</td>
<td>G sacc</td>
<td>134</td>
<td>8.4</td>
<td>133</td>
<td>8.3</td>
<td>Apr 89</td>
<td>13,580±140</td>
</tr>
<tr>
<td>5219</td>
<td>"</td>
<td>"</td>
<td>N dux</td>
<td>178</td>
<td>7.1</td>
<td>178</td>
<td>9.9</td>
<td>Apr 89</td>
<td>14,710±140</td>
</tr>
<tr>
<td>4787</td>
<td>"</td>
<td>"</td>
<td>M benth</td>
<td>10.5</td>
<td>0.16</td>
<td>453</td>
<td>7.0</td>
<td>Apr 89</td>
<td>15,040±140</td>
</tr>
<tr>
<td>4783</td>
<td>20-23</td>
<td>4.8</td>
<td>G sacc</td>
<td>62</td>
<td>2.7</td>
<td>169</td>
<td>7.3</td>
<td>Apr 89</td>
<td>13,850±130</td>
</tr>
<tr>
<td>4784</td>
<td>"</td>
<td>"</td>
<td>N dux</td>
<td>64</td>
<td>3.3</td>
<td>152</td>
<td>7.8</td>
<td>Apr 89</td>
<td>14,500±200</td>
</tr>
<tr>
<td>4785</td>
<td>"</td>
<td>"</td>
<td>M benth</td>
<td>7.3</td>
<td>0.13</td>
<td>417</td>
<td>7.3</td>
<td>Apr 89</td>
<td>14,760±140</td>
</tr>
<tr>
<td>4772</td>
<td>22-27</td>
<td>4.5</td>
<td>G sacc</td>
<td>98</td>
<td>5.0</td>
<td>169</td>
<td>8.6</td>
<td>Apr 89</td>
<td>16,900±170</td>
</tr>
<tr>
<td>4773</td>
<td>"</td>
<td>"</td>
<td>N dux</td>
<td>95</td>
<td>5.1</td>
<td>162</td>
<td>8.7</td>
<td>Apr 89</td>
<td>16,740±210</td>
</tr>
<tr>
<td>4774</td>
<td>"</td>
<td>"</td>
<td>M benth</td>
<td>4.9</td>
<td>0.08</td>
<td>361</td>
<td>5.7</td>
<td>Apr 89</td>
<td>17,110±190</td>
</tr>
<tr>
<td>4777</td>
<td>27-32</td>
<td>5.5</td>
<td>G sacc</td>
<td>117</td>
<td>5.5</td>
<td>169</td>
<td>7.9</td>
<td>Apr 89</td>
<td>17,350±170</td>
</tr>
<tr>
<td>4778</td>
<td>"</td>
<td>"</td>
<td>N dux</td>
<td>120</td>
<td>5.1</td>
<td>166</td>
<td>7.1</td>
<td>Apr 89</td>
<td>17,540±160</td>
</tr>
<tr>
<td>4779</td>
<td>"</td>
<td>"</td>
<td>M benth</td>
<td>5.6</td>
<td>0.08</td>
<td>532</td>
<td>8.0</td>
<td>Apr 89</td>
<td>18,360±200</td>
</tr>
<tr>
<td>4780</td>
<td>31-36</td>
<td>5.5</td>
<td>G sacc</td>
<td>119</td>
<td>6.5</td>
<td>138</td>
<td>7.5</td>
<td>Apr 89</td>
<td>18,210±190</td>
</tr>
<tr>
<td>4781</td>
<td>"</td>
<td>"</td>
<td>N dux</td>
<td>128</td>
<td>7.1</td>
<td>142</td>
<td>7.9</td>
<td>Apr 89</td>
<td>18,620±200</td>
</tr>
<tr>
<td>4782</td>
<td>"</td>
<td>"</td>
<td>M benth</td>
<td>6.1</td>
<td>0.08</td>
<td>605</td>
<td>8.3</td>
<td>Apr 89</td>
<td>19,110±190</td>
</tr>
<tr>
<td>5067</td>
<td>35-40</td>
<td>4.4</td>
<td>G sacc</td>
<td>127</td>
<td>6.6</td>
<td>168</td>
<td>8.7</td>
<td>Apr 89</td>
<td>19,470±180</td>
</tr>
<tr>
<td>5068</td>
<td>"</td>
<td>"</td>
<td>N dux</td>
<td>78</td>
<td>4.1</td>
<td>159</td>
<td>8.3</td>
<td>Apr 89</td>
<td>18,980±160</td>
</tr>
<tr>
<td>5069</td>
<td>"</td>
<td>"</td>
<td>M benth</td>
<td>4.0</td>
<td>0.06</td>
<td>358</td>
<td>5.1</td>
<td>Apr 89</td>
<td>20,360±220</td>
</tr>
</tbody>
</table>

Fig 3. Oxygen and carbon isotope results for benthic foraminifera from Ceara Rise core KN110-50GGC (Curry et al. 1988). The depth of this core is 4.0km. Shown on the left are mean 14C ages for planktonic foraminifera (corrected for a 400-yr age for surface-water carbon). Shown on the right are the benthic-planktonic age differences obtained on these same samples. The mean difference for five pairs is 725 yr. Note that glacial water at this site is depleted by ca 0.7‰ in 13C relative to that for the late Holocene.
CARIBBEAN SEA

We selected Core V28-122 as representative of the low nutrient and high 13C/12C water of the intermediate depth Atlantic during glacial time (Oppo & Fairbanks 1987). As Figure 4 shows, the δ^{13}C value for benthic forams was higher during glacial time than during the Holocene in contrast to the lower glacial values for the three Ceara Rise cores (see previous section). Although V28-122 comes from 3.6km depth, it is representative of water at ca 1.8km depth in the open Atlantic, ie, the sill depth for the Caribbean.

As Table 4 and Figure 4 show, the three glacial-age samples yield an average benthic-planktonic age difference of 180 years, as opposed to ca 650 years for the open Atlantic. Hence, as would be expected, the low nutrient-upper water of glacial time has a lower 14C age than the high nutrient-deep water of glacial time.

![Graph showing the differences between benthic and planktonic ages](image)

TABLE 4

<table>
<thead>
<tr>
<th>ETH no.</th>
<th>Depth (cm)</th>
<th>Coarse Fraction (%)</th>
<th>Foram sp</th>
<th>Abund (no/gm)</th>
<th>Abund (mg/gm)</th>
<th>No tests analyzed</th>
<th>Weight analyzed (mg)</th>
<th>Date of AMS analysis</th>
<th>Age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5058</td>
<td>106-114</td>
<td>5.9</td>
<td>G. sacc</td>
<td>24</td>
<td>1.48</td>
<td>150</td>
<td>9.2</td>
<td>May 89</td>
<td>14,140±110</td>
</tr>
<tr>
<td>5059</td>
<td>"</td>
<td>"</td>
<td>G. ruber</td>
<td>513</td>
<td>5.07</td>
<td>758</td>
<td>7.5</td>
<td>May 89</td>
<td>15,480±140</td>
</tr>
<tr>
<td>5060</td>
<td>"</td>
<td>"</td>
<td>M. bentic</td>
<td>13</td>
<td>0.32</td>
<td>331</td>
<td>8.1</td>
<td>May 89</td>
<td>16,750±130</td>
</tr>
<tr>
<td>5063</td>
<td>115-123</td>
<td>7.4</td>
<td>G. sacc</td>
<td>44</td>
<td>2.12</td>
<td>163</td>
<td>7.8</td>
<td>May 89</td>
<td>17,120±150</td>
</tr>
<tr>
<td>5061</td>
<td>"</td>
<td>"</td>
<td>G. ruber</td>
<td>407</td>
<td>5.62</td>
<td>601</td>
<td>8.3</td>
<td>May 89</td>
<td>16,980±140</td>
</tr>
<tr>
<td>5062</td>
<td>"</td>
<td>"</td>
<td>M. bentic</td>
<td>20</td>
<td>0.47</td>
<td>417</td>
<td>9.9</td>
<td>May 89</td>
<td>17,300±150</td>
</tr>
<tr>
<td>5227</td>
<td>125-128</td>
<td>6.0</td>
<td>G. sacc</td>
<td>46</td>
<td>2.70</td>
<td>165</td>
<td>9.7</td>
<td>Jul 89</td>
<td>17,390±160</td>
</tr>
<tr>
<td>5226</td>
<td>"</td>
<td>"</td>
<td>G. ruber</td>
<td>523</td>
<td>15.2</td>
<td>340</td>
<td>9.9</td>
<td>Jul 89</td>
<td>17,680±170</td>
</tr>
<tr>
<td>5225</td>
<td>"</td>
<td>"</td>
<td>M. bentic</td>
<td>36</td>
<td>0.67</td>
<td>570</td>
<td>10.5</td>
<td>Jul 89</td>
<td>17,610±180</td>
</tr>
<tr>
<td>5454</td>
<td>127-139</td>
<td>"</td>
<td>Cibicides</td>
<td>-</td>
<td>-</td>
<td>229</td>
<td>5.5</td>
<td>Aug 89</td>
<td>18,370±200</td>
</tr>
<tr>
<td>5455</td>
<td>"</td>
<td>"</td>
<td>Milolids</td>
<td>-</td>
<td>-</td>
<td>270</td>
<td>8.6</td>
<td>Aug 89</td>
<td>17,980±170</td>
</tr>
<tr>
<td>5453</td>
<td>"</td>
<td>"</td>
<td>Other benthics</td>
<td>-</td>
<td>-</td>
<td>267</td>
<td>10.2</td>
<td>Aug 89</td>
<td>18,730±190</td>
</tr>
</tbody>
</table>

Fig 4. Oxygen and carbon isotope records for benthic forams from Caribbean core V28-122 (Oppo & Fairbanks 1987). Shown on the left are the average 18O ages for planktonic foraminifera (corrected for an assumed 400-yr age for surface water) and to the right are the differences between the benthic and planktonic age. Some of the ages are from this list (Table 4). The rest are from our previous list (Broecker et al 1988a). Note that the glacial water at this site is enriched by ca 0.3‰ in 13C relative to that for Holocene time indicating that the site of this core was bathed in low nutrient waters.
Two samples from the period of transition between full glacial and full interglacial time yield highly anomalous results. The age for *G. sacculifer* is in both cases much younger than that for *G. ruber* and the benthic-planktonic age difference is very large (Fig 5). We suspect that these anomalies relate to the abundance minimum for both planktonic species centered at 100cm depth (Fig 6). Both the ages of *G. sacculifer* and of *G. ruber* are influenced by the downward mixing of younger foraminiferal tests from shallower levels in the core.

We have another problem with this core. One of the original samples we analyzed came from 123-124cm depth (Broecker *et al* 1988c). It yielded nearly concordant planktonic ages averaging 15,700 years. As we found too few benthics in this sample, we had to pick more from slightly deeper levels. Two more problems exist. First, the benthic-planktonic age difference was larger (~700 yr) than that obtained for the three samples shown in Figure 5. Second, the ages were all ca 1500 years younger than those for the sample from 125-128cm. Hence, we exclude this result from Figure 4.

![Fig 5. 14C age vs depth in Caribbean Sea core V28-122. The *G. sacculifer* (S) and the *G. ruber* (R) for two levels are anomalously young. These samples come from a horizon where the abundances are very low and therefore may be strongly influenced by the downward mixing of younger specimens (Fig 6).](image)

![Fig 6. Abundance vs depth for the two planktonic and mixed benthic samples from Caribbean Sea core V28-122. The dashed lines represent the two levels yielding anomalously low planktonic ages (see Fig 5).](image)
In an attempt to assess whether differences exist among the ages for individual species of benthic foraminifera, we divided one sample into three parts, one consisting of only *C wuellerstorfi*, one consisting of only miliolids and one consisting of the remainder of the benthics. As we see in Table 4, the three results spread by ca 2σ with the miliolids giving an 800 ± 300 year younger age than the non-miliolid-cibicides fraction. The age for the cibicides falls in between that for the other two fractions.

ORCA BASIN

We determined radiocarbon ages on two cores from the Orca Basin in the Gulf of Mexico (Table 5, Fig 7). The purpose was to define the chronology of meltwater discharge from the Mississippi River. The results from EN32-PC4 suggest that meltwater discharge was greatly reduced during the period from ca 11,000 to ca 10,000 years ago. This is consistent with geologic evidence that the discharge of meltwaters via glacial Lake Agassiz was diverted from the Mississippi to the St Lawrence River ca 11,000 years ago and diverted back to the Mississippi ca 10,000 years ago. As summarized by Broecker et al (1989a), these results are consistent with the hypothesis that the Younger Dryas cold event was caused by a shutdown of the Atlantic’s conveyor system caused by the increased meltwater flow via the St Lawrence River.

We redated one level in core EN32-PC6 to check several earlier results which gave anomalously young results, leading us to suspect that a hiatus existed in this core. The new date fits exactly with the results of core EN32-PC4 and suggests that some problem exists with the previous determinations. We have never before encountered such large differences between results generated by our AMS dating program. Further, as we ran the four anomalous samples at three different times spread over more than one year, the explanation cannot lie in a single episode of contamination.

Table 5

Results on cores from the Orca Basin of the Gulf of Mexico

<table>
<thead>
<tr>
<th>ETH no.</th>
<th>Depth (cm)</th>
<th>Coarse fraction (%)</th>
<th>Foram sp</th>
<th>Abund (no/gm)</th>
<th>Abund (mg/gm)</th>
<th>No tests analyzed</th>
<th>Weight analyzed (mg)</th>
<th>Date of AMS analysis</th>
<th>Age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN32-PC6 Orca Basin, Gulf of Mexico Location (26°57'N, 91°21'W) Depth 2280m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4769</td>
<td>436-437</td>
<td>-</td>
<td>M plank</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.8</td>
<td>May 89</td>
<td>10,910±160</td>
</tr>
<tr>
<td>EN32-PC4 Orca Basin, Gulf of Mexico Location (26°56'N, 91°22'W) Depth 2260m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4767</td>
<td>94-96</td>
<td>-</td>
<td>M plank</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.9</td>
<td>Apr 89</td>
<td>9510±100</td>
</tr>
<tr>
<td>4194</td>
<td>144-146</td>
<td>-</td>
<td>"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.2</td>
<td>Oct 88</td>
<td>10,490±90</td>
</tr>
<tr>
<td>4195</td>
<td>150-152</td>
<td>-</td>
<td>"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.0</td>
<td>Oct 88</td>
<td>10,760±130</td>
</tr>
<tr>
<td>4196</td>
<td>164-166</td>
<td>-</td>
<td>"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.2</td>
<td>Oct 88</td>
<td>11,030±90</td>
</tr>
<tr>
<td>4197</td>
<td>194-196</td>
<td>-</td>
<td>"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.4</td>
<td>Oct 88</td>
<td>11,510±100</td>
</tr>
<tr>
<td>4198</td>
<td>214-216</td>
<td>-</td>
<td>"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.0</td>
<td>Oct 88</td>
<td>12,450±90</td>
</tr>
<tr>
<td>4768</td>
<td>288-290</td>
<td>-</td>
<td>"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.8</td>
<td>Apr 89</td>
<td>13,260±140</td>
</tr>
<tr>
<td>Gerg 87G13-31 Orca Basin, Gulf of Mexico Location (26°56'N, 91°21'W) Depth 2350m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5447</td>
<td>330-335</td>
<td>0.8</td>
<td>M plank</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9.3</td>
<td>Aug 89</td>
<td>10,570±110</td>
</tr>
<tr>
<td>5446</td>
<td>360-365</td>
<td>2.1</td>
<td>"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.0</td>
<td>Aug 89</td>
<td>11,890±110</td>
</tr>
<tr>
<td>5449</td>
<td>480-485</td>
<td>0.5</td>
<td>"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.8</td>
<td>Aug 89</td>
<td>14,380±140</td>
</tr>
<tr>
<td>5448</td>
<td>490-495</td>
<td>0.3</td>
<td>"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.0</td>
<td>Aug 89</td>
<td>14,860±150</td>
</tr>
</tbody>
</table>
Jim Brooks of Texas A&M obtained a set of four piston cores for us from the same site in the Orca Basin. Delia Oppo and Chris Charles conducted oxygen isotope analyses on one of these cores in the LDGO laboratory of Richard Fairbanks in order to locate the meltwater event. Figure 8 shows the results. Four 14C ages (Table 5) on mixed planktonics define the onset (~14,300 yr ago) and the termination (~10,500 yr ago) of this event.

CANARY ISLANDS RISE

Core V30-60 was selected to obtain a chronology for the pteropod preservation event seen in the early Holocene of the northern Atlantic. The results are listed in Table 6 and shown graphically in Figure 9. It is possible that this event was created by the increase in CO_3^{2-} ion concentration in the ocean associated with the drawdown in atmospheric CO_2 content brought about by the early Holocene reforestation of the areas covered by ice and tundra during glacial time. As Figure 10 shows, the preservation event appears to correspond to an early Holocene minimum in atmospheric CO_2 content.
AMS 14C Measurements on Foraminifera Shells

TABLE 6

V30-60 North Atlantic in the vicinity of the Canary Islands
Location (25°41'N, 18°27'W) Depth 3177m

<table>
<thead>
<tr>
<th>ETH no.</th>
<th>Depth (cm)</th>
<th>Coarse fraction (%)</th>
<th>Foram sp</th>
<th>Abund (no/gm)</th>
<th>Abund (mg/gm)</th>
<th>No tests analyzed</th>
<th>Weight analyzed (mg)</th>
<th>Date of AMS analysis</th>
<th>Age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4770</td>
<td>14-17</td>
<td>26.4</td>
<td>G. saca</td>
<td>72.7</td>
<td>6.1</td>
<td>125</td>
<td>10.5</td>
<td>Apr 89</td>
<td>4650±80</td>
</tr>
<tr>
<td>4771</td>
<td>20-23</td>
<td>28.5</td>
<td>Pteropods</td>
<td>-</td>
<td>3.1</td>
<td>7.3</td>
<td>Apr 89</td>
<td>7680±170</td>
<td></td>
</tr>
<tr>
<td>4209</td>
<td>23-24</td>
<td>29.9</td>
<td>Pteropods</td>
<td>-</td>
<td>-</td>
<td>7.4</td>
<td>Oct 88</td>
<td>8460±70</td>
<td></td>
</tr>
<tr>
<td>4210</td>
<td>26-27</td>
<td>30.4</td>
<td>Pteropods</td>
<td>-</td>
<td>-</td>
<td>7.0</td>
<td>Oct 88</td>
<td>9380±80</td>
<td></td>
</tr>
<tr>
<td>4211</td>
<td>29-30</td>
<td>24.0</td>
<td>Pteropods</td>
<td>-</td>
<td>-</td>
<td>8.0</td>
<td>Oct 88</td>
<td>9550±80</td>
<td></td>
</tr>
<tr>
<td>4212</td>
<td>32-33</td>
<td>20.6</td>
<td>Pteropods</td>
<td>-</td>
<td>-</td>
<td>8.1</td>
<td>Oct 88</td>
<td>9340±80</td>
<td></td>
</tr>
</tbody>
</table>

Fig 9. Pteropod abundance in Canary Islands Rise core V30-60 and AMS 14C ages on hand-picked pteropods from this core. The 14C ages are corrected for an assumed 400-yr air-sea difference.

Fig 10. CO$_2$ record for the Byrd Antarctica ice core (Neftel et al 1988). The time scale is based on the current accumulation rate of ice and flow modeling. The early Holocene dip dropped the CO$_2$ content from ca 285 to ca 245µatm.
NORTHERN ATLANTIC

In order to resolve the discordance between two previous measurements (11,300 ± 140 and 10,230 ± 200, Broecker et al 1988c), we repeated the analysis of *N. pachyderma* (left coiling) from a depth of 157-158 cm, the peak of the Younger Dryas cold period. The new analysis yielded a result of 11,280 ± 90 years, confirming the first of the two previous results. Subtracting 400 years for the age of surface waters, we get 10,880 years for the Younger Dryas peak.

In a routine duplication, we dated one of the results published in our previous list (Broecker et al 1988c), *G. bulloides* (V23-81, 172-173 cm). The original sample run in August 1986 had an abundance of 3.6 mg/gm and an age of 11,860 ± 170 years. The new sample run in December 1988 had an abundance of 3.1 mg/gm and an age of 11,980 ± 110 years (Table 7).

Table 7
V23-81 North Atlantic from the Ruddiman-McIntyre Triangle
Location (54°18'N, 16°48'W) Depth 2393 m

<table>
<thead>
<tr>
<th>ETH no.</th>
<th>Depth (cm)</th>
<th>Coarse fraction (%)</th>
<th>Foram sp</th>
<th>Abund (no/gm)</th>
<th>Abund (mg/gm)</th>
<th>No. tests analyzed</th>
<th>Weight analyzed (mg)</th>
<th>Date of AMS analysis</th>
<th>Age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4193</td>
<td>157-158</td>
<td>8.7</td>
<td>N. pach</td>
<td>4130</td>
<td>40.4</td>
<td>787</td>
<td>7.7</td>
<td>Jul 88</td>
<td>11,280±90</td>
</tr>
<tr>
<td>4656</td>
<td>172-173</td>
<td>2.4</td>
<td>G. bull</td>
<td>219</td>
<td>3.14</td>
<td>460</td>
<td>6.6</td>
<td>Feb 89</td>
<td>11,980±110</td>
</tr>
</tbody>
</table>

RED SEA

Deuser and Degens (1969) showed that a marked transition in sediment diagenesis and in stable isotope ratio occurred in the Red Sea at the close of glacial time (Fig 11). Below this transition, pteropods are covered with thick coatings of secondary aragonite. The δ¹⁸O for these coatings is 6‰ higher than for Holocene pteropods and the δ¹³C is 3‰ higher (Fig 11). No forams are found below the boundary. We interpret these results to indicate hypersaline conditions in the Red Sea during glacial time. Working with Werner Deuser, we have attempted to establish more closely the date of the sharp transition from glacial to postglacial conditions (see Table 8 for results). Some of our results were published in our previous date list (Broecker et al 1988c); the rest are here. In Figure 12, we summarize these findings and show the best age estimate for termination of hypersaline conditions is ca 13,000 years.

SOUTH CHINA SEA

We previously studied two cores, V35-5 and V35-6, from 2 km depth in the southern part of the South China Sea with the purpose of determining the age of deep Pacific water during glacial time (Broecker et al 1988b). We encountered a problem - *P. obliquiloculata* was consistently older than *G. sacculifer*. Since no way existed to determine which if either of these age sets was correct, we sought another core. Gerd Liebezeit of the Hamburg University group provided samples from Sonne 50 37KL, a piston core from 2695 m in the central part of the basin (Table 9). For the glacial section of this core, we found no consistent bias between the *P. obliquiloculata* and *G. sacculifer* ages. The mean benthic-planktonic age difference for three pairs is ca 1700 years. These results are discussed in a separate publication (Broecker et al, in press).
AMS 14C Measurements on Foraminifera Shells

TABLE 8
Results on Red Sea cores

<table>
<thead>
<tr>
<th>ETH no.</th>
<th>Depth (cm)</th>
<th>Foram sp</th>
<th>Abund (no/gm)</th>
<th>Abund (mg/gm)</th>
<th>No. tests analyzed</th>
<th>Weight analyzed (mg)</th>
<th>Date of AMS analysis</th>
<th>Age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch61-118K Red Sea Location (21° 14.4’N, 38° 4.3’E) Depth 1989m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3811</td>
<td>165-170</td>
<td>Pteropods $>1000\mu$m</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>7.5</td>
<td>May 88</td>
<td>11,980±120</td>
</tr>
<tr>
<td>3812</td>
<td>165-170</td>
<td>Pteropods 250-1000μm</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10.2</td>
<td>May 88</td>
<td>11,520±100</td>
</tr>
<tr>
<td>3813</td>
<td>170-175</td>
<td>Pteropods $>1000\mu$m</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10.6</td>
<td>May 88</td>
<td>13,420±110</td>
</tr>
</tbody>
</table>

| Ch61-119K Red Sea Location (21° 16.8’N, 38° 1.4’E) Depth 2175m |
4451	145-150	O. sacc	--	--	--	8.3	Dec 88	8770±90
4452	215-220	Pteropods $>1000\mu$m	--	--	--	8.2	Dec 88	13,640±110
4453	235-240	Pteropods $>1000\mu$m	--	--	--	7.1	Dec 88	15,780±140

Fig 11. Oxygen and carbon isotope records on pteropods from Red Sea core CH61-118K (Deuser & Degens 1969; Ku, Thurber & Mathieu 1969). ◦ = pteropods free of secondary coatings. • = pteropods heavily coated with secondary aragonite. Also shown are decay counting 14C ages obtained previously on bulk material (Ku, Thurber & Mathieu 1969).
Table 9
SONNE 50 37KL South China Sea
Location (18°55'N, 115°45'E) Depth 2695m

<table>
<thead>
<tr>
<th>ETH no.</th>
<th>Depth (cm)</th>
<th>Coarse fraction (%)</th>
<th>Foram sp</th>
<th>Abund (no/gm)</th>
<th>Abund (mg/gm)</th>
<th>No tests analyzed</th>
<th>Weight analyzed (mg)</th>
<th>Date of AMS analysis</th>
<th>Age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5222</td>
<td>8-13</td>
<td>5.1</td>
<td>G saci</td>
<td>3.0</td>
<td>0.15</td>
<td>191</td>
<td>9.4</td>
<td>Jul 89</td>
<td>2040±70</td>
</tr>
<tr>
<td>5221</td>
<td>"</td>
<td>"</td>
<td>P obliq</td>
<td>22.7</td>
<td>1.40</td>
<td>170</td>
<td>10.5</td>
<td>Jul 89</td>
<td>2430±60</td>
</tr>
<tr>
<td>5223</td>
<td>"</td>
<td>M benth</td>
<td>9.3</td>
<td>0.26</td>
<td>238</td>
<td>6.6</td>
<td>Jul 89</td>
<td>3970±80</td>
<td></td>
</tr>
<tr>
<td>4440</td>
<td>40-45</td>
<td>7.7</td>
<td>G saci</td>
<td>34.5</td>
<td>1.35</td>
<td>197</td>
<td>6.5</td>
<td>Dec 88</td>
<td>5960±80</td>
</tr>
<tr>
<td>4439</td>
<td>"</td>
<td>P obliq</td>
<td>22.0</td>
<td>9.82</td>
<td>164</td>
<td>7.3</td>
<td>Dec 88</td>
<td>6510±80</td>
<td></td>
</tr>
<tr>
<td>4441</td>
<td>"</td>
<td>M benth</td>
<td>17.3</td>
<td>0.22</td>
<td>514</td>
<td>6.5</td>
<td>Dec 88</td>
<td>8270±100</td>
<td></td>
</tr>
<tr>
<td>5390</td>
<td>60-65</td>
<td>5.5</td>
<td>G saci</td>
<td>55.8</td>
<td>2.59</td>
<td>164</td>
<td>7.6</td>
<td>Aug 89</td>
<td>8500±110</td>
</tr>
<tr>
<td>5391</td>
<td>"</td>
<td>P obliq</td>
<td>70.7</td>
<td>3.78</td>
<td>185</td>
<td>9.9</td>
<td>Aug 89</td>
<td>8500±110</td>
<td></td>
</tr>
<tr>
<td>5389</td>
<td>"</td>
<td>M benth</td>
<td>17.5</td>
<td>0.29</td>
<td>526</td>
<td>8.6</td>
<td>Aug 89</td>
<td>10,030±120</td>
<td></td>
</tr>
<tr>
<td>4445</td>
<td>80-85</td>
<td>7.1</td>
<td>G saci</td>
<td>77.1</td>
<td>2.97</td>
<td>166</td>
<td>6.4</td>
<td>Dec 88</td>
<td>10,560±100</td>
</tr>
<tr>
<td>4446</td>
<td>"</td>
<td>P obliq</td>
<td>116</td>
<td>4.68</td>
<td>171</td>
<td>6.9</td>
<td>Dec 88</td>
<td>10,620±120</td>
<td></td>
</tr>
<tr>
<td>4447</td>
<td>"</td>
<td>M benth</td>
<td>14.2</td>
<td>0.22</td>
<td>488</td>
<td>7.4</td>
<td>Dec 88</td>
<td>11,890±110</td>
<td></td>
</tr>
<tr>
<td>4655</td>
<td>120-125</td>
<td>5.2</td>
<td>G saci</td>
<td>119</td>
<td>4.60</td>
<td>176</td>
<td>6.8</td>
<td>Feb 89</td>
<td>13,940±120</td>
</tr>
<tr>
<td>4654</td>
<td>"</td>
<td>P obliq</td>
<td>17.5</td>
<td>0.68</td>
<td>166</td>
<td>6.4</td>
<td>Feb 89</td>
<td>13,240±120</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>"</td>
<td>M benth</td>
<td>20.0</td>
<td>0.29</td>
<td>553</td>
<td>7.9</td>
<td>Lost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3807</td>
<td>155-160*</td>
<td>6.7</td>
<td>G saci</td>
<td>90.8</td>
<td>3.66</td>
<td>328</td>
<td>13.2</td>
<td>May 88</td>
<td>12,730±140</td>
</tr>
<tr>
<td>3806</td>
<td>"</td>
<td>P obliq</td>
<td>128</td>
<td>5.01</td>
<td>267</td>
<td>10.5</td>
<td>May 88</td>
<td>12,290±250</td>
<td></td>
</tr>
<tr>
<td>3808</td>
<td>"</td>
<td>M benth</td>
<td>8.3</td>
<td>0.23</td>
<td>396</td>
<td>11.0</td>
<td>May 88</td>
<td>13,710±120</td>
<td></td>
</tr>
<tr>
<td>5440</td>
<td>160-165</td>
<td>2.3</td>
<td>G saci</td>
<td>30.3</td>
<td>1.44</td>
<td>179</td>
<td>8.5</td>
<td>Aug 89</td>
<td>15,140±150</td>
</tr>
<tr>
<td>5441</td>
<td>"</td>
<td>P obliq</td>
<td>12.1</td>
<td>0.65</td>
<td>148</td>
<td>7.9</td>
<td>Aug 89</td>
<td>15,300±150</td>
<td></td>
</tr>
<tr>
<td>5444</td>
<td>"</td>
<td>M benth</td>
<td>11.6</td>
<td>0.23</td>
<td>466</td>
<td>9.4</td>
<td>Aug 89</td>
<td>17,100±220</td>
<td></td>
</tr>
<tr>
<td>4650</td>
<td>165-170</td>
<td>2.2</td>
<td>G saci</td>
<td>9.8</td>
<td>0.49</td>
<td>159</td>
<td>8.0</td>
<td>Feb 89</td>
<td>15,490±110</td>
</tr>
<tr>
<td>4651</td>
<td>"</td>
<td>P obliq</td>
<td>16.8</td>
<td>0.78</td>
<td>171</td>
<td>7.9</td>
<td>Feb 89</td>
<td>15,590±160</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>"</td>
<td>M benth</td>
<td>12.6</td>
<td>0.16</td>
<td>575</td>
<td>7.2</td>
<td>Lost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4204</td>
<td>175-180</td>
<td>2.4</td>
<td>G saci</td>
<td>9.0</td>
<td>0.46</td>
<td>165</td>
<td>8.5</td>
<td>Oct 88</td>
<td>15,910±110</td>
</tr>
<tr>
<td>4205</td>
<td>"</td>
<td>P obliq</td>
<td>17.3</td>
<td>0.73</td>
<td>179</td>
<td>7.6</td>
<td>Oct 88</td>
<td>15,890±120</td>
<td></td>
</tr>
<tr>
<td>4203</td>
<td>"</td>
<td>M benth</td>
<td>14.5</td>
<td>0.21</td>
<td>628</td>
<td>9.1</td>
<td>"</td>
<td>17,430±140</td>
<td></td>
</tr>
<tr>
<td>4207</td>
<td>185-190</td>
<td>3.2</td>
<td>G saci</td>
<td>11.2</td>
<td>0.48</td>
<td>189</td>
<td>8.1</td>
<td>Oct 88</td>
<td>16,000±120</td>
</tr>
<tr>
<td>-----</td>
<td>"</td>
<td>P obliq</td>
<td>19.5</td>
<td>0.79</td>
<td>178</td>
<td>7.2</td>
<td>"</td>
<td>Lost</td>
<td></td>
</tr>
<tr>
<td>5065</td>
<td>"</td>
<td>P obliq</td>
<td>19.5</td>
<td>0.79</td>
<td>210</td>
<td>7.1</td>
<td>May 89</td>
<td>16,860±150</td>
<td></td>
</tr>
<tr>
<td>4206</td>
<td>"</td>
<td>M benth</td>
<td>14.3</td>
<td>0.26</td>
<td>462</td>
<td>8.5</td>
<td>Oct 88</td>
<td>17,590±140</td>
<td></td>
</tr>
<tr>
<td>4449</td>
<td>195-200</td>
<td>2.9</td>
<td>G saci</td>
<td>9.7</td>
<td>0.30</td>
<td>228</td>
<td>7.1</td>
<td>Dec 88</td>
<td>17,460±160</td>
</tr>
<tr>
<td>4450</td>
<td>"</td>
<td>P obliq</td>
<td>18.3</td>
<td>0.76</td>
<td>203</td>
<td>8.4</td>
<td>Dec 88</td>
<td>17,270±150</td>
<td></td>
</tr>
<tr>
<td>4448</td>
<td>"</td>
<td>M benth</td>
<td>16.2</td>
<td>0.20</td>
<td>613</td>
<td>7.5</td>
<td>Dec 88</td>
<td>18,940±160</td>
<td></td>
</tr>
<tr>
<td>5437</td>
<td>205-210</td>
<td>2.8</td>
<td>G saci</td>
<td>2.4</td>
<td>1.27</td>
<td>180</td>
<td>9.5</td>
<td>Aug 89</td>
<td>17,660±180</td>
</tr>
<tr>
<td>5438</td>
<td>"</td>
<td>P obliq</td>
<td>7.3</td>
<td>0.38</td>
<td>146</td>
<td>7.5</td>
<td>Aug 89</td>
<td>17,255±190</td>
<td></td>
</tr>
<tr>
<td>5439</td>
<td>"</td>
<td>M benth</td>
<td>15.6</td>
<td>0.23</td>
<td>815</td>
<td>12.1</td>
<td>Aug 89</td>
<td>19,445±190</td>
<td></td>
</tr>
</tbody>
</table>

Error in depth? Age fits better if 105-110 cm.
AMS 14C Measurements on Foraminifera Shells

Fig 12. 14C ages (corrected for a 400-yr age for surface-water) vs depth in two Red Sea cores previously studied by Deuser and Degens (1969). In both, the transition from conditions conducive to the generation of thick secondary coatings abruptly ended ca 13,000 years ago.

SULU BASIN

In searching for the source of the age differences between P obliquiloculata and G sacculifer observed in core V35-5 in the South China Sea, we chose core V24-135 in the Sulu Sea. Rather than shedding light on the problem, these samples yielded large age differences for which we have no satisfactory explanation (Table 10) (see Broecker et al 1989b, for discussion).

<table>
<thead>
<tr>
<th>ETH no.</th>
<th>Depth (cm)</th>
<th>Coarse fraction (%)</th>
<th>Foram sp</th>
<th>Abund (no/gm)</th>
<th>Abund (mg/gm)</th>
<th>No tests analyzed</th>
<th>Weight analyzed (mg)</th>
<th>Date of AMS analysis</th>
<th>Age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3794</td>
<td>101-102</td>
<td>22.9</td>
<td>G sec</td>
<td>272</td>
<td>17.3</td>
<td>170</td>
<td>10.8</td>
<td>May 88</td>
<td>14,410±160</td>
</tr>
<tr>
<td>4039</td>
<td>"</td>
<td>"</td>
<td>G sec</td>
<td>272</td>
<td>22.0</td>
<td>100</td>
<td>8.1</td>
<td>Jul 88</td>
<td>14,650±130</td>
</tr>
<tr>
<td>3795</td>
<td>"</td>
<td>"</td>
<td>P obl</td>
<td>78.3</td>
<td>3.01</td>
<td>323</td>
<td>12.4</td>
<td>May 88</td>
<td>10,660±130</td>
</tr>
<tr>
<td>4038</td>
<td>"</td>
<td>"</td>
<td>P obl</td>
<td>78.3</td>
<td>2.2</td>
<td>289</td>
<td>8.1</td>
<td>Jul 88</td>
<td>10,390±100</td>
</tr>
<tr>
<td>3797</td>
<td>110-111</td>
<td>31.3</td>
<td>G sec</td>
<td>156</td>
<td>10.3</td>
<td>170</td>
<td>11.2</td>
<td>May 88</td>
<td>17,870±160</td>
</tr>
<tr>
<td>3796</td>
<td>"</td>
<td>"</td>
<td>P obl</td>
<td>56.1</td>
<td>2.97</td>
<td>100</td>
<td>5.3</td>
<td>May 88</td>
<td>16,320±150</td>
</tr>
<tr>
<td>3799</td>
<td>119-120</td>
<td>5.6</td>
<td>G sec</td>
<td>29.4</td>
<td>1.55</td>
<td>232</td>
<td>12.2</td>
<td>May 88</td>
<td>13,940±140</td>
</tr>
<tr>
<td>3798</td>
<td>"</td>
<td>"</td>
<td>P obl</td>
<td>28.2</td>
<td>1.17</td>
<td>200</td>
<td>8.3</td>
<td>May 88</td>
<td>11,670±110</td>
</tr>
<tr>
<td>3805</td>
<td>131-133</td>
<td>10.4</td>
<td>G sec</td>
<td>101</td>
<td>8.02</td>
<td>200</td>
<td>15.9</td>
<td>May 88</td>
<td>20,670±210</td>
</tr>
<tr>
<td>3804</td>
<td>"</td>
<td>"</td>
<td>P obl</td>
<td>16.8</td>
<td>0.66</td>
<td>154</td>
<td>6.0</td>
<td>May 88</td>
<td>21,060±220</td>
</tr>
<tr>
<td>3809</td>
<td>141-142</td>
<td>27.2</td>
<td>G sec</td>
<td>139</td>
<td>8.46</td>
<td>215</td>
<td>13.1</td>
<td>May 88</td>
<td>19,220±210</td>
</tr>
<tr>
<td>3810</td>
<td>"</td>
<td>"</td>
<td>P obl</td>
<td>32.1</td>
<td>1.43</td>
<td>157</td>
<td>7.0</td>
<td>May 88</td>
<td>18,750±170</td>
</tr>
</tbody>
</table>
MOROTAI BASIN

In yet another attempt to assess the age difference between *P obliquiloculata* and *G sacculifer* found in South China Sea core V35-5, we measured two pairs in core V33-88 from the Morotai Basin in the Philippine Sea (Table 11). Although in both cases *P obliquiloculata* was older than *G ruber*, the age differences of 300 and 210 years lie within the error of measurement. Since insufficient benthics were available in these samples for dating, we abandoned study of this core.

<table>
<thead>
<tr>
<th>ETH no.</th>
<th>Depth (cm)</th>
<th>Coarse fraction (%)</th>
<th>Foram sp</th>
<th>Abund (no/gm)</th>
<th>Abund (mg/gm)</th>
<th>No tests analyzed</th>
<th>Weight analyzed (mg)</th>
<th>Date of AMS analysis</th>
<th>Age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3708</td>
<td>135-136</td>
<td>9.7</td>
<td>G sac</td>
<td>55.6</td>
<td>1.21</td>
<td>137</td>
<td>4.4</td>
<td>Lost</td>
<td></td>
</tr>
<tr>
<td>3699</td>
<td>"</td>
<td>"</td>
<td>G rub</td>
<td>491</td>
<td>5.62</td>
<td>600</td>
<td>5.5</td>
<td>Mar 88</td>
<td>13,050±110</td>
</tr>
<tr>
<td>3710</td>
<td>155-156</td>
<td>8.3</td>
<td>P obli</td>
<td>296</td>
<td>8.03</td>
<td>297</td>
<td>8.0</td>
<td>Lost</td>
<td></td>
</tr>
<tr>
<td>3701</td>
<td>"</td>
<td>"</td>
<td>P obli</td>
<td>150</td>
<td>4.31</td>
<td>428</td>
<td>8.2</td>
<td>Jul 88</td>
<td>14,370±150</td>
</tr>
</tbody>
</table>

EAST PACIFIC RISE

As a check on the reproducibility of our results, we repeated the analysis of two samples published in our previous list (Table 12). They were from 34-36cm in core TT154-10. For *G sacculifer*, we obtained 16,630 ± 140 years for a repick of a sample which previously had given 16,600 ± 340 years. For *P obliquiloculata*, we obtained 16,890 ± 140 years for a repick of a sample that had previously yielded an age of 16,530 ± 340.

<table>
<thead>
<tr>
<th>ETH no.</th>
<th>Depth (cm)</th>
<th>Coarse fraction (%)</th>
<th>Foram sp</th>
<th>Abund (no/gm)</th>
<th>Abund (mg/gm)</th>
<th>No tests analyzed</th>
<th>Weight analyzed (mg)</th>
<th>Date of AMS analysis</th>
<th>Age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4434</td>
<td>34-36</td>
<td>47.5</td>
<td>G sac</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.6</td>
<td>Dec 88</td>
<td>16,630±140</td>
</tr>
<tr>
<td>4435</td>
<td>"</td>
<td>"</td>
<td>P obli</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.5</td>
<td>Dec 88</td>
<td>16,890±140</td>
</tr>
</tbody>
</table>
AMS 14C Measurements on Foraminifera Shells

REFERENCES

Curry, WB, Duplessy, JC, Labeyrie, LD and Shackleton, N 1988 Changes in the distribution of δ^{13}C of deep water ΣCO$_2$ between the last glaciation and the Holocene. *Paleoceanography* 3: 317-341.

ISOTOPE-RATIO AND BACKGROUND CORRECTIONS FOR ACCELERATOR MASS SPECTROMETRY RADIOCARBON MEASUREMENTS

D J DONAHUE, T W LINICK and A J T JULL

NSF-Arizona Accelerator Facility for Radioisotope Analysis
The University of Arizona, Tucson, Arizona 85721

ABSTRACT. We present here the method we use to convert to radiocarbon ages (14C/13C) ratios measured in the Arizona Accelerator Mass Spectrometer facility. We describe the procedures we use to convert sample and standard isotope ratios to values appropriate for calculation of radiocarbon ages. We also discuss, in some detail, corrections to account for sample contamination.

INTRODUCTION

At the Arizona Accelerator Mass Spectrometry (AMS) facility, radiocarbon ages are determined by measuring the ratio (14C/13C) in a sample and comparing that ratio with a similar one measured for known standards (Linick et al 1986). The measured ratios of standards and samples are corrected to values corresponding to δ13C = -25‰ using (13C/12C) ratios measured in a stable isotope mass spectrometer and the “fraction of modern,” F, of the sample, S, is deduced from the equation

\[F = \frac{(14/13)_{Sf-25}}{(14/13)_{1950f-25}} . \]

In this equation, isotope ratios are indicated by the ratio of isotope mass numbers, and the δ13C to which the ratio has been normalized is given by the number in square brackets. For example, the ¹⁴C/¹³C of a sample, S, normalized to δ¹³C = -25‰, is given as (14/13)_{Sf-25}. This notation is used throughout this paper.

The radiocarbon age of the sample, S, is calculated from the equation

\[\text{Radiocarbon Age} = -\tau \ln F, \]

where \(\tau\) is the Libby mean life (8033 years). In the following paragraphs we describe the conversion of measured isotope ratios to forms that can be used in equations (1) and (2). The method of measuring isotope ratios and the errors in such measurements are described by Linick et al (1986). Under Contamination Corrections, below, we present the form of background corrections applied to isotope ratios measured in our laboratory.

ISOTOPE-RATIO CALCULATIONS

According to Stuiver and Polach (1977), most radiocarbon laboratories calculate the radiocarbon age of a sample, S, from the equation

\[1 \text{Deceased} \]
The numbers (1950) in Eq (3) indicate that specific activities should be measured in AD 1950, and the resultant age will be in radiocarbon years before present (BP), where present is the year AD 1950. Since both specific activities have the same decay rate, it is in fact, only necessary to measure the numerator and denominator of the logarithm at approximately the same time.

The normalized standard specific activity, A_{ON}, is related to the absolute international standard specific activity, A_{abs}, by the equation

$$A_{\text{abs}} = A_{\text{ON}} e^{\lambda (y-1950)} \quad (6)$$

where y is the year of measurement and $1/\lambda = 8267$ years. Since A_{abs} is the specific activity of a hypothetical (1950) atmospheric carbon level normalized to $\delta^{13}C = -25\%e$ (Stuiver & Polach 1977), A_{ON} is the specific activity of that hypothetical 1950 atmosphere with $\delta^{13}C = -25\%e$, decayed to the present. In the following discussion, we label A_{ON} as $A_{\text{ON}[1950-25]}$ to indicate that it is a specific activity, normalized to $\delta^{13}C = -25\%e$ which, when used in Eq (3) with a coincidentally measured and appropriately normalized sample specific activity, A_{SN}, yields a conventional radiocarbon age in years before AD 1950.

In a later paper, Stuiver (1983) presents results of a series of experiments relating the specific activities of “old” oxalic acid and “new” oxalic acid, NOX (NBS SRM 4990 C). These results can be summarized as

$$0.95 A_{\text{OX}[19]} = 0.7459 A_{\text{NOX}[25]} \quad (7)$$

where the numbers in square brackets are the $\delta^{13}C$ values to which the activities are normalized. The results of Eqs (5) and (7) and the discussion in the paragraph above are combined to give

$$A_{\text{ON}[1950-25]} = 0.95 A_{\text{OX}[19]} = 0.7459 A_{\text{NOX}[25]} \quad . \quad (8)$$
In what follows, we will deduce equations equivalent to Eqs (4) and (8) for use in Eqs (1) and (2) when isotope ratios are measured instead of specific activities.

Specific activity is proportional to the ratio of 14C atoms to total carbon atoms in a sample or standard, so that Eq (8) can be written as

$$\left(\frac{14}{12+13}\right)_{1950[-25]} = 0.95 \left(\frac{14}{12+13}\right)_{\text{ox[-19]}} = 0.7459 \left(\frac{14}{12+13}\right)_{\text{NOX[-25]}}. \quad (9)$$

To better than one part in 10^4, the ratios in Eq (9) can be approximated as $(14/12+13) = (14/12)$, and

$$(14/12)_{1950[-25]} = 0.95 (14/12)_{\text{ox[-19]}} = 0.7459 (14/12)_{\text{NOX[-25]}}. \quad (10)$$

If one measures $(14/12)$ ratios, Eq (10) is the equation to be used to obtain the denominator of Eqs (1) and (2) from measurements on NBS oxalic acid standards. However, at Arizona, we measure $(14/13)$ ratios, so that Eq (10) must be further modified. This modification is made by noting that for a sample, S,

$$(14/12)_S = (14/13)_S (13/12)_S = (14/13)_S \left(1 + \frac{\delta^{13}C_S}{1000}\right) (13/12)_{\text{PDB}}, \quad (11)$$

where PDB is a reference standard, so that Eq (10) becomes

$$(0.975) (14/13)_{1950[-25]} = (0.95) (0.981) (14/13)_{\text{ox[-19]}} = 0.7459 (0.975) (14/13)_{\text{NOX[-25]}}$$

or

$$(14/13)_{1950[-25]} = 0.9558 (14/13)_{\text{ox[-19]}} = 0.7459 (14/13)_{\text{NOX[-25]}}. \quad (12)$$

Finally, we wish to change the third term of Eq (12) to reflect the fact that in our laboratory we measure $(14/13)_{\text{NOX}}$ with $\delta^{13}C = -17.8\%o$. To do this, we use Eq (1) in Stuiver (1983), namely

$$A_{\text{NOX[-25]}} = A_{\text{NOX[-17.8]}} \left[\frac{0.975}{0.982}\right]^2 \quad (13)$$

which relates specific activities for new oxalic acid for $\delta^{13}C = -25\%o$ and $-17.8\%o$. As pointed out above, specific activities are essentially equal to $(14/12)$ ratios and the square of the bracketed term in Eq (13) reflects the fact that to change from a $(14/12)$ ratio (or specific activity) normalized to a particular value of $\delta^{13}C$ to the $(14/12)$ ratio with a different value of $\delta^{13}C$, one must apply the appropriate correction twice. However, to make a similar change to $(14/13)$ ratios, one must apply the isotope correction only once, so that
\[
(14/13)_{\text{NOX-25}} = \left(\frac{1 - \frac{25}{1000}}{1 - \frac{17.8}{1000}} \right) (14/13)_{\text{NOX-17.8}} = \left(\frac{0.975}{0.9822} \right) (14/13)_{\text{NOX-17.8}}
\]

(14)

giving, from Eq (12)

\[
(14/13)_{1950-25} = 0.9558 (14/13)_{\text{OX-19}} = 0.7404 (14/13)_{\text{NOX-17.8}}.
\]

(15)

Thus, the denominator of Eq (1) is obtained by measuring the (14/13) ratios of “old” and/or “new” oxalic acid and multiplying them by the appropriate factors from Eq (15) to obtain \((14/13)_{1950-25}\). In practice, we measure \((14/13)\) for both OX and NOX for every target-wheel loading, and calculate an average \((14/13)_{1950-25}\). To verify proper operation of the instrument, we also obtain the ratio of \((14/13)_{\text{NOX-17.8}}\) and \((14/13)_{\text{OX-19}}\), which, as can be seen from Eq (16), should be equal to 1.2909.

The numerator for Eq (1) is obtained by correcting the measured (14/13) ratio of a sample with \(\delta^{13}\text{C}_s\), that is \((14/13)_{\delta^{13}C_s}\) by an equation of the form of Eq (14), namely:

\[
(14/13)_{\delta^{13}C_s} = (14/13)_{\delta^{13}C_0} \left[\frac{1 - \frac{25}{1000}}{1 + \frac{\delta^{13}\text{C}_s}{1000}} \right]
\]

(16)

This is the exact form of an equation that was presented as an approximation in Linick et al (1986).

To obtain a radiocarbon age from measured (14/13) isotope ratios that is equivalent to the age one would obtain by measuring specific activities and using Eq (3): (a) measured values of \((14/13)_{\text{OX-19}}\) and \((14/13)_{\text{NOX-17.8}}\) are converted to \((14/13)_{1950-25}\) using Eq (15); (b) \((14/13)_{\delta^{13}C_s}\) ratios are converted to \((14/13)_{\delta^{13}C_0}\) using Eq (16); and (c) results from (a) and (b) are used in Eq (1) and (2). When this is done, we obtain

\[
\text{Radiocarbon Age} = -\tau \ln \left\{ \frac{0.975}{1 + \frac{\delta^{13}\text{C}_s}{1000}} (14/13)_{\delta^{13}C_0} \right\}
\]

(17a)

or

\[
\text{Radiocarbon Age} = -\tau \ln \left\{ \frac{0.7404}{1 + \frac{\delta^{13}\text{C}_s}{1000}} (14/13)_{\delta^{13}C_0} \right\}
\]

(17b)
Corrections for AMS ^{14}C Measurements

CONTAMINATION CORRECTIONS

A correction is necessary in AMS radiocarbon measurements because samples acquire a small amount of contamination, generally called background, in the process of converting them from their initial form to graphite. There is probably also an instrument background, but at the present time, the instrument background correction is much less than the contamination correction, and is included as part of the contamination correction. In the discussion that follows, we assume that all isotope ratios are corrected to $\delta^{13}\text{C} = -25\%$, and the square-bracketed subscripts used to indicate $\delta^{13}\text{C}$ of isotope ratios are not included.

To determine the magnitude of the contamination correction, blank targets are made from material containing no ^{14}C and measurements are made of the quantity

$$ f = \frac{(14/13)_B}{(14/13)_\text{std}} = \frac{(14/13)_C}{(13/13)_\text{std} + (13/13)_M} \quad (18) $$

where the subscripts B, C, and std signify blank, contamination and standard quantities, and M denotes the matrix material of the blank target. The matrix material usually used to produce blank targets is graphite provided by the National Institute of Standards and Technology (NIST, formerly NBS). The use of this material allows us to: (a) determine the amount of ^{14}C in the original graphite, (b) combust the graphite to CO$_2$ and reconvert the CO$_2$ to graphite in our sample preparation lines, and (c) measure the ^{14}C in the processed graphite. The amount of ^{14}C per gram of graphite observed in (a) is approximately one-fifth of that determined in (c).

The actual value of the quantity, f, in Eq (18) depends on the choice of standard material. For convenience, we use as a standard the ratio $(14/13)_{1950}$-25. This is often referred to as the $(14/13)$ ratio of modern material, and its value in terms of the $(14/13)$ ratios of the NBS oxalic acids is given in Eq (15). Multiple measurements over many months using many different blank targets yield values for f and its standard deviation for a one-milligram blank sample of

$$ f = \frac{(14/13)_B}{(14/13)_{1950}} = 0.004 \pm 0.001. $$

The standard deviation is deduced from the scatter about their mean of many measurements on different blank samples. It is larger than the standard deviation one would obtain from pure counting statistics and includes the spread of values of f resulting from small variations in contamination during target preparation. Nevertheless, this standard deviation is assumed to represent the statistical distribution of measured values of f about their mean value.

Measurements of the quantity, f, on blank samples of various masses indicate that, as a function of mass, M,

$$ f(M) = \frac{f(\text{one mg})}{M} = \frac{0.004 \pm 0.001}{M} $$
where \(M \) is the mass of the sample in milligrams. For example, for a 100-microgram sample,

\[
f(100\mu g) = 0.04 \pm 0.01.
\]

This dependence is just what one would expect if the mass of contaminant introduced during target fabrication was constant, independent of the size of the sample itself.

To describe the manner in which isotope ratios are corrected for contamination, consider the measured ratio, \((14/13)_m\), for a sample \(S \),

\[
(14/13)_m = \frac{(14/13)_S + (14/13)_C}{(13/13)_S + (13/13)_C},
\]

where \(S \) and \(C \) denote isotopes from the sample and contaminative materials, respectively. This equation can be rewritten as

\[
(14/13)_m = (14/13)_S \left\{ \frac{1 + (14/13)_C}{1 + (13/13)_C} \right\}.
\]

Before rewriting Eq (20), we introduce the assumption that the contaminating material is modern (1950) material. We show in the appendix that this is not a necessary assumption, but its introduction simplifies the considerations that follow. With this assumption, namely that \((14/13)_C = (14/13)_{1950}\), the quantity, \(f \), defined in Eq (18), can also be written as

\[
f = \frac{(13/13)_C}{(13/13)_C + (13/13)_M},
\]

and, to first order in \(f \),

\[
f = \frac{(13/13)_C}{(13/13)_M} = \frac{(13/13)_C}{(13/13)_S}.
\]

The second equality is true when the sample, \(S \), has the same graphite mass as the matrix, \(M \), used to determine \(f \). Using Eq (22), the ratio \((14/13)_C\) in Eq (20) can be written

\[
\frac{(14/13)_C}{(14/13)_S} = \frac{(14/13)_C}{(14/13)_S} \frac{f (14/13)_C}{(14/13)_S} = \frac{f (14/13)_{1950}}{(14/13)_S},
\]
so that Eq (20) can be rewritten as

\[(14/13)_S = (14/13)_m (1 + f) - f (14/13)_{1950} \]

(24)

The fraction of modern of the sample, \(F \), in terms of the fraction of modern, measured, \(F_m \), is obtained by dividing both sides of Eq (24) by \((14/13)_{1950}\). Since we have assumed that the contamination material is modern, no blank correction is necessary to the measured ratio, \((14/13)_{1950}\), and

\[F = F_m (1 + f) - f, \]

(25)

where

\[F_m = \frac{(14/13)_m}{(14/13)_{1950}}. \]

In a slightly different form,

\[F = F_m \left[1 - f \left(\frac{1}{F_m} - 1 \right) \right], \]

(26)

and the term in square brackets is the blank correction factor, \(BCF \).

For a modern (1950) sample, \(F_m = 1 \), and the blank correction factor is unity. For a one-milligram sample with \(F_m = 0.7 \), corresponding to a radiocarbon age of ca 3000 BP, \(f = 0.004 \pm 0.001 \), and the correction factor is

\[BCF = 0.9983 \pm 0.0004. \]

The range from 3000 BP to modern covers those ages for which the highest precision is usually desired. As can be seen, for one-milligram samples, background corrections in this range contribute < 0.1% \((1\%)\) to uncertainties. However, for a 100-microgram sample with \(F_m = 0.7 \), the \(BCF = 0.983 \pm 0.005 \).

Finally, in the limit as \(1/F_m \gg 1 \) \((F_m \ll 0.1\); radiocarbon age \(\geq 20,000 \) BP\), Eq (26) can be written

\[F = F_m - f. \]

(27)

The minimum value of \(F \) that can be measured is defined as

\[F = F_m - f \geq 2\Delta f. \]

For a one-milligram sample, where \(\Delta f = 0.001 \), this limit corresponds to a maximum age of 49,900 years. For a sample with a mass of 100 micrograms, the maximum age that can be measured at present with our instrument is ca 30,000 years.
ACKNOWLEDGMENTS

The section on Isotope-Ratio Calculations, above, was formulated in its entirety from notes of TW Linick, who was certainly one of the world's experts in radiocarbon measurements. His expertise and his gentle personality are sorely missed in this laboratory. This work was supported in part by NSF grant EAR 8822292.

REFERENCES

APPENDIX

If, instead of assuming that \((14/13)_c = (14/13)_{1950}\) we use \((14/13)_c = g (14/13)_{1950}\) then Eq (24) becomes

\[
(14/13)_x = (14/13)_m (1 + f/g) - f (14/13)_{1950},
\]

(A1)

and

\[
(14/13)_{1950} = ((14/13)_{1950})_{\text{measured}} \left(\frac{1 + f/g}{1 + f/g} \right),
\]

(A2)

so that Eq (26) becomes

\[
F = F_m \frac{(1 + f/g - f/F_m)}{1 + f/g}.
\]

(A3)

If \(f/g \ll 1\), then, to first order in \(f\) and \(f/g\), Eq (A3) can be written

\[
F = F_m (1 + f - f/F_m)
\]

(A4)

which is identical with Eq (25). Thus, if \(f = 0.004\), Eq (6) is correct for \(g \geq 0.04\), or \((14/13)_c \geq 0.04 (14/13)_{1950}\).
MARINE TURTLE BONES FROM AN ARCHAEOLOGICAL SITE IN POLYNESIA YIELD RELIABLE AGE DETERMINATIONS

T S DYE

Hawaii Pacific College, Honolulu, Hawaii 96813

ABSTRACT. Accelerator mass spectrometry dating of three 50g samples of marine turtle bone from the basal cultural stratum of the Tongoleleka archaeological site, Lifuka Island, Kingdom of Tonga, South Pacific yields results that agree with conventional 14C dates on marine shell. A method for calibrating these dates that takes into account the long distance migrations of marine turtles in the South Pacific is proposed. A sample size greater than 50g is recommended for routine AMS dating of marine turtle bone.

Wood charcoal samples of sufficient size for routine radiocarbon dating are rare in the oldest cultural layers of most archaeological sites in Polynesia. Routine accelerator mass spectrometry (AMS) dating of bone proteins gives archaeologists an important new source of datable materials (James et al 1987; Gillespie, Hedges & Humm 1986; Stafford et al, in press), since many early Polynesian sites contain abundant bones of animals eaten by colonists (Dye & Steadman, in press). This paper describes the results of AMS dating of marine turtle bones from an early archaeological site in the Kingdom of Tonga. It also provides data on the minimum sample size for routine AMS dating of marine turtle bone samples and proposes a procedure for calibrating age estimates from marine turtle bone collected at archaeological sites in the South Pacific.

Marine turtle bones were collected from the basal cultural stratum of the Tongoleleka site on Lifuka Island (19°49'S, 174°25'W) in the Ha'apai Group, Kingdom of Tonga. The basal cultural stratum of the Tongoleleka site represents the initial occupation of a sand dune located along a prograding shoreline by a people who manufactured a distinctive dentate-stamped earthenware (Dye 1988). On stylistic and technologic grounds, this earthenware can be classified as Early Eastern Lapita pottery (Green 1979), which differs from succeeding pottery styles by the large areas of the pot that were decorated, the complexity of the dentate-stamped decoration, and the diverse vessel forms that were produced. Previous studies indicate that the makers of Early Eastern Lapita pottery were the initial settlers of Tonga (see Bellwood 1979; Davidson 1979; Kirch 1984). A recent evaluation of the settlement period 14C age estimates concludes that the Lapita potters settled the Tongan Islands in the 9th century BC (Poulson 1987). The age of the Tongoleleka site is of further interest because the bones of five species of extinct birds (Steadman 1989) and an extinct iguana (Pregill & Dye 1989) were recovered from the basal cultural stratum there.

The three 50g samples reported here (AA-1920, -1921, -1923) each represent the postcranial remains of one or more individuals of one or more unidentified marine turtle genera. Based on modern estimates of marine turtle population sizes in Tonga (Pritchard 1982), the bones are most likely those of the green turtle (Chelonia mydas) or the hawksbill turtle (Eretmochelys imbricata). The samples were selected from stratigraphically secure contexts associated with Early Eastern Lapita pottery, other artifacts and abundant food remains, including the bones of extinct birds and iguanas. A marine turtle bone concentration index of 414g/m3 of excavated deposit in the basal cultural stratum of the Tongoleleka site contrasts strongly with the lack of marine turtle bone in the underlying, pre-settlement stratum. It is unlikely that the bones derived from some older, natural deposit. Similarly, a decline in the amount of marine turtle bone in the middle strata (22-146g/m3) and upper stratum (17g/m3) of the site diminishes the possibility that the analyzed bones were introduced into the basal cultural stratum from younger cultural deposits. There is thus every indication that the analyzed marine turtle bones are contemporaneous with the cultural materials in the basal cultural stratum of the site.
14C measurements were made by the NSF-Arizona Accelerator Facility for Radioisotope Analysis, following procedures described by Gillespie, Hedges & Humm (1986) for preparation of the bone samples. Sample AA-1920 yielded insufficient carbon for routine analysis and was diluted 2:1 with 12CO$_2$. A fourth sample (AA-1922) yielded only 0.044% N and could not be analyzed. Thus, samples larger than 50g are recommended for routine AMS dating of marine turtle bone from early Polynesian archaeological sites.

The choice of a calibration curve is dictated by the diets of marine turtles. The omnivorous diets of both green (mainly herbivorous) and hawksbill turtles are dominated by plants and animals found in shallow water marine ecosystems (Mortimer 1982; Bjorndal 1985). Studies of stable carbon isotopes in these ecosystems indicate that the primary source of organic carbon is the reef benthos, and that detritus derived from land contributes a negligible amount of carbon (Smith, Schneider & Tribble 1985). The δ^{13}C values of \sim7.9 for samples AA-1921 and -1923 fall at the light end of the range of δ^{13}C values determined from sediments derived from coral reefs and sea grasses, but are heavier than sediments with a terrigenous component (Smith, Schneider & Tribble 1985: 446). The δ^{13}C value for sample AA-1920 was not estimated in the laboratory, but is assumed to be the same as the other two samples. Thus, with the aid of the computer program CALIB (Stuiver & Reimer 1986), the age estimates were calibrated using the marine model of Stuiver, Pearson & Braziunas (1986).

The geographic range of marine turtle migrations complicates the selection of an appropriate correction factor (AR) for the marine model. Tag and recapture studies indicate that individual green turtles in the South Pacific range over 4500km from the Society Islands to Vanuatu (Meylan 1982). Less is known of the range of hawksbill turtles, although evidence suggests that they migrate long distances as well (Meylan 1982: 96). Green turtles in the South Pacific appear to be isolated from populations in the North Pacific (Balazs 1982). These long distance migrations mean that marine turtles ingest carbon from a wide range of local marine environments in the South Pacific, each of which is likely to differ in its own way from the marine model of Stuiver, Pearson & Braziunas (1986). To date, a single AR estimate from a South Pacific island group in the green turtle's range, 45 ± 30 from the Society Islands (Stuiver, Pearson & Braziunas 1986), is available, and this has been applied. As more AR estimates for the South Pacific become available, an average of these values would perhaps more closely model the carbon intake of marine turtles.

The reliability of age estimates from marine turtle bone may be assessed by comparing them with age estimates from other materials associated with Early Eastern Lapita pottery. Two stratigraphically secure samples of marine shells (ANU-541 and NZ-727) from Tongatapu (Poulsen 1987: Table 32), the nearest island with comparable dated cultural remains, provide the best basis for comparison. According to Poulsen's (1987: 78-80) detailed stratigraphic analyses, these are the only 14C samples from Tongatapu that can be confidently associated with dentate-stamped pottery similar to that recovered from the basal stratum of the Tongoleleka site. Figure 1 compares the 1σ and 2σ age ranges of the Tongoleleka marine turtle samples with age estimates from the two Tongatapu marine shell samples. Samples AA-1921 and -1923 fit well with the Tongatapu age estimates, overlapping at 1σ. Sample AA-1920, which was diluted with 12CO$_2$, appears to be older than the other samples.

Two hypotheses could explain the discrepancy between the age of sample AA-1920 and the other two turtle bone samples. The first is that the age estimate for sample AA-1920 is a statistical outlier, and that the actual age of the sample is younger than the estimate by ca 3σ. The second is that sample AA-1920 actually dates an early portion of the Lapita period in the region, and that the three turtle bone samples together accurately estimate the duration of the Early Eastern Lapita period in Tonga. This second hypothesis receives apparent support from one 14C date (NZ-726).
Marine Turtle Bone Ages from Polynesia

Fig 1. Calibrated age ranges (— = 1σ; —— = 2σ) and intercepts (•) of marine turtle bone samples from Tongoleleka compared with calibrated age ranges (1 & 2σ) and intercepts of marine shell samples (ANU-541, NZ-727) from Lapita period archaeological sites on Tongatapu Island, Kingdom of Tonga (Poulsen 1987: Table 32). The Tongoleleka samples are corrected with the calibration curve of Stuiver, Pearson & Brazunas (1986). The Tongatapu shell samples, corrected for oceanic reservoir effect by Polach (1987), are calibrated with the curve of Pearson and Stuiver (1986). Note that samples AA-1921 and -1923 overlap the two marine shell samples at 1σ.

from Tongatapu with a calibrated 1σ age range of 1495-1370 BC (Poulsen 1987, Table 32) and two (I-10632 and -10633) from Niuatoputapu, a small island at the northern end of Tonga (Kirch 1988: 140). The two Niuatoputapu samples yielded calibrated 1σ age ranges of 1735-1508 BC and 1530-1373 BC, respectively. There are reasons to question whether these three samples actually date Early Eastern Lapita culture in Tonga, however. NZ-726 was recovered in a disturbed context and has not been accepted by prehistorians (Groube 1971: 302; Green 1979: 33; Kirch 1984: 50; Poulsen 1987: 79). Both of the Niuatoputapu samples are from giant clam (Tridacna sp) shells that were presumably taken from the lagoon where groundwater discharge through the uplifted limestones and unconsolidated calcareous sands adjacent to the lagoon (Kirch 1988: 21-23) may have introduced significant amounts of old carbon into the marine environment. Two charcoal samples from the same stratum of site NT-90 (Kirch 1988: 140) yielded corrected 2σ age ranges of 155 BC-AD 460 (I-9934) and AD 650-1135 (I-10481), both significantly younger than the Tridacna shell samples. Thus, there is insufficient evidence with which to discriminate between the two hypotheses. The duration of the Lapita period in Tonga will be reliably estimated, and anomalous dates identified, only after additional stratigraphically secure samples from the region are collected and dated. Ottaway (1973) describes a suitable technique for estimating the duration of cultural periods with 14C dates.

AMS dating of ca 2800-yr-old marine turtle bones from a Lapita period archaeological site yields results that agree with conventional 14C ages from marine shells recovered from similar cultural contexts. The suggestion that marine turtle bone is a suitable material for AMS dating will be strengthened if comparable ages can be obtained from stratigraphically associated marine turtle bone and marine shell or charcoal from the same site.
Lifuka Island series

AA-1920. Lifuka Island

3660 ± 190

Marine turtle bone from Tongoleleka site, Unit 0N0W, Layer IV; assoc with Lapita pottery and bones of extinct birds and iguanas. *Comment*: cal 1790 (1543) 1360 BC at 1σ; cal 3739 (3492) 3309 BP at 1σ.

AA-1921. Lifuka Island

2960 ± 120

δ¹³C = -17.9‰

Marine turtle bone from Tongoleleka site, Unit 45N1W, Layer IV; assoc with Lapita pottery and bones of extinct birds and iguanas. *Comment*: cal 830 (763) 540 BC at 1σ; cal 2779 (2712) 2489 BP at 1σ.

AA-1923. Lifuka Island

2960 ± 60

δ¹³C = -17.9‰

Marine turtle bone from Tongoleleka site, Unit 0N0W, Layer IV; assoc with Lapita pottery and bones of extinct birds and iguanas. *Comment*: cal 797 (763) 720 BC at 1σ; cal 2746 (2712) 2669 BP at 1σ.

ACKNOWLEDGMENTS

Fieldwork in Tonga was supported by National Science Foundation Grant BNS 83-14005. Funds for AMS dating were provided by National Science Foundation Grant BSR-8607535 awarded to D W Steadman, New York State Museum. Permission to carry out research in Tonga was graciously granted by the Government of H M King Taufa‘ahau Tupou IV. K Turekian, Yale University suggested AMS dating of marine turtle bones from the Tongoleleka site.

REFERENCES

Dye, TS, (ms) 1988 *Social and cultural change in the prehistory of the ancestral Polynesian homeland*. PhD dissert, Yale Univ, New Haven.

Stafford, TW Jr, Hare, PE, Currie, L, Jull, AJT and Donahue, D, in press, Accelerator 14C dating at the molecular level. *Jour Archaeol Sci*.

RADIOCARBON DATING OF THE NEOLITHIC EARLY BRONZE AGE SITE OF MANDALO, W MACEDONIA

YANNIS MANIATIS
Archaeometry Laboratory, National Centre for Scientific Research Demokritos
153 10 Aghia Paraskevi, Attiki, Greece

and

BERND KROMER
Institut für Umweltphysik, Universität Heidelberg
Im Neuenheimer Feld 366, Heidelberg, Federal Republic of Germany

INTRODUCTION

The following list of dates was obtained in a joint German-Greek project to establish a radiocarbon dating laboratory in the National Research Centre for Physical Sciences "Demokritos," Athens, Greece. Although our initial aim in selecting these samples was to study laboratory procedures, we found that when the dates were arranged in stratigraphic order they provided a chronological framework for Thessalian and northern Macedonian site of the Late Neolithic and Early Bronze Ages (Kotsakis et al 1989; Papanthimou & Papasteriou 1987a).

The dates were obtained by CO₂ gas counting in the Heidelberg laboratory (Schoch et al 1980). Dates are expressed as radiocarbon years relative to 1950 (Stuiver & Polach 1977) and are corrected for isotopic fractionation. Errors quoted are based on counting statistics of sample, background and standard (SRM 4990) and expressed as 1 standard deviation (σ).

All samples listed here come from the prehistoric site of Mandalo in Western Macedonia, (40°52'N, 22°13'E) 65km northwest of Thessaloniki. The site is being excavated by archaeologists A Pilali-Pasteriou, A Papanthimou-Papaefthimiou and K Kotsakis of the University of Thessaloniki and T Savopoulou of the Archaeological Museum of Thessaloniki. The samples were all charcoal and were submitted by the excavators (Papasteriou et al 1983; Papanthimou & Papasteriou 1987b).

The site of Mandalo is approximately 20km west of the classical capital of Macedonia Pella. It is in the foothills of Mount Paikou in the lowland hills that separate the now dried Yannitsa Lake from Aridaia Plain. It is a small tell site that covers an area of not more than 0.2ha in its base, and has a height of 7m. The site can be divided into 4 occupational phases: Ia, Ib, II and III. Mandalo is perhaps the first prehistoric site in Greece that has been radiocarbon dated so consistently and systematically. It therefore provides a very significant chronological reference.

ARCHAEOLOGICAL SAMPLES

HD-9597. D12 6630 ± 100
Sample directly overlay sterile layer.

Comment: date is considered too early.

1The laboratory is now fully operational. It will use the code designation, DEM.
HD-9601. 4007
Sample from destruction level, probably floor, Mandalo Phase Ib.
$\delta^{13}C = -22.0\%o$

HD-9562. 3120
Sample from earliest floor of last house in Mandalo Phase Ib.
$\delta^{13}C = -25.8\%o$

HD-9265. 4020
Sample from postholes of a house, Mandalo Phase Ib.
$\delta^{13}C = -24.1\%o$

HD-9557. 5032
Sample from destruction of the latest house of Mandalo Phase Ib.
$\delta^{13}C = -25.3\%o$

HD-9559. 2156
Sample from destruction layer of a pile house; underlain by baby burial in vase, Mandalo Phase II.
$\delta^{13}C = -24.7\%o$

HD-9563. 2202a
Sample from earliest part of Mandalo Phase II; corner of house built with wooden posts.
$\delta^{13}C = -24.0\%o$

HD-9939. 2202b
Second sample from same layer; dated to check consistency.
$\delta^{13}C = -24.3\%o$

HD-9595. 2224
Sample from interior of house.
$\delta^{13}C = -24.7\%o$

HD-9602. 1022
Sample from destruction of Mandalo Phase II.
$\delta^{13}C = -25.2\%o$

HD-9596. 7229
Sample from same destruction level as 1022, west of stratigraphic section. Sample is associated with storage bin underlying destruction level.
$\delta^{13}C = -24.8\%o$

HD-9833. 7253
Sample from destruction level of house, Mandalo Phase II.
$\delta^{13}C = -24.8\%o$

HD-9834. 7275
Sample from yellow layer underlying destruction level, with remains of burned clay and small pieces of charcoal, Phase II.
14C Dates From a Neolithic EBA Site in Macedonia

HD-9835. 8152

Sample from layer directly overlying destruction level of Phase II (EBA).

\[4300 \pm 100 \]

\[\delta^{13}C = -26.0\% \]

HD-9915. 8231

Sample from destruction level of house, Phase III.

\[4130 \pm 40 \]

\[\delta^{13}C = -25.3\% \]

HD-9216. 7140

Same as HD-9835.

\[4130 \pm 70 \]

\[\delta^{13}C = -25.7\% \]

HD-9907. 8119

Sample from pits that were possibly cut from near surface (EBA).

\[3920 \pm 40 \]

\[\delta^{13}C = -25.1\% \]

HD-9146. 1024

Same as above.

\[3860 \pm 70 \]

\[\delta^{13}C = -25.2\% \]

HD-9603. 3040

Sample from postholes of wall, Phase Ib.

\[5520 \pm 80 \]

\[\delta^{13}C = -24.8\% \]

HD-9832. 7251

Same as HD-9833, above.

\[5420 \pm 40 \]

\[\delta^{13}C = -24.5\% \]

General Comment: Figure 1 shows the calibrated dates placed in their stratigraphic order. The data were calibrated using the computer program supplied by Stuiver and Reimer (1986). The calibration is based on Stuiver and Pearson (1986), Pearson and Stuiver (1986), Pearson et al (1986), Linick, Suess and Becker (1985), Stuiver et al (1986), Kromer et al (1986) and Linick et al (1986). The age ranges in the figure are represented by bars where the length represents the age range and the height represents the percent probability that the sample is in the specific range.

It is obvious that the dates form two well-defined groups. Phases Ib and II are clearly dated to the 5th millennium BC whereas Phase III dates to the 3rd millennium. There are no 14C determinations from the 4th millennium. According to archaeological interpretation (Kotsakis et al 1989; Papanthimou & Papasteriou 1987a) there is no apparent discontinuity in the sampling along the stratigraphic transition between Mandalo II and Mandalo III. Our results corroborate this finding and indicate that habitation was interrupted and resumed at the site after a long period had passed, perhaps as much as a millennium.

On the basis of typological similarities, Mandalo Ib and II can be associated with Malia II, Suplevac, Bakarno-Gumno I-II and Ernobuki I-II (Kotsakis et al 1989; Papanthimou & Papasteriou 1987a). There are no 14C dates for these Albanian, south Yugoslavian sites. These groups are usually linked with the Rachmani culture of Thessaly.
Fig 1. The distribution of dates for the Mandalo site, West Macedonia, Greece. The length of the bars represents the age range; the height represents the percent probability that the sample lies in the specific range.

ACKNOWLEDGMENTS

The construction of the radiocarbon laboratory of the NRCPS "Demokritos," Athens, Greece was financed by the Volkswagen Foundation, Hannover, West Germany. The authors are grateful to the Foundation and especially to Dr Marie-Luise Zarnitz and Dr G Dege. The 13C analyses were made by C Junghens. Many thanks are due the archaeologists for supplying the samples and for useful information and discussions concerning their archaeological context.

REFERENCES

14C Dates From a Neolithic EBA Site in Macedonia

PREPARATIVE HIGH-PERFORMANCE LIQUID CHROMATOGRAPHIC SEPARATION OF INDIVIDUAL AMINO ACIDS DERIVED FROM FOSSIL BONE COLLAGEN

GERT JAAP VAN KLINKEN and WILLEM G MOOK
Centrum voor Isotopenonderzoek, State University of Groningen
Westersingel 34, 9718 CM Groningen, The Netherlands

ABSTRACT. Extracting a series of amino acids from fossil "collagen" makes it possible to compare chemically well-characterized molecules from one bone sample, both chemically and by isotopic analysis. Thus, the integrity of collagen samples and possible contamination can be checked. We describe the routine high-performance liquid chromatographic extraction of five amino acids: glycine, hydroxyproline, glutamate, threonine and alanine. Humates are eliminated during the extraction, which can be monitored continuously.

INTRODUCTION

Conventional methods of 14C bone dating and paleodietary stable isotope research often lead to ambiguous results due to problems in extracting uncontaminated, unaltered bone collagen from degraded bone (e.g., Longin 1971; Olsson et al 1974; El-Daoushy, Olsson & Oro 1978; Taylor 1980, 1987).

We do not fully understand the collagen degradation process during bone diagenesis (Schwarcz, Hedges & Ivanovich 1989; Stafford, Brendel & Duhamel 1988; Gillespie 1986; Hedges & Law 1989), and the changes in bones in the soil are as diverse as the specific circumstances to which they were exposed during their burial. Descriptions of collagen preservation are inadequate for describing alterations in a fossil bone "collagen" sample, at least at the molecular level.

Extracting collagen from fossil bone in the form of gelatin (denatured, unfolded collagen) is not a totally selective process (Gurfinkel 1987; Taylor 1980; Gillespie, 1986; Stafford, Brendel & Duhamel 1988). Isotope analysis of fossil bone gelatin depends on mass balance and isotopic differences between endogenous (and isotopically unchanged) collagenous material and other materials that attach to it during diagenesis. These materials (e.g., humics) can be exogenous or formed in situ from collagen parts and may or may not be isotopically different from the original collagen fiber.

Thus, the state of preservation of fossil "collagen" is crucial for accuracy in the resulting isotopic analyses (Stafford, Brendel & Duhamel 1988). A better chemical characterization of the fraction selected for dating would be the first step in improving the validity of both bone dating and paleodietary analysis. This means using distinct molecules such as amino acids or specific proteins rather than insoluble residues. For radiocarbon dating, this possibility has come within reach since the development of accelerator mass spectrometric (AMS) 14C detection. AMS requires a very small sample: milligram quantities instead of grams, required for conventional radiocarbon dating (Mook 1984). At present, some researchers prefer to extract larger or smaller (peptide) parts of collagen (Brown et al 1988; DeNiro & Weiner 1988a,b), or other bone proteins (Gillespie 1989). Others extract a mixture of amino acids from "collagen" (Ho, Marcus & Berger 1969; Stafford et al 1987; Hedges et al 1989), or one or two specific amino acids, eg, hydroxyproline and proline (Wand 1981; Stafford et al 1982;
Gillespie & Hedges 1983; Gillespie, Hedges & Wand 1984), or a series of individual amino acids (Hare & Estep 1983; Macko et al 1983; van Klinken 1989).

We describe here routine extraction of five individual amino acids from collagen hydrolyzates (glycine (Gly), glutamate (Glu), hydroxyproline (Hyp), threonine (Thr) and alanine (Ala)) by means of high-performance liquid chromatography (HPLC).

AMINO ACIDS AND ISOTOPE CHEMISTRY

Collagen Amino Acids

Biochemically intact bone collagen contains 18 different amino acids (Table 1). Not all amino acids are of equal interest in an isotopic comparison, nor can they be isolated in an equally routine way with the described HPLC system; thus, we must select carefully amino acids for routine analysis.

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Abbr</th>
<th>Residues %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxyproline*</td>
<td>Hyp</td>
<td>101</td>
</tr>
<tr>
<td>Aspartate</td>
<td>Asp</td>
<td>51</td>
</tr>
<tr>
<td>Threonine***</td>
<td>Thr</td>
<td>18</td>
</tr>
<tr>
<td>Serine</td>
<td>Ser</td>
<td>35</td>
</tr>
<tr>
<td>Glutamate*</td>
<td>Glu</td>
<td>75</td>
</tr>
<tr>
<td>Proline</td>
<td>Pro</td>
<td>116</td>
</tr>
<tr>
<td>Glycine*</td>
<td>Gly</td>
<td>317</td>
</tr>
<tr>
<td>Alanine*</td>
<td>Ala</td>
<td>113</td>
</tr>
<tr>
<td>Valine**</td>
<td>Val</td>
<td>19</td>
</tr>
<tr>
<td>Methionine</td>
<td>Met</td>
<td>5</td>
</tr>
<tr>
<td>Isoleucine**</td>
<td>Ile</td>
<td>13</td>
</tr>
<tr>
<td>Leucine**</td>
<td>Leu</td>
<td>28</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Tyr</td>
<td>5</td>
</tr>
<tr>
<td>Phenylalanine**</td>
<td>Phe</td>
<td>18</td>
</tr>
<tr>
<td>Hydroxylysine</td>
<td>Hyl</td>
<td>5</td>
</tr>
<tr>
<td>Lysine**</td>
<td>Lys</td>
<td>24</td>
</tr>
<tr>
<td>Histidine**</td>
<td>His</td>
<td>5</td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg</td>
<td>49</td>
</tr>
</tbody>
</table>

* Amino acid selected for investigation
** Essential amino acid

The amino acids Hyp and hydroxylysine (Hyl) are typical for collagen. Hyp and Hyl are not incorporated in the polypeptide chains of collagen by the usual mechanisms of protein synthesis. Some specific proline (Pro) and lysine (Lys) residues are hydroxylated in situ after they are already incorporated in the α-chain, the building block of collagen fiber. Hyl is important because carbohydrate units, mostly a disaccharide of glucose and galactose, become attached to it during collagen synthesis (glycosylation). Hyp is indispensable for the stabilization of the collagen superhelix because it increases the stability of the molecule by hydrogen bonding (Ramachandran & Reddi 1976); insufficient hydroxylation of Pro in living
bone occurs during scurvy. In collagen, Hyp accounts for ca 10% of the amino-acid residues; otherwise it occurs only in very low amounts. Because of this high bone-specificity, Hyp was recognized as an ideal dating sample at an early stage in the development of AMS (Wand 1981).

Based on biosynthetic relationships, carbon and nitrogen isotopic ratios in Glu, Pro and Hyp, as well as in Lys and Hyl must be identical, on average. The isotopic comparison of these amino acids could provide a test for contamination of fossil collagens. Unfortunately, the Hyl content of collagen is very low: ca 5 residues per 1000, which makes routine preparative isolation difficult. Hyp and Glu can easily be isolated (Fig 1), but Pro requires an extra buffer in the HPLC separation (Table 2).

Many amino-acid transamination reactions (involving a transfer of nitrogen from one amino acid to another) are known in animal biosynthesis, which could bring about other possibilities for 15N/14N ratio comparison of different amino acids. For example, nitrogen is transferred from Glu to almost any other L-amino acid. Most probably, these amino acids are all isotopically lighter in nitrogen than Glu because of isotope effects during transamination (Macko et al 1987). Glu is the most abundant amino acid in nature, and fossil bone Glu is likely to be contaminated very easily with exogenous Glu. For this reason, Glu seems to be an ideal amino acid to test overall bone contamination.

Glycine (Gly), the smallest amino acid, accounts for one-third of the residues in collagen. Serine (Ser) is the precursor of Gly. Gly can be separated easily; in the case of Ser, an extra extraction run of 45 min is needed at a higher column temperature. A collagen molecule is likely to be largely deteriorated if a severe contamination with exogenous Gly appears to exist, indicated by deviating Gly concentrations and stable isotopic ratios. Consequently, all other isotopic measurements should be treated with caution.

The amino acids mentioned so far are non-essential, ie, they can be synthesized by the animal itself; Thr is one of the essential amino acids (Table 1): it has to be taken up with food. Thus, 13C/12C and 14C/12C isotope ratios of Thr relate to those of dietary Thr. On the other hand, 15N/14N values appear to be slightly lower than those of dietary Thr, perhaps because of a preferential incorporation of 14N containing Thr (Gaebler, Vitti & Vukmирович 1966).

Gly concentrations are often low in fossil bone samples, along with higher concentrations of valine (Val), isoleucine (Ile), leucine (Leu) and phenylalanine (Phe), and probably of Thr and Ser (Dungworth et al 1974).

Amino-Acid Separations

One aspect of modern chromatographic separations has been underestimated: the importance of detecting the molecules we want to extract and possible contaminants during the isolation process. On-line detection allows us to continuously monitor the quality of each separation, and register each deviation. This can be done with HPLC, which yields a high-resolution separation together with excellent reproducibility in a relatively short time (2 hr). A preparative (milligram-scale) system with a low 14C background is needed for use in natural abundance isotope chemistry, essentially without memory or isotopic fractionation effects.

Most of the chromatographic amino acid separation methods are designed for analytical (nanomole level) use: either ion-exchange analyzers (Moore & Stein 1951) or reversed phase systems (eg, Joseph & Marsden 1986) with organic buffer systems and post- or precolumn derivatization. These do not suit the specific demands of fossil bone isotopic analysis. Carbon contamination from the organic buffers and derivatization reagents is difficult to avoid. For instance, ninhydrin derivatization reagent turned out to be severely contaminated by 14C (up to
10 times the activity of recent natural carbon), possibly because of contact with labeling compounds during manufacturing. The main disadvantage, however, is the fact that non-aminated contamination cannot be detected if derivatization techniques are used. For these reasons, we used direct UV detection at 210nm.

Spectrophotometric detection is based on the measurement of the absorbance of monochromatic light by the sample in accordance with the Lambert-Beer law:

\[c = \frac{\log I_0/I}{\varepsilon \cdot L} \]

where \(c \) = concentration of unknown solution; \(I_0 \) = intensity of the incident light of the used wave length (ie, 210 nm); \(I_t \) = intensity of the transmitted light; \(\log I_0/I \) being the absorbance \(A \) (formerly called extinction \(E \) or optical density \(D \)); \(\varepsilon \) = molar absorption coefficient (formerly the extinction coefficient), dependent on the type of solvent, wave length and temperature; \(L \) = path length of light through solvent.

Spectrophotometric detectors provide an output in absorbance units which is linearly related to sample concentration over a range of \(10^5 \).

Baseline separation of amino acid peaks is indispensable for avoiding partial mixing of fractions, especially if we inject large amounts of sample. In fact, complete separation is not obtainable for all "collagen" amino acids, due to the complexity of the amino acid / "humics" mixture; thus, some of the amino acids have to be omitted.

We built an HPLC system with an inorganic buffer system, a cation exchange (sulphonated resin) column, and direct UV detection at 210nm. We separated amino acids with one buffer solution during a run of 145 min at a maximum load of 100mg of hydrolyzate. We can extract aspartate (Asp) and Ser in a separate run using a higher column temperature. An optional buffer for the separation of Pro, Val, Leu, and histidine (His) is available. We also can isolate some humic fractions and unhydrolyzed parts of collagen chains (peptides) if they are present.

Normally, we then analyze amino acids for their stable isotope content (\(^{13}\text{C}/^{12}\text{C}, ^{15}\text{N}/^{14}\text{N} \)) to determine the optimal amino acids for dating. The chosen amino acids finally can be \(^{14}\text{C} \) dated by means of AMS.

MATERIALS AND METHODS

Sample Selection

As discussed above, the state of collagen preservation determines the quality of isotope results (see also Stafford, Brendel & Duhamel 1988). The choice of bone or part thereof can be crucial. We prefer dense bones, such as the shafts of long bones, over more porous ones. We obtained especially good results from dental elements, even from tropical soils where bone withers quickly. Both bone and dentin contain the same type of collagen (Type I, Bornstein & Traub 1979); however, the initial collagen content is higher in dentin (30% compared to ca 15% in bone), and dentin is much denser than bone. We found no differences in isotope content between bone and teeth (van Klinken et al, ms).

Mechanical Cleaning of the Bone Sample

At first, we remove the bone surface, or we saw out a dense, unexposed section of the inner part of the bone. The selected material is ground to 0.5-1.5mm particles in a ball or chopping mill, making sure that the bone powder does not overheat.
Demineralization

During demineralization, some distilled water is used. Demineralization is a process that prevents caramelization and improves gelatin yield. We subsequently decalcify the bone powder in dilute hydrochloric acid (3% HCl in doubly distilled water) at 4°C, stirring, adding 10ml aliquots of dilute acid until degassing stops. During demineralization, some of the collagen fibers will hydrolyze and become soluble if the temperature is too high or demineralization time is too long (Longin 1971; Brown et al 1988), and are then lost for the following gelatinization step. Demineralization time must be optimized for these opposing reactions. Under the described circumstances, the demineralization process lasts for 4 - 10 hr. After repeated centrifugation and washing with distilled water, the residue is used for gelatinization. However, in the smallest samples, the residue may not contain enough gelatin, in which case, the use of supernatant “collagen,” the dilute acid-soluble fraction, is sometimes necessary.

Gelatinization

Collagen fibril structure is lost during prolonged heating at temperatures higher than 58°C, the denaturation temperature of collagen (Piez 1984). During gelatinization, collagen fibers are unfolded and become soluble, while impurities (humates or severely degraded collagen parts) remain in the residue and can be eliminated by centrifugation (Longin 1971). Although gelatin extraction is not as selective as it once was thought to be (Gurfinkel 1987; Stafford et al 1987), it is still useful for improving the purity of fossil “collagen.” The residue from the demineralization is placed in a shaking incubator at 75°C and a pH of ca 3 for 0.5 to 2 hr in closed glass containers. The steady movement speeds up the gelatinization process and improves the yield. Minimizing gelatinization time, temperature and air contact during the process prevents caramelization of the gelatin’s carbohydrates, which appears as an increasingly yellow solution, and which could make the gelatin less accessible to further amino-acid extraction. The supernatant, containing the gelatin, is then freeze dried.

Hydrolysis

The gelatin is hydrolyzed in doubly distilled 6N HCl (Suprapur, Merck; 3ml per 100mg of gelatin) for 20 hr at 110°C in sealed ampules. A part of the gelatin (up to 25%) is not hydrolyzed and remains a brown, insoluble residue. Experiments with higher temperatures, stronger acid, lower gelatin concentration and longer hydrolysis times failed to give better amino acid yields. Perhaps it is the more degraded part of the gelatin that is not, or only partially, sensitive to hydrolysis. Based on the differences in stable isotopic ratios between this residue and the intact “collagen,” Hare and Estep (1983) suggest that the residue is a diagenetic product from lipids or carbohydrates from the glycosylated residues of the collagen fiber.

After hydrolysis, the sample is evaporated to dryness in a desiccator; subsequently, the amino acid mixture is redissolved in doubly distilled water, in a maximum concentration of ca 100-120mg hydrolyzate per 1000μl. After centrifugation for 30 min at maximum speed, the hydrolyzate is ready for injection into the HPLC system.

Amino-Acid Separation

The HPLC system is designed to handle samples in an automated or semi-automated way, in amounts sufficient for stable isotope analysis or radiocarbon dating (80-100mg of hydrolyzate). The system comprises a HPLC pump, a dead-volume injector with
interchangeable sample loops, a chromatographic column with waterbath heating, a variable wavelength UV detector, and a fraction collector, which also controls the stepwise gradient. The extraction system is kept in an overpressure dust-free room. The (semi-) preparative HPLC pump must be able to deliver buffer flows of at least 20 ml min\(^{-1}\); the stainless steel connecting tubing is 0.16 cm OD, 0.051 cm ID (\(1/16"\times 0.020"\)). The preparative 22 x 500 mm column contains sulphonated cation exchange resin, Alltech Rogel-S (10 µm particle size). The column is heated by a waterbath/circulation system with a tolerance of 0.5°C. Coiled nickel tubing, 40 cm long, is placed in front of the column to improve heat transfer to the solution. Directly after the column, the solution is water-cooled to 30°C using another 40 cm piece of coiled nickel tubing. Normally, the injection valve is fitted with a 1000 µL sample loop, and is thoroughly cleansed with a detergent solution and doubly distilled water before each injection to prevent cross-contamination. We used a LKB 2151 variable wavelength UV-Vis detector at 210 nm, fitted with a preparative flow-cell. A Gilson 201 fraction collector is used to collect fractions automatically (with peak/baseline detection) or manually, and to control the buffer change-over valves. Chemicals are pa grade; the de-ionized water is filtered and de-aerated in a vacuum filter system (filters 0.45 µm, Millipore); and buffer solutions are continuously flushed with helium.

The separation of the amino acid peaks is optimized using Sigma L-amino-acid probes until retention time and peak shape of each amino acid give a baseline separation at preparative loads and at 0.04 AUFS (Absorbance Units Full Scale) of the UV detector sensitivity. We checked amino acid purity by classical amino analysis: purity of amino acid fractions, isolated under the described elution conditions did not differ from the pa Sigma amino acids (for a summary of the elution conditions, see Table 2). We quantify the content of each amino acid in a sample using Sigma Collagen Standard mixture.

The entire amino acid elution sequence is different from the classical sequence of amino-acid analyzers, but we have found no explanation for this phenomenon.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Elution conditions during preparative separations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer flow rate</td>
<td>18.01 min(^{-1})</td>
</tr>
<tr>
<td>Pressure</td>
<td>36 bar (at 74.5°C)</td>
</tr>
<tr>
<td>Column</td>
<td>22 mm x 500 mm Rogel-S, Alltech 10 µm particle size, 10 nm pore size</td>
</tr>
<tr>
<td>Temperature</td>
<td>74.5°C (increased to 80°C for Asp and Ser separation)</td>
</tr>
<tr>
<td>Detector</td>
<td>UV detection at 210 nm (Semi-) preparative flowcell 0.04 or 0.08 AUFS (preparative load of 50-100 mg collagen hydrolyzate)</td>
</tr>
<tr>
<td>Buffer system</td>
<td>A 0.1 M NaH(_2)PO(_4) + 0.1 M H(_3)PO(_4) pH = 2.12 (25°C) B idem; pH = 4.50 optional C .04 M NaOH cleaning and column regeneration</td>
</tr>
<tr>
<td>Gradient</td>
<td>Stepwise; duration from moment of injection: A 100 min; (B 30 min); C 15 min; A 30 min</td>
</tr>
</tbody>
</table>
Isotope fractionation occurs during the chromatographic separation; we have observed $\delta^{13}\text{C}$ differences of maximally 50%o between the first and the last parts of a Gly peak (cf Macko et al 1987). To overcome this effect, we collected complete baseline separated peaks with small baseline parts before and after the peak. The resulting average variation in Gly, the smallest amino acid, and consequently the most susceptible to isotopic fractionation (Macko et al 1987), is $\pm 0.5%o$ for $\delta^{15}\text{N}$ and $\pm 0.4%o$ for $\delta^{13}\text{C}$.

The ^{14}C background is presently found to be lower than corresponding to 37,000 BP, with $>50,000$ BP collagen as a testing material.

Desalting

The buffer phosphate salts in the collected HPLC fractions destabilize the combustion for isotope analysis by creating a fluctuating carbon background in the oxygen flow combustion system. Therefore, the amino acids are desalted by elution of the fractions over a 1.8 x 40cm column of AG 11 A8 (Biorad), at a flowrate of 1ml.min$^{-1}$. The salt-free amino-acid solution is then lyophilized.

Recently, we found buffer salts to give less problems using a Cr_2O_3 combustion system (CHN analyzer), so we can omit desalting procedures in many of these combustions.

![Fig 1A. A preparative separation (run #478) of a fossil "collagen" CI (^{14}C age 1700 BP), detector 0.08 AUFS. B. Preparative separation (run #493) of "collagen" Malmok 15, Asp and Ser are deformed (arrow), detector 0.08 AUFS. C. Analytical run (#494) of Sigma Collagen Standard, undiluted, 2.5μmol of each amino acid, except 12.5μmol Hyp, detector 0.02 AUFS. D. Blank run (#453), 0.08 AUFS. Other elution conditions as described in Table 2. L-Amino acids: 1 Asp, 2 Ser, 3 Gly, 4 Hyp, 5 Glu, 6 Thr, 7 Ala.](image)

RESULTS AND DISCUSSION

Figure 1 shows examples of HPLC separation chromatograms. In Figure 1A, a chromatogram of a preparative extraction of a "collagen" sample with an age of 1700 BP shows baseline separation of the five amino acids Gly, Hyp, Glu, Thr and Ala. Asp and Ser are not
fully separated and thus cannot be used for isotopic analysis. Peaks during the first 30 min represent salts and humic fractions. Figure 1B shows irregularities in the shape of the Asp and Ser peaks, so that these amino acids should be treated with caution. Figure 1C is an analytical chromatogram of the reference material, Sigma Collagen Standard. Figure 1D shows a blank run.

Routine separation of individual amino acids from fossil bone removes all soil contaminants (eg, humates; Stafford, Brendel & Duhamel 1988), except soil amino acids that have become attached to the bone collagen in situ during diagenesis. Free amino acids from the soil are washed out during gelatin preparation steps. Chemical bonding of exogenous amino acids can result in 1) a changed amino-acid composition (collagen differs considerably from the average protein), which can be detected during the HPLC separation, 2) in deviating stable isotope values of contaminated amino acids, which uncontaminated have characteristic isotopic compositions (Hare & Estep 1983), or 3) in different 14C ages of amino-acid fractions. These possibilities for identification of suspected samples will increase the quality of 14C bone dating. However, wherever possible, 14C dating of Hyp fractions should be preferred, because only Hyp is bone-specific to a high degree. All other amino acids occur in soils as well, and the sensitivity of chemical and stable isotope analysis is not sufficient to ensure correct 14C ages. Therefore, individual 14C measurements should be performed on these amino acids to distinguish between contaminated and uncontaminated fractions.

Macko et al (1983) separated individual amino acids using classic ion-exchange chromatography; unfortunately, they do not give many details of separation conditions. Hare & Estep (1983) were the first to report isotope composition of collagen amino acids using this extraction system. The use of HCl as a volatile eluent facilitates collection of salt-free amino acids. It is not easy to use HCl in HPLC, so we choose a phosphate buffer system. Because these buffers are non-volatile, we needed to desalt fractions prior to combustion, introducing another step. However, as we found out later, desalting is not strictly necessary when using a CHN analyzer to combust samples.

The advantages of HPLC techniques over low-pressure chromatography are better separation, high reproducibility of retention times and thus direct identification of peaks, constant monitoring, and much shorter extraction times.

Theoretically, bone contamination during diagenesis can be eliminated as a source of erroneous bone datings by extracting and comparing individual amino acids. Only laboratory procedures, consisting of controllable factors, in principle, determine sample contamination.

The approach described here enables us to use chemically well-defined sample materials, ie, amino acids, instead of more uncontrollable collagen extracts. The same results may be obtained by the possible extraction of well-preserved (hydrophobic) proteins (Gillespie 1989). The comparison of different amino acids from one bone sample presents new opportunities in the evaluation of bone radiocarbon ages and stable isotope data for paleodietary reconstruction or for the study of isotope fractionation effects in biosynthetic processes.

ACKNOWLEDGMENTS

The investigations were supported by the Foundation for Archaeological Research (ARCHON) of the Netherlands Organization for Scientific Research (NWO). We would like to thank A T Bijma for her assistance with the HPLC separations. We thank Dr D E Nelson who provided the 1700 BP bone sample, and Dr J van der Plicht for critically reading the manuscript. The hospitality of the Biochemical Laboratory of Groningen State University and the advice of its staff are gratefully acknowledged.
REFERENCES

Wand, JO (ms) 1981 Microsample preparation for radiocarbon dating. PhD dissert, Oxford Univ.
HARWELL RADIOCARBON MEASUREMENTS VIII

A J WALKER, NIGEL WILLIAMS¹ AND R L OTLET

Isotope Measurements Laboratory, Harwell Laboratory
Oxfordshire OX11 0RA, United Kingdom

INTRODUCTION

Following Harwell Measurements VI (Walker & Otlet 1988) this is the second of the series of lists of English archaeological dates commissioned for measurement by the Historic Buildings and Monuments Commission for England and Wales within prescribed contractual periods. This list, containing 176 dates, refers to the period, April 1986 to March 1987, and results are reported irrespective of whether the associated projects are completed or ongoing.

Measurement procedures were essentially as reported earlier, with all three measuring systems of the Isotope Measurements laboratory having been used as appropriate to the sample size and requirements for measurement precision - standard liquid scintillation counting (Otlet & Warchal 1978) to a precision of ±1%, miniature gas proportional counting (Otlet et al 1983; Otlet, Huxtable & Sanderson 1986) for the smaller samples and the higher precision (±0.5%) liquid scintillation counting system brought into operation in 1985. In all cases, the error term quoted is the 1σ standard deviation estimate of the full replicate sample reproducibility (Otlet 1979). Following further software developments, the basic text of the reports is now routinely prepared from database entries using an in-house microcomputer. National Grid References are abbreviated to NGR.

Calculations are based on the Libby half-life of 5568 years, using NBS oxalic acid standard (x0.95) as 'modern', both values treated as constants with AD 1950 as the reference year. All results are adjusted for fractionation according to the quoted δ¹³C (wrt PDB) values measured in the laboratory.

ACKNOWLEDGMENTS

We wish to acknowledge the work of our colleagues D G Humphreys, M M Gibson and S M Dadson with the laboratory measurements. The financial support of the Historic Buildings which funded both the sample measurements and this publication and the cooperation of the staff of the Ancient Monuments Laboratory is also gratefully acknowledged.

ARCHAEOLOGIC SAMPLES

HAR-1313. SCILLY01

Charcoal, with soil, AML 753220, from possible entrance to stone-built hut exposed in the seacliff and beneath a fossil sand dune at Halangy Porth, St Mary’s, Isles of Scilly. Coll March and subm May 1975 by P Ashbee.

¹New College, Oxford University, Oxford, UK
Milton Keynes series

HAR-854. MK223K-1

Charcoal, AML 748093, from large Iron Age pit in which both artificial and organic remains were preserved at Hartigan’s Gravel Pit, Site MK 223, Milton Keynes. Coll Aug 1974 by T Schadla-Hall and subm Sept 1974 by H S Green, Natl Mus of Wales.

Comment (HSG): pit contained large and extremely important assemblage of decorated pottery including a Hunsbury bowl. This ceramic assemblage is of key importance in dating Iron Age pottery traditions.

Beeston Castle series

Three charcoal and one soil sample from Beeston Castle, Bunbury, Cheshire (53°7'43"N, 2°41'26" W, NGR SJ538593).

HAR-4402. BCOGRC03

Charcoal from fill of cylindrical posthole at top of ditch of outer ward. The posthole is 1 of 3 forming part of a tentative palisade with ambiguous relationship with supposed bank deposit. Coll Aug and subm Oct 1980 by P Hough.

HAR-5610. BCOGRC07

Charcoal from context BCO375A, timber in situ in stone rampart below foundation level of Medieval castle. Subm June 1983 by P H.

HAR-6465. BC0624AA

Charcoal, identified as Fraxinus sp, ash, AML 834980. Subm Aug 1984 by P H.

HAR-8101. BEEBAH

Comment (IMcP): Pollen profile taken through bank and ditch fill which include stable phase leading to organic matter deposition and old landsurface phase. Sample dates standstill phase in pollen sequence.

Hambledon Hill series

Charcoal samples from Hambledon Hill (Stepleton site), Iwerne Courtney, Blandford, Dorset (NGR ST847121). Coll and subm by R J Mercer, Univ Edinburgh.
HAR-6038. HN82C13

\[4530 \pm 110\]
\[\delta^{13}C = -25.7\%o\]

From Ditch 3, Unit 6, Layer 5c, burned layer in butt end overlying natural chalk. Coll Sept 1982 and subm Nov 1983 by R J M.

Comment (RJM): suggests contemporaneity of whole ditch system tested so far.

HAR-4438. ST8080

\[4770 \pm 80\]
\[\delta^{13}C = -25.3\%o\]

Identified as Quercus sp, from Feature no. 601. Subm Jan 1981 by RJM.

Comment (RJM): large timber in situ in gateway, apparently heartwood, relating to date of rampart construction.

Ribchester series

Charcoal from Ribchester, Lancashire. Coll and subm by A C H Olivier, Univ Lancaster.

HAR-4445. RB80-057

\[2860 \pm 90\]
\[\delta^{13}C = -27.5\%o\]

Identified as hazel/alder (Corylus/Alnus sp) from mature timbers. Subm Feb 1981.

HAR-4446. RB80068B

\[3820 \pm 120\]
\[\delta^{13}C = -26.9\%o\]

Identified as oak (Quercus sp) from secondary vessel; fill from internal vessel.

Mingie’s Ditch series

Samples from Mingie’s Ditch, floodplain of River Windrush, Hardwick-with-Yelford, Oxon (51°45’0” N, 1°26’1” W, NGR SP391059). Coll and subm by M A Robinson, Univ Museum, Oxford.

HAR-8354. HYMDW

\[7590 \pm 80\]
\[\delta^{13}C = -26.2\%o\]

Charcoal (identified as Corylus and Salix/Populus) twigs and young branchwood, from organic river sediments overlying Pleistocene gravels and sealed by river gravel.

Comment (MAR): sample was well stratified, sealed beneath layer of gravel, peat, then clays; assoc with floral and faunal assemblage of late Flandrian Zone I.

HAR-8355. HYMDO

\[6540 \pm 80\]
\[\delta^{13}C = -27.6\%o\]

Wood (identified as young branchwood of Alnus, Quercus and Fraxinus sp) AML 8650015, from hollow filled with organic river sediments on former bed of River Windrush.

Comment (MAR): deposit yielded faunal and floral assemblage of Flandrian Zone II.
HAR-8356. HYMDG

Wood (identified as Betula and Salix/Populus sp) twigs, AML 8650012, from organic deposit in base of small channel sealed beneath uppermost Pleistocene gravels.

Comment (MAR): deposit yielded faunal and floral assemblage of Late Devensian.

HAR-8366. HYMD/TS2

Highly organic silt, AML 8650013, from base of channel cutting Pleistocene gravels.

Comment (MAR): sampled deposit was sealed beneath alluvial clays and yielded faunal and floral assemblage of early Flandrian Zone I. Stratigraphically later than HYMDG (HAR-8356).

General Comment: four latest samples in this series (HAR-8354 to -8355 and -8366) were studied for plant and invertebrate remains and provided sequence from Late Devensian to Flandrian Zone II. They provide first dated pre-Neolithic paleoecologic sequence for Upper Thames valley. Dates also relate latest Paleolithic flints from site to vegetational sequence.

Trelan series

HAR-4538. 41-041

Rowden series

HAR-5246. RD82523

AML 822636, from Layer 523.

Comment (PJW): closely conforms to dates of HAR-5248 (4860 ± 70 BP) and HAR-5247 (4940 ± 70 BP), from base of same pit. Plain Early Neolithic Hembury-type wares were recovered from pit infill.

HAR-5249. RD82837

AML 822639, from entrance posthole (841) of Middle Bronze Age hut.

Comment (PJW): date is compatible with those of carbonized grain in storage pit (HAR-5698, 2920 ± 80 BP).
Caldecotte series

HAR 5616. MK117/04

1750 ± 100

$\delta^{13}C = -27.6‰$

Charcoal (identified as *Quercus* sp) AML 824007, from MK117, context 100, primary silt of ditch 4 in sect F, dark blue/gray black clayey silt with much organic material at Caldecotte, Mill Field site. Subm June 1983 by M Petchey, Bradwell Abbey Field Centre.

Cowleaze series

HAR-5618. 838

3110 ± 80

$\delta^{13}C = -24.5‰$

Charcoal (identified as *Quercus* sp and *Pomoideae*) AML 831128, from soil (Sample 90) at top of accumulated soil profile in barrow ditch at Cowleaze, Winterborne Stepleton, Dorset. Coll and subm June 1983 by P J Woodward.

Comment (PJW): this sample, at top of soil profile provided date 280 yr later than that at base of profile (HAR-5617, 3390 ± 100 BP) (Woodward 1982).

Oxford St Aldate’s series

Samples from 89, St Aldates, Oxford (51°44'53" N, 1°15'25" W, NGR SP513058) (Durham 1977; 1984). HAR-5344 coll and subm Oct 1982 by B G Durham, Oxford Archaeol Unit; all other samples coll June and subm Dec 1985 by B G D.

HAR-5344. OXTMS32

920 ± 100

$\delta^{13}C = -29.8‰$

Charcoal, AML 826489, from mid-late Saxon gully.

HAR-8360. OXTMS713

1020 ± 70

$\delta^{13}C = -27.4‰$

Leather, offcuts, apparently new rather than scrap, AML 872547, from within thick gravel feature, evidently causeway across flooded mill stream.

Comment (BGD): result confirms date of causeway construction due to flooding.

HAR-8361. OXTMS626

2280 ± 100

$\delta^{13}C = -31.6‰$

Peat, marsh deposit with phragmites rhizomes, AML 872546, from extensive deposit of fine clay cut by mill stream.

Comment (BGD): causeway had apparently been constructed from this deposit.

HAR-8362. OXTMS615

1080 ± 80

Wood (identified as *Alnus/Corylus*) twig, AML 872543, from mill stream.

Comment (BGD): results for samples HAR-8362 to -8364 confirm date of mid- or late-Saxon Thames causeway assumed to be constructed from upcast of mill stream.
HAR-8363. OXTMS623
Wood (identified as Corylus sp) AML 872544.

HAR-8364. OXTMS625
Wood, identified as Alnus/Corylus twig, AML 872545.

Easton Lane series

HAR-6115. ELI217

Comment (PJF): dated to confirm contemporaneity of apparently related features of late Neolithic complex and to help date ceramic sequence.

HAR-6118. ELI222
Animal bone, AML 833181, from posthole ca 40cm deep of small, oval structure with large, closely-spaced postholes. This unusual feature is isolated at junction of two Bronze Age linear ditches. Coll Oct 1982.

Comment (PJF): dated to place oval structure, reminiscent of Late Neolithic or Early Bronze Age, into its chronologic position at site.

HAR-6120. ELI 1193
Bone, AML 833183, from basal Layer 687, of infilling of Bronze Age house terraced into N-facing slope. Coll Nov 1982.

Comment (PJF): houses and assoc pits form discrete part of prehistoric landscape 275m from nearest Bronze Age structure but with potentially contemporary cemetery only 75m N. Dates assoc cultural material in fill of house and general ceramics sequence of site.

HAR-6122. ELI 459

Comment (PJF): result will help establish date of unusual mixed cremation and inhumation open cemetery.
Kynnersley series

HAR-6392. 257-115

Charcoal (identified as *Quercus* sp and *Salix/Populus*) mature wood, AML 8314022, from lower levels of gully surrounding excavated round house at Wall Fort Kynnersley (52°45′30″ N, 2°28′27″ W, NGR SJ 682179). Coll June 1983 and subm Sept 1984 by N D Balaam.

Chester series

HAR-6625. HSS8169

Animal bone, from extensive layer of dark brown soil and rubble over Roman fortress buildings, containing Roman, late Saxon and some Medieval pottery. Late Saxon building was found on adjacent site and undatable, sunken-featured building was found nearby at Hunter St School, Chester. Coll 1981 and subm April 1984 by P Carrington, Grosvenor Mus, Chester.

Heslerton Parish series

HAR-6631. HP00017C

Juvenile 13-14 yr old, AML 841217, from Context IR304 in Early Bronze Age (EBA) barrow. *Comment* (DJP): secondary burial with Beaker and inserted into grave of Skeleton IR340 (HAR-6630), whose bones were stacked at foot of grave.

HAR-6907. HP00006C

AML 841206, from grave, Context 2B00084. *Comment* (DJP): one of group of burials with weapons, situated at supposed center of burial.

HAR-8241. HP00013C

AML 841213, Context 1L00110, EBA Barrow Cemetery 1. *Comment* (DJP): secondary burial inserted through mound within year of mound construction, probably some time after primary burials.

HAR-8242. HP00004C

HAR-8243. HP00005C

AML 841205, from Context 2F00013, Anglian cemetery, cut by Grave 2F00012.
Comment (DJP): burial included cruciform brooch with runic inscription.

HAR-8325. HP00020C 3640 ± 40

Juvenile 7-9 yr old, AML 841220, from Context IR101, Iron Age burial inserted into EBA burial.

Comment (DJP): buried with Arras-type pot.

HAR-8326. HP00014C 3440 ± 40

AML 841214, from context IR101, EBA Barrow Cemetery 1. \(\delta^{13}C = -21.8\%

Comment (DJP): tertiary burial cut through entirely filled barrow ditch.

Cairn 38 series

HAR-6652. 8410216 3740 ± 90

\(\delta^{13}C = -25.5\%

Identified as Quercus sp, AML 8410216, from fill of pot containing cremation burial; pot was in pit near center and below cairn.

Comment (GHS): HAR-6652 and -6654 date both burial and decorated pot containing it and will help sequencing Bronze Age pottery in S W, which is, at present, hypothetical.

HAR-6654. 8410210 3110 ± 70

\(\delta^{13}C = -24.5\%

Identified as Quercus sp, AML 8410210, from fill of pot containing cremation burial. Pot was in pit outside kerb of cairn.

HAR-6925. 8410168 4570 ± 120

\(\delta^{13}C = -26.5\%

Identified as mainly Quercus sp with some Corylus avellana, AML 8410168, from buried soil in positive lynchet which is one element of widespread field system physically continuous with Romano-British settlement but probably of Bronze Age origin.

Comment (GHS): dates phase of agricultural activity for which there is abundant physical evidence but no assoc cultural material, although field system may well have Bronze Age origins.

HAR-6926. 8410157 3150 ± 90

\(\delta^{13}C = -25.7\%

Quercus sp, AML 8410157, from fill of pit containing cremation, outside the kerb of the cairn. One of six pits with probable cremations found around cairn but without burial pots.

Comment (GHS): date acts as sample of six unaccompanied burials and comparison with dates for burials containing pots.
3280 ± 120
$\delta^{13}C = -26.3\%$

Quercus sp, AML 8410178, from fill of pit containing cremation and rimsherd of decorated pottery. Pit was close to but outside rim of cairn containing burial pots.

Comment (GHS): needed to date burial and assoc potsherd because whole sequence of Bronze Age pottery in the SW is, at present, hypothetical.

Ham Hill series

HAR-6653. 252/84

2160 ± 90

Charcoal (identified as *Alnus* sp) AML 8312852, from lens of charcoal and carbonized grain in Iron Age pit at Ham Hill. Coll 1983 by GHS and subm April 1985 by NDB.

Comment (NDB): compares with earlier sample (HAR-6222) from site, dated to 1640 ± 80 BP.

Greyhound Yard series

4020 ± 80
$\delta^{13}C = -27.0\%$

HAR-6686. W67.1648

AML 845009, from infill on outer edge of postpipe, Late Neolithic Postpit 1647/1635.

4090 ± 70
$\delta^{13}C = -25.9\%$

HAR-6687. W67.1649

AML 845010, from ‘festoons’ along edge of inner postpipe, Late Neolithic Postpit 1647/1635.

4080 ± 70
$\delta^{13}C = -26.5\%$

HAR-6688. W67.1653

AML 845009, from ‘festoons’ in lower postpipe fill, Late Neolithic Postpit 1639/1631.

4140 ± 90
$\delta^{13}C = -26.3\%$

HAR-6689. W67.1642

AML 845009, from fill of postpipe, Late Neolithic Postpit 1639/1631.

General Comment (PJW): results establish dates of postpits which are otherwise dated on form and flint assemblages alone to Late Neolithic (Woodward, Davies & Graham 1984). This is series of postpits in linear arrangement structurally similar to postpits at Mt Pleasant/Durrington Walls.

Honeygore Complex series

HAR-6698. SLP8503

Identified as birch and hazel, AML 852742, from previously unknown Neolithic track in complex of at least five such tracks.

Comment (JMC): series of tracks in close proximity suggests Neolithic interest in immediate area. Dating relates track to immediate complex.

HAR-6699. SLP8504

Identified as birch, AML 852743, from 1 of 5 Neolithic structures in Honeygore complex, Site no. Hdew 85.29.

Comment (JMC): Neolithic trackways in this area of Levels have been known for several decades, but until recently were lost from view. Renewed cutting in area is now intensive, and this site was destroyed within one day of its excavation. Date relates the track to adjacent ones.

Dalton Parlours series

HAR-6715. DP602

HAR-6725. DP764SS3

AML 852637. Coll March 1985 by JDH.

HAR-6726. DPO201

AML 852638. Coll May 1977 by ABS.

HAR-6727. DP0062

AML 852639. Coll March 1985 by JDH.

Comment: larger than normal error term reflects smaller than optimum size for liquid scintillation counting.

General Comment (JDH): Dalton Parlours has several acres of linked irregular single-ditched enclosures within which were round houses and other typical Iron Age structures. A large Roman villa was built after a break in occupation and thereafter some Anglo-Saxon activity is suspected. Few datable artifacts were retrieved from either Iron Age or Anglo-Saxon periods; thus, 14C samples are of considerable importance in interpreting the site.

Fiskerton series

HAR-6728. FISK116
Tree rings sampled date to 436-405 BC.

HAR-6729. FISK149
Tree rings sampled date to 433-405 BC.

HAR-6730. FISK253
Tree rings sampled date to 500-455 BC.

General Comment (JH): chronology of Fiskerton Iron Age causeway has now been determined by dendrochronology (Hillam 1987).

Fulham Palace Moated Site series

HAR-6807. FPMS10
Silt with organic content, AML 840133 and submitter's ref MTIII, from moat, prior to relining. Subm March 1985.

HAR-6841. FPMS17

Comment (KRW): sample taken to date moat's construction.

Manor Farm series

Human bones from Manor Farm, Borwick, Lancashire (54°8′45″ N, 2°44′44″ W, NGR SD513725) (Olivier 1983).

HAR-6857. MF82SF73
AML 837244, from part of in situ primary inhumation, inside cell in limestone boulder enclosure, lying directly on truncated subsoil, underlying main body of cairn material. Coll Oct 1982 and subm Feb 1985 by A C H Olivier, Univ Lancaster.

Comment (ACHO): central burial included Early Bronze Age flat axe and dagger as did second in situ burial. Although a direct relationship between these two burials cannot definitely be proven, they are both in a primary stratigraphic position and likely to be broadly contemporary.

HAR-7012. MF82SF44
AML 867676.
HAR-7013. MF82SF46
AML 867677.
1220 ± 90
\[\delta^{13}C = -23.0\% \]

HAR-7014. MF82SFBB
AML 867678.
2690 ± 100
\[\delta^{13}C = -23.0\% \]

General Comment: HAR-7012, -7013, -7014 come from scatter of human bone recovered during removal of main body of cairn (002), which overlay limestone enclosure (008). Coll 1982 and subm April 1986 by ACHO. Samples were dated to establish extent of possible Iron Age re-use (HAR 5659: 480 BC) of Bronze Age Burial Monument (HAR-5626, -5658, -5661: 1680 BC, 1320 BC, 1430 BC). Samples could result from later intrusion into main part of cairn.

Milton Lilbourne series

HAR-6921. CO69MLB4

3530 ± 110
\[\delta^{13}C = -25.2\% \]

Comment (PA): date is useful terminus post quem for charcoal element of occupation earth additive, which could be older than barrow, although pottery content suggests contemporaneity (Annable 1958).

Potterne series

Charcoal samples from Potterne, near Devizes, Wiltshire (51°19'50" N, 2°0'21" W, NGR ST996591). Coll Aug 1984 and subm Dec 1985 by C Gingell and A J Lawson, Trust for Wessex Archaeol. All samples come from two middens and were intended to date sequence of midden and underlying deposits (Gingell & Lawson 1984; Gingell & Lawson 1985).

HAR-6978. POTT1

2590 ± 80
\[\delta^{13}C = -26.6\% \]

Identified as Quercus sp, Pomoideae (hawthorn type), Corylus avellana, Ulmus sp, Prunus sp and cf spinosa (sloe), AML 858590, from midden, Context 1617, Column 88.

HAR-6979. POTT2

2490 ± 70
\[\delta^{13}C = -26.7\% \]

Identified as Quercus sp, Pomoideae (hawthorn type), Corylus avellana, Ulmus sp, Prunus sp, Fraxinus excelsior, Acer campestre and Ilex aquifolium, AML 858591, from midden, Context 1608, Column 89.

HAR-6980. POTT3

2650 ± 80
\[\delta^{13}C = -24.0\% \]

Identified as Quercus sp, Pomoideae (hawthorn type), Ulmus sp, Prunus sp (cherry/sloe), Prunus spinosa, Fraxinus excelsior, cf Tilia sp, AML 858592, from Context 2209, Column 88.
HAR-6981. POTT4

2630 ± 70
δ¹³C = -26.6‰

Identified as Quercus sp, Pomoideae (hawthorn type), Corylus avellana (hazel), Ulmus sp, Prunus sp, Prunus spinosa, Acer campestre cf Tilia sp, AML 858593, from midden, Context 2208, Column 89.

HAR-6982. POTT5

3130 ± 100
δ¹³C = -25‰.

Identified as Quercus sp, Pomoideae (hawthorn type), Corylus avellana, Prunus sp (cherry/sloe), Prunus cf spinosa, fragments of twigs and larger wood, AML 858594, from Context 2988, Column 88.

HAR-6983. POTT6

3430 ± 110
δ¹³C = -26.8‰

Fragments of twigs and larger wood, identified as Quercus sp, Pomoideae, Corylus avellana, Prunus sp, Prunus spinosa, Tilia sp, AML 858595, from Context 2984, Column 89.

Hasholme series

Peat from Hasholme Farm, Holme-on-Spalding Moor, N Humberside, (53°46'59" N, 0°45'8" W, NGR SE822326). HAR-7005 to -7007, coll Aug 1984 and subm April 1986 by M Millett, Univ Durham.

HAR-7005. HAS174

2530 ± 70
δ¹³C = -30.3‰

AML 865982, from top of sequence, immediately prior to marine transgression.

HAR-7006 HAS214

2830 ± 70
δ¹³C = -30.8‰

AML 865981, from lime decline in middle of sequence.

HAR-7007. HAS430

5710 ± 100
δ¹³C = -26.7‰

AML 865983, from lime decline at base of sequence, dating marine regression.

HAR-7024. HAS118

3230 ± 90
δ¹³C = -26.7‰

Wood, identified as oak, AML 865800, from near Hasholme logboat, rings 120 to 139 of bog oak, one of group at Hasholme. Coll 1984 by MM and subm March 1986 by J Hillam, Univ Sheffield.

Comment (JH): dated to find out whether bog oaks are roughly contemporary with logboat. Timber for boat felled 322-277 BC, so bog oak 118 is considerably older. Other bog oaks still to be dendrodated.
North Down, Margate series

HAR-7010. 274-1327

Identified as mostly Pomoideae, some cf Prunus spinosa, AML 841327, immediately underlying layer of Late Bronze Age rubbish in ring ditch of ‘saucer’ barrow.

Comment (GHS): dates terminus post quem for deposition of Late Bronze Age (LBA) rubbish layer.

HAR-7011. 274-1298

Identified as mostly Pomoideae with some Quercus sp and Corylus sp, AML 841298, from small cremation pit within ‘saucer’ barrow.

Comment (GHS): dates one phase of barrow use.

Brean Down series

HAR-7016. BD5801-1

Twigs and fragments, AML 865783, from feature, Context 103, sealed by compacted clay floor, Context 60, of stone roundhouse of probable Middle Bronze Age (MBA) date. Coll Sept 1985 by Helen Smith.

Comment (MB): Context 103 is cut into base of terrace occupied by building. Dates initial activity in this occupation horizon and compares with overlying floor (HAR-7017). Two dates provide information on duration of occupation in Unit 56 of sandcliff sequence.

HAR-7017. BD5749-2

AML 865784, from hard-packed clay floor of stone roundhouse of probable MBA. Coll Sept 1985 by HS.

Comment (MB): Context 60 is floor of Bronze Age Structure 59. Dates structure and compares with underlying pit (HAR-7016) and two other Bronze Age structures, one broadly contemporary, Structure 95, HAR-7019, one, Structure 57, HAR-7020, clearly earlier on stratigraphic grounds, being separated from the other two by sand.

HAR-7018. BD5803-3

AML 865786, from area of burning, Context 93, assoc with clay hearth in center of floor of

Comment (MB): dates final phases of use of Structure 95. Can be compared with BD 6013-4 (HAR-7019) from wall of same structure and other Bronze Age structures on site.

HAR-7019. BD6013-4

2940 ± 100

\[\delta^{13}C = -25.4\%o \]

AML 865788, from stone wall, Context 131, of Bronze Age roundhouse Structure 95. Coll Sept 1985 by MB.

Comment (MB): dates construction of Structure 95. Can be compared with HAR-7018, hearth charcoal from floor of this structure and with dates from two other Bronze Age structures at site.

HAR-7020. 6153-5

3310 ± 80

AML 865789, from floor, Context 163, of oval stone-built Bronze Age Structure 57, separated from overlying Bronze Age occupation horizon by blown sand. Coll Sept 1985 by MB.

Comment (MB): dates Structure 57 and can be compared with dates from two overlying structures and underlying colluvial deposit, 6 and 7.

HAR-7021. BD5886-6

2600 ± 90

\[\delta^{13}C = -27.1\%o \]

AML 865790, from lenses of burned material representing occupation activity in gleyed colluvium that abuts or antedates Structure 57; separated from Structures 59 and 95 by blown sand. Coll Sept 1985 by B Muir.

Comment (MB): measured to date occupation activity assoc with colluvium and relationship of this layer to Structure 57 and underlying ungleyed colluvium (HAR-7022).

HAR-7022. BD6062-7

3890 ± 130

\[\delta^{13}C = -26.0\%o \]

AML 865791, from ungleyed colluvium underlying the gleyed colluvium from which BD 5886-6 (HAR-7021) was taken. Coll Sept 1985 by BM.

Comment (MB): dates colluviation which interrupted sand blow and relationship to underlying blown sand with Beaker artifacts and overlying structural evidence.

HAR-7023. BD6171-8

4720 ± 140

\[\delta^{13}C = -24.6\%o \]

AML 865792, from paleosol representing basal layer of postglacial sequence. Coll Sept 1985 by BM.

Comment (MB): layer from which sample was taken had previously produced Grooved ware and Beaker burial. During this excavation it produced an (?earlier Neolithic) leaf-shaped arrowhead. Dated for time of initial activity on site.

Spong Hill series

Charcoal samples from Spong Hill, near North Elmham, Norfolk (52°41'32" N, 2°24'39" E, NGR TG980197).
HAR-7025. 10123645
AML 865776, from Neolithic pit with Mildenhall Ware. Coll 1984 by A Rogerson and subm March 1986 by P Murphy, Univ East Anglia.

Comment (PM): it is unclear how far Early/Middle Neolithic occupation of site was single-period and how far it was multicomponent. Stylistic features of some of the Neolithic pottery suggest that occupation was continuous through third millennium BC, but this is not clear from the other 14C results.

HAR-7063. SPON3408

Crane Wharf series

HAR-7026. W112187
AML 865793, from layer of brown organic rich silt, similar to peat.
$\delta^{13}C = -30.1\%$

HAR-7027. W112188
Large fragments from mixture of species, AML 865794, from layer of gravel/sand beneath brown organic-rich silt.

$\delta^{13}C = -32.4\%$

HAR-7028. W112195
Identified as Alnus glutinosa, large timber, AML 865795, from Layer 188, gravel sand overlying laminated sands and gravels.

Comment (JT): measured for prehistoric date of assoc deposits.

East Heslerton Long Barrow series

HAR-7029. EHLB1
AML 865779.

$\delta^{13}C = -24.5\%$

HAR-7030. EHLB2
AML 865780.

$\delta^{13}C = -25.9\%$
HAR-7031. EHLB3 5020 ± 110
AML 865781. $\delta^{13}C = -26.0\%$

HAR-7032. EHLB4 4640 ± 70
AML 865782. $\delta^{13}C = -25.0\%$

General Comment (TGM): result should date facade structure. This is most developed facade structure known from Yorkshire Long Barrow groups.

Ferring series

HAR-7033. FRA16 2800 ± 70
AML 858587, from Trench A, Context 16, layer of dark brown clay and silt containing organic material and burned flint, on coastal plain adjacent to the Ferring Rife.

HAR-7034. FRA43 3040 ± 70
AML 858588, from Trench A, Context 43, layer of charcoal and burned flint.

HAR-7035. FRB42 2360 ± 70
AML 858589, from Trench B, Context 42, dark brown, organic-rich humic layer with charcoal.

General Comment (CC): Trenches A and B at Ferring are adjacent to marine inlet which later became freshwater stream. Apart from burned flint and small assemblage of knapped flint, bulk of deposit was organic. A late Bronze Age hoard of metalwork was discovered in 1983 near site of 1984 excavations (Aldsworth & Kelly 1983).

West Heath Common series

Charcoal from West Heath Common, Sussex (50°59'49" N, 0°52'47" W, NGR SU786226). Coll 1984 by P L Drewett and subm 1985 by CRC.

HAR-7036. 49883E99 8770 ± 80
AML 858585, from Trench 3E, Context 99, in very thin layer of dark brown sand containing charcoal, on Lower Greensand ridge.

Comment (CC): 1984 excavations were adjacent to barrows excavated in 1973-1975 to isolate sequences of environmental change and land use around barrow foci.
AML 858586, from Context 103, Trench 3E, which is small lens of brown sand with many charcoal fragments.

Yapton series

Charcoal (identified as *Quercus* sp, *Crataegus* sp, *Leguminosae*, *Salix/Populus*, *Corylus* sp) AML 858557, from Context 4, one of pit fills of Pit no. 2 at Yapton, W Sussex (50°48'47" N, 0°37'46" W, NGR SU96540245). Coll Aug 1984 by David Rudling and subm Sept 1985 by CRC.

Comment (CC): this is only Iron Age site on coastal plain that provides material suitable for dating in close assoc with pottery. By dating pit fill and pottery many valuable comparisons can be made from other coastal plain sites.

Stafford ST29 series

Charcoal and unidentified grain and plant remains, from well-defined deposit in chamber of grain-drying kiln at ST 29, St Mary’s Grove, Stafford. Coll Sept 1983 and subm Oct 1985 by J H Cane, Stafford Archaeol Proj.

HAR-7039. 29224701
AML 859568.

HAR-7040. 29224702
AML 859569.

HAR-7041. 29224703
AML 859570.

General Comment (JHC): samples came from series of four similar and probably contemporary structures and were probably last firing of feature. Structures represent major Late Saxon activity at site but their position within 150 yr of pre-Conquest Stafford is unknown.

HAR-7042. 29225301
Burned wood and grain mixed with other organic remains, AML 858571, from fill of posthole. Coll Oct 1983 and subm Oct 1985 by JHC.

Comment (JHC): posthole forms part of 4-post structure sealed by layer containing Romano-British pottery. It is one of two such structures that antedate main activity period, 10th century. Sealing layer is cultivation-derived and may be post-Roman.

Stafford ST32 series

Charcoal from ST 32, Tipping Street, Stafford (53°2'52" N, 2°6'48" W, NGR SJ924501). Coll
July 1983 by M D Taylor and subm Oct 1985 by JHC.

HAR-8237. 32151601
AML 858572, from remains of last firing of kiln producing ‘Stafford Ware’ pottery.

Comment (JHC): this sample and HAR-8238 were recovered from just inside stokehole of kiln sealed by fragments of clay superstructure. Archaeomagnetic sampling gave range of AD 900 - AD 1100.

HAR-8238. 32151602
AML 858573, from remains of last firing of kiln producing ‘Stafford Ware’ pottery.

HAR-8239. 32175301
AML 858575, from Context 1753, deposit of burned material and ash just inside stokehole of ‘Stafford Ware’-producing pottery kiln, F 238, *(cf HAR-8240).* These two deposits were directly assoc with several pits containing very large amounts of ‘Stafford Ware’.

HAR-8240. 32175302
AML 858576.
General Comment (JHC): kiln fairly intact and well-defined although its stratigraphic position was uncertain. It was visible in horizon tentatively dated to late 12th century though not in use at this time.

Glastonbury series

Two samples of wood (probably *Thelycrania sanguinea* dogwood), small branch, from ca 9cm above base of large, silt-filled ditch, some 4m deep but of unknown width, since it is under street at Magdalen St Ditch, Glastonbury, Somerset *(Ellis 1982).* Coll March 1985 and subm by V Straker, Univ Bristol.

HAR-7044. GLMS1
AML 858569.
$\delta^{13}C = -28.9\%o$

HAR-7045. GLMS2
AML 858596.
$\delta^{13}C = -28.2\%o$

General Comment (VS): dating determines whether ditch is W boundary of early monastic precinct. E side has already been dated.

HAR-7046. CATF22
Bone, AML 858549, from Trench F, at W end of former N wall of nave in wall foundations. Foundations cut series of soily deposits one of which, Context F 22, was grave containing human

Comment (MRMcC): date confirms 7th - 11th centuries for this context and establishes for first time presence of ecclesiastical building below present cathedral.

Watkins Farm series

Samples from Watkins Farm, Northmoor, Oxfordshire (51°43'45" N, 1°23'4" W, NGR SP425 036). Coll and subm by T G Allen, Oxford Archaeol Unit.

HAR-7051. NMWFMED1
Bone subm May 1986.

2290 ± 100

HAR-7053. NMWF60
Wood, AML 858556, from large triangular waterlogged feature directly outside entrance to central roundhouse; 0.5m of peat were sealed by clay, silt and clay and gravel backfill. Coll Oct 1983 and subm Nov 1985.

Comment (TGA): this feature produced only assemblage of fish bones from site and may have been well serving Iron Age inhabitants of site.

HAR-8253. NMWF498

Comment (TGA): burial extended around side of large deep pit or well, assoc with layers of burned limestones and several wooden and leather objects. This lay within penannular Iron Age gully, but produced very little pottery. Burial appears to be very unusual.

HAR-8254. NMWF151

Comment (TGA): dates latest stages of occupation.

HAR-8255. NMWF5531

Blackwater series

Six wood samples and 1 charcoal from several Blackwater sites at Bradwell in Essex. All coll summer and subm Oct 1985 by P Murphy, Univ East Anglia.
HAR-7054. BRA/79

Wood (identified as Quercus sp) AML 858557, from one of series of wooden stakes (not fully planned) driven into submerged land surface at site of Middle Neolithic settlement, on intertidal flats close to nuclear power station at Blackwater Site 8, Bradwell, Essex (51°44’48” N, 0°54’43” E, NGR TM01000940).

Comment (PM): although assoc with Middle Neolithic settlement, there was no stratigraphic evidence to determine if stakes were contemporary with it.

HAR-7055. B18/86

Wood, AML 858559, from brushwood structure exposed on foreshore by marine erosion, on intertidal flats at Blackwater Site 18, Tollesbury, Essex (51°44’14” N, 0°48’45” E, NGR TL94180809).

Comment (PM): this structure was assoc with no artifacts, but its stratigraphic position suggested Late Bronze Age date.

HAR-7056. B18/91

Wood, AML 858561, from tree roots on land surface, sealed by estuarine sediments, Blackwater Site 18, Tollesbury, Essex (51°44’14” N, 0°48’45” E, NGR TL94180809). Sample assoc with Neolithic settlement.

Comment (PM): provides a *terminus post quem* for estuarine sedimentation and thus dates local marine transgression.

HAR-7057. B28/96

Wood, AML 858562, from wooden hurdle structure (3.5m x 0.8m) exposed by marine erosion on intertidal flats, Blackwater Site 28, Goldhanger, Essex (51°43’52” N, 0°45’13” E, NGR TL90140725). Structure consists of eight longitudinal poles with well-preserved smaller rods probably part of a trackway over mud flats.

Comment (PM): this impressive structure has no datable artifacts, but position suggests Late Bronze Age.

HAR-7058. B28/98

Wood, AML 858563, from brushwood structure, probably hurdle, on intertidal flats, Blackwater Site 28, Goldhanger, Essex (51°43’52” N, 0°45’13” E, NGR TL90140725). Structure is close to B28/96 (HAR-7057), and assoc with fired clay.

Comment (PM): structure was only superficially examined to avoid further erosion. It was thought to be Late Bronze Age from its elev; it was not overlain by later deposits.
HAR-7059 B17/69

Wood, AML 858558, from double, sometimes triple, line of stakes extending for some 20m near low water mark, Blackwater Site 17, East Mersea, Essex (51°49’3” N, 0°27’1” W, NGR TL06801440). Line is parallel to coast and thought to be part of Medieval fish trap.

Comment (PM): structure had no datable artifacts; as it was not sealed by overlying strata late 14C date is acceptable.

HAR-7060. B18/90

Charcoal, AML 858560, from charcoal spread on submerged land surface on intertidal flats sealed beneath estuarine sediments at Blackwater Site 18, Tollesbury, Essex (NGR: TL94180809).

Comment (PM): sampled from submerged land surface 100m to SE of Neolithic Site 18 which yielded abundant Middle Neolithic pottery.

Fishergate series

HAR-7061. 732/113

AML 858564, top surface, at 113cm.

HAR-7062. 732/195

Phragmites peat, AML 858565, from base, at 190 - 195cm, from deposit just over 80cm thick underlying Late Saxon occupation deposits at Fishergate, Norwich, Norfolk (52°37’59” N, 1°17’59” E, NGR TG 23270907). Coll summer 1985 by B S Ayres and subm Oct 1985 by PM, Univ East Anglia.

Comment (PM): peat was also examined for pollen, plant macrofossils and insects to study pre-urban land use and vegetation. Middle Saxon pottery came from top of peat (in situ or pressed in) but base was completely undated.

MVE 82 series

HAR-7064. SLP8505

Peat, AML 857488, from end of local pollen assemblage boundary MVE.1/MVE.2. This sample (MVE82.188) is 1.88 - 1.89m below top of monolith.

HAR-7065. SLP8506

Peat, AML 857489, from boundary of local pollen assemblage zones MVE.3/MVE.4. This sample (MVE82.114) is 1.14 - 1.15m below top of monolith.
HAR-7066. SLP8507

Soil, AML 857490, from 0.54 - 0.55m below top of monolith. This sample (MVE82.54) is 20cm below top of organic deposits and approx middle of local pollen assemblage zone MVE.6.

General Comment (AEC): basic stratigraphic sequence at Meare East Iron Age site consists of detritus peats and muds (ca 2m) overlain by alluvial clay (Beckett 1979; Beckett & Hibbert 1979; Orme, Coles & Silvester 1983). The three 14C dates enable local pollen assemblage zones to be delimited and correlated with regional pollen zonation already established at Levels.

Beverley Eastgate series

HAR-7067. BE84752

Wood, AML 858073, from scatter of wood and twigs overlying an apparently natural silt and peat formation and sealed by further peat deposit.

1280 ± 70
$\delta^{13}C = -28.9\%o$

HAR-7068. BE84751

Peat, AML 858074, from deposit of compact peat up to 35cm thick which formed over thin primary silt in natural hollow. This sample underlies HAR-7069 and overlies -7067.

1470 ± 70
$\delta^{13}C = -28.0\%o$

HAR-7069. BE841621

Wood, AML 858075, from bundle of wattles lying at base of ditch cutting peaty deposit assumed to be natural.

Comment (PA): ditch was used for drainage reclamation and thus represents early settlement period.

1000 ± 70
$\delta^{13}C = -28.4\%o$

HAR-7070. BE841526

Wood, AML 858076, from curving hurdlework fence representing first enclosing feature at site in what remained heavily organic soil with high water table. This sample is from top of sequence and overlies HAR-7069.

General Comment (PA): four samples establish chronology for site where no artifactual chronology is possible and also *terminus post quem* for occupation and settlement of site.

Ewanrigg series

HAR-7071. EWR85052
AML 858542, from a cremation pit cut into subsoil.
\[\delta^{13}C = -27.7\%o \]
Comment (RHB): only 3 of 29 cremation pits at this site have been dated.

HAR-7072. EWR85037
AML 858543, from cremation pit containing fragments of coarse pottery.
\[\delta^{13}C = -26.2\%o \]
Comment (RHB): few of 29 cremation pits at this site have good charcoal and even fewer have pottery. This has both and is very important for dating site.

HAR-7073. EWR85072
AML 858544, from Context 72 which is tunnel-like ‘entrance’ to dry stone-walled circular pit.
\[\delta^{13}C = -26.5\%o \]
Comment (RHB): this feature, along with stone chamber, was part of corn-drying kiln.

HAR-7074. EWR85074
AML 858545, from Context 74 which is within stone-lined circular pit, with funnel like entrance way. Context 74 is primary silting layer of this chamber-like feature.
\[\delta^{13}C = -27.9\%o \]
Comment (RHB): seed assemblage indicates this feature was corn-drying kiln.

HAR-7075. EWR85059
AML 858546, from primary silt of chamber feature.
\[\delta^{13}C = -25.4\%o \]
Comment (RHB): period of chamber is unknown, so date determines final use of chamber.

HAR-7076. EWR85068
AML 858547, from dark stains, probably stake holes; part of super-structure or resulting from use of chamber.
\[\delta^{13}C = -24.6\%o \]
Comment (RHB): measured to date final use of stone chamber.

HAR-7077. EWR85055
AML 858548, from cremation pit with enlarged food vessel (Longworth 1984).
\[\delta^{13}C = -27.1\%o \]
Comment (RHB): measured to date enlarged food vessel.

Cannington series

Harwell Radiocarbon Measurements VIII

<table>
<thead>
<tr>
<th>Sample</th>
<th>Date</th>
<th>Age</th>
<th>Comment (SMH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAR-8049.</td>
<td>1390 ± 40</td>
<td>(\delta^{13}C = -20.2%)</td>
<td>Roman and prehistoric finds in grave.</td>
</tr>
<tr>
<td>Immature.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAR-8050.</td>
<td>1460 ± 40</td>
<td>(\delta^{13}C = -20.5%)</td>
<td></td>
</tr>
<tr>
<td>Adult.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment (SMH):</td>
<td></td>
<td></td>
<td>prehistoric and Roman finds in grave; pathological specimen - may have been leper.</td>
</tr>
<tr>
<td>HAR-8051.</td>
<td>1370 ± 40</td>
<td>(\delta^{13}C = -20.2%)</td>
<td></td>
</tr>
<tr>
<td>Adult.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment (SMH):</td>
<td></td>
<td></td>
<td>prehistoric and Roman finds in grave; pathological specimen - may have been leper.</td>
</tr>
<tr>
<td>HAR-8052.</td>
<td>1560 ± 40</td>
<td>(\delta^{13}C = -21.5%)</td>
<td></td>
</tr>
<tr>
<td>Adult.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAR-8053.</td>
<td>1360 ± 40</td>
<td>(\delta^{13}C = -20.3%)</td>
<td></td>
</tr>
<tr>
<td>Immature.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment (SMH):</td>
<td></td>
<td></td>
<td>prehistoric finds in grave.</td>
</tr>
<tr>
<td>General Comment (SMH):</td>
<td></td>
<td>Graves yielding these five samples (HAR-8049 to -8053) are broadly contemporary and may be family group. They are possibly assoc with summit structure FT43 which is thought to be early feature in cemetery.</td>
<td></td>
</tr>
</tbody>
</table>

Albany Road series

Wood, from silted-up former channel of River Exe, Albany Road, St Thomas, Exeter, Devon (50°42'55" N, 3°32'3" W, NGR SX 917918). Channel is 1.5m deep, filled with blue clay, with darker horizontal laminations containing wood, twigs and leaves. Coll May 1984 by V Straker and C Henderson and subm Sept 1985 by V Straker, Univ Bristol.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Date</th>
<th>(\delta^{13}C)</th>
<th>Comment (VS): dating helps with palynology from lowland Devon and investigation of saline/freshwater conditions of Exe River.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAR-8054. ALB2</td>
<td>1240 ± 70</td>
<td>(-25.4%)</td>
<td></td>
</tr>
<tr>
<td>Alnus sp (alder) and Corylus avellana (hazel), AML 858579, from 36 - 44cm above base.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAR-8055. ALB3</td>
<td>970 ± 80</td>
<td>(-28.2%)</td>
<td></td>
</tr>
<tr>
<td>Salix/Populus (willow/poplar), AML 858580, from 112 - 116cm above base.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cowage Farm series

Charcoal (Quercus sp) AML 8317536, from posthole in what is thought to be Middle Saxon...
hall at Cowage Farm, Foxley (51°34' 27" N, 2°8'8" W, NGR ST 906862). Coll Aug 1983 by J Hinchliffe and subm March 1984 by N D Balaam, Central Excavation Unit.

4070 ± 80
$\delta^{13}C = -21.4\%o$

HAR-8083. 241-24

Adult human bone, 5th metatarsal, AML 8312200, from mound rubble of possible long barrow at Druids Hill, Stoke Bishop. Coll 1982 by G H Smith and subm Dec 1983 by NDB.

3550 ± 80
$\delta^{13}C = -25.8\%o$

HAR-8097. NKS2

Comment (PMC): primary date for barrow (Christie 1985).

3440 ± 100
$\delta^{13}C = -26.3\%o$

HAR-8098. DM1652

Charcoal, AML 837122, from central deposit at Davidstow Moor, Barrow 16, Cornwall (NGR SW67654627). Coll June 1942 by CCA and subm July 1983 by PMC.

Comment (PMC): primary date for barrow (Christie 1985).

3510 ± 70
$\delta^{13}C = -25.9\%o$

HAR-8089. CAT54

Charcoal, AML 837113, from central fire area under cairn at Cataclews Barrow 1, Cornwall (NGR SX142584610). Coll 1944 by CCA and subm July 1983 by PMC.

Comment (PMC): primary date for cairn (Christie 1985).

3380 ± 80
$\delta^{13}C = -25.3\%o$

HAR-8100. TR254

Charcoal, AML 837119, from Burial 3 under slate kerb at Treligga Barrow 2, Cornwall (NGR SX04508559). Coll 1941 by CCA and subm July 1983 by PMC.

Comment (PMC): dates secondary burial in barrow (Christie 1985).

Wasperton series

Peat, leaves, twigs, plant material and charcoal from E bank of River Avon, Wasperton, Warwickshire (52°13'25" N, 1°36'43" W, NGR SP265585). Coll July 1985 by M Halliday and subm Feb 1986 by C Bowker and G Crawford, Birmingham Univ Field Archaeol Unit. Wasperton was a large gravel complex with little organic material surviving. Samples came from peat deposit adjacent to site (Bowker 1983; Crawford 1983; 1984).

HAR-8103. WNPEAT1
710 ± 80
$\delta^{13}C = -31.9\%o$

AML 8650603, from base of column (0 - 6cm).
HAR-8104. WNPEAT2
AML 8650604, from 6 - 15cm above base of column.

\[\delta^{13}C = -32.0\% \]

HAR-8105. WNPEAT3
AML 8650605, from 15 - 23cm above base of column.

\[\delta^{13}C = -31.5\% \]

HAR-8106. 6644

Comment (GC): post pit was part of structure, possibly dwelling, different in character from adjacent Iron Age features. Some nearby postholes contained Neolithic ‘Peterborough’ pottery.

\[2940 \pm 70 \]

\[\delta^{13}C = -25.7\% \]

HAR-8107. 5098

Comment (GC): defensive ditch from which sample came appeared to have been regularly cleaned but with short lifespan overall.

\[2210 \pm 80 \]

\[\delta^{13}C = -26.0\% \]

Jaywick series

Samples from gray clay fill of small pit exposed on foreshore at Clacton site 1 (Jaywick), Hullbridge Proj (51°46’29” N, 01°07’35” E, NGR: 15631312) (Wilkinson & Murphy 1984). Coll June 1984 and subm 1985 by P Murphy.

HAR-8154. JAYSIC5
Charcoal.

\[3830 \pm 80 \]

\[\delta^{13}C = -24.9\% \]

Comment (PM): large fragments of Beaker (Lanting & van der Waals Step 3) from pit fill support this date.

HAR-8368. JAYS1C2
Wood.

\[1420 \pm 80 \]

HAR-8369. JAYSIC3
Wood.

\[380 \pm 90 \]

\[\delta^{13}C = -25.4\% \]

HAR-8180. BH864526
Wood, identified as possibly alder, AML 8650144, from early raft or causeway, connecting former island to mainland, Butley Thrift, Burrow Hill, East Suffolk (52°4’57” N, 1°29’19” E, NGR TM 390485) (Fenwick 1984). Principal periods of island’s occupation are Iron Age (Little Waltham...

Comment (DS): sample is from wooden piles beneath 1m clay plus 85cm sand and humus. Wooden piles underlay marsh clay and causeway at -1.95m OD.

Hallshill series

HAR-8183. HAL-23

Identified as *Alnus* sp, AML 8650178, from small pit, Context 23, containing carbonized plant material, burned bone, burned stones and one undecorated pottery sherd.
Comment (TG): pit could be either cremation burial or rubbish deposit and antedates timber building.

HAR-8184. HAL-21

Identified as *Corylus avellana*, AML 8650179, from 1 of 9 postholes constituting inner ring of roof supports of excavated round house.
Comment (TG): previous sample from this building yielded a date of 2780 ± 80 BP (HAR-4800). Charcoal from this and other postholes antedates construction of building, perhaps by several centuries and should be assoc with one or more episodes of forest clearance and evidence for cereal cultivation, including emmer wheat and six-row barley (Davies & Turner 1979).

HAR-8185. HAL-25

Identified as *Alnus* sp, AML 8650180, from small pit, Context 25, containing burned stones, carbonized plant material and some burned bone.
Comment (TG): no datable artifacts were in pit which could be rubbish deposit or cremation. Stratigraphic relationship between pit and occupation of building could not be determined in excavation.

General Comment:

14C dates indicate more complicated sequence of activity than could have been deduced from either structural or stratigraphic evidence. Results for two postholes, HAR-8184 and -4800, and pits, HAR- 8183 and -8185, imply that site witnessed more than one phase of Bronze Age agriculture before construction of timber building. This accords well with palynology and 14C dating at nearby site at Steng Moss.

Hemington Fields series
HAR-8223. PL6BRW86

5240 ± 80
δ¹³C = -28.6‰

Ash, AML 868088, from bed of ancient course of river Trent which was abandoned and rapidly filled with gravel.

Comment (CRS): this sample was thought to be assoc with Norman mill dam or late Bronze Age post alignment. Its Neolithic date was a surprise. Sample may have come from a clast of peat derived from another abandoned channel and redeposited here.

HAR-8224. PL1WAT85

910 ± 70
δ¹³C = -27.6‰

Hazel, average 11 rings, AML 868087, from wattle panel in floodplain gravel below water table, probably part of fish weir.

Comment (CRS): main structure is Norman mill dam made of squared oak posts and timbers. Between double row of posts is parallel row of small birch posts with bark, two of which were dated to 800 cal BC. Result confirms that weir is assoc with Norman dam, dated dendrochronologically to AD 1140 and allows E Midland master curve to be extended back 50 yr more.

HAR-8256. AP86-1

700 ± 40
δ¹³C = -25.4‰

Wood, identified as oak (Quercus sp), AML 8650143, Abington Pigotts, Downhall Gatehouse (52°4'33"N, 0°5'49"W, NGR TL304437). Sample from West Gable tie beam from late Medieval gatehouse (14th or 15th century). Coll and subm Sept 1986 by D Sherlock.

Comment (DS): beam was taken down ca 1980 when new tie beam was inserted.

Tintagel Castle series

From Tintagel Castle, Lower Ward, Tintagel, Cornwall (50°40'2"N, 4°45'27"W, NGR SX 0515897). Coll Jan and subm May 1986 by S Hartgroves, Cornwall Archaeol Unit.

HAR-8273. TCD/43

2740 ± 100
δ¹³C = -27.8‰

Charcoal and soil, AML 8650069, from Stakehole 43.

HAR-8276. TCD253

2110 ± 120
δ¹³C = -29.0‰

Charcoal, burned wood and soil, AML 8650068, from Layer D 25.

HAR-8277. TCD/7

1850 ± 80
δ¹³C = -27.9‰

Charcoal and soil, AML 8650070, from Stakehole 71.

HAR-8278. TCD/102

1850 ± 70
δ¹³C = -27.5‰

Charcoal and soil, AML 8650071, from Stakehole 102.

General Comment (SH): these results help provide upper and lower limits to use of imported Mediterranean pottery and date newly discovered timber phase.
Hazleton Long Cairn series

Antlers, identified as red deer, from Hazleton North Long Cairn, near Northleach, Hazleton parish, Glos (51°52’5” N, 1°53’38” W, NGR SP073189) (Saville 1984).

HAR-8349. 13926

HAR-8350. 3129

Comment (AS): dated for quarrying activity in N quarry. Antler is part of discarded tool used in quarrying limestone for cairn.

St Oswald’s Priory series

Human bone samples from St Oswald’s Priory, Gloucester (51°52’8” N, 2°14’49” W, NGR SO 830190). Coll Aug 1978 and subm April 1986 by C M Heighway.

HAR-8357. 4175B507
AML 8650017, above B518 in stack of six Saxon burials. δ¹³C = -21.0‰

Comment (CMH): second earliest sample in sequence of 6 burials, is subsequent to B518 (HAR-8358).

HAR-8358. 4175B518
AML 8650016, from second lowest of stack of six Saxon burials. δ¹³C = -21.0‰

Comment (CMH): earliest sample in sequence of 6 burials, is under B507 (HAR-8357).

General Comment (CMH): samples date foundation of church, which is pre-1086 on architectural grounds and which is said by William of Malmesbury to date from time of Alfred. Burials began when church was built. The two samples appear to confirm late 9th century date for church’s construction (Heighway 1980; 1984).

HAR-8365. DMG83196
Soil, waterlogged organic deposit (wood, seeds etc), AML 865022, Durham Milburnegate, Durham City, (54°46’40” N, 1°34’39” W, NGR NZ 27184264). Sample from organic deposit, sealed by 13th century occupation, at lowest level on site and overlying natural woodland. Coll July 1983 and subm March 1986 by M van der Veen, Archaeol Dept, Univ Durham.

Comment (MvdV): result indicates truncated soil profile, unrecognized during excavation.
Woodland represented in sample must be of early prehistoric date (van der Veen 1985) and therefore has no bearing on Medieval Durham.

Bucks skin II series

HAR-8370. 1BS7
$^{14}C = -27.1\%$

Charcoal, AML 8650023, from F7 posthole beneath core of mound at Buckskin site I (Bell Barrow), Basingstoke, Hampshire (50°18’40” N, 5°21’55” W, NGR SW 60435118). Coll 1967-8 by B Applin and subm by M Morris, Winchester Archaeol Office.

Comment (MM): series of pits, postholes and stakeholes, survived in central area of mound. Results help date mound construction. There is no other dating evidence from these features.

REFERENCES

Longworth, I 1984 *Collared urns of Great Britain and Ireland*. Cambridge Univ Press.

Smith, GH 1988 A Beaker burial monument and a late Bronze Age assemblage from East Northdown, Margate. Archaeol Cantiana 105.
vander Veen, M 1985 The plant remains from Milburngate, Durham City. Ancient Monuments Lab rept 4674.
Vatcher, F de M 1965 East Heslerton Long Barrow, Yorks, the eastern half. Antiquity 39: 49-52.
MUSEO DE LA PLATA RADIOCARBON MEASUREMENTS II

ANIBAL J FIGINI, JORGE E CARBONARI and ROBERTO A HUARTE

Laboratorio de Tritio y Radiocarbono (LATYR), Facultad de Ciencias Naturales y Museo, Paseo del Bosque, 1900 La Plata, Argentina

INTRODUCTION

The 14C measurements reported here were made between 1983 and 1987. Sample pretreatment and date calculations were previously reported (Figini et al. 1984). The method employed, liquid scintillation counting, was previously described (Huarte & Figini 1988). No 13C/12C ratios were measured and results were not corrected for 13C fractionation and/or reservoir effect. Descriptions, comments and references to publications are based on information supplied by submitters.

ACKNOWLEDGMENTS

The authors wish to express their thanks to the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, for their financial support and to the Facultad de Ciencias Naturales y Museo (FCNyM), Universidad Nacional de La Plata. Our special gratitude goes to the Centro de Estudios Parasitológicos y de Vectores (CEPAVE), for the use of their liquid scintillation spectrometer and to Myriam Tarragó for critically evaluating the archaeological section of this date list.

GEOLOGIC SAMPLES

Argentina

LP-82. Glaciar del Río Manso

Wood (Nothofagus sp) identified by A Brandani, CONICET and J Bruno, Parques Nacionales, from outcrop of glacio-lacustrine deposit in contact with ice in lateral moraine, at 12m depth below top of moraine (41°10' S, 71°50' W) Cerro Tronador, Río Negro Prov. Coll and subm Feb 1983 by J Rabassa, Comm Inv Cient Prov Buenos Aires.

Comment (JR): sample directly assoc with neoglacial fluctuations of Río Manso glacier probably related to “Little Ice Age.”

LP-100. Estancia Manuil Malal

Wood (Nothofagus sp) identified by J Boninsegna and R Villalba, Inst Argentino Nivología Glaciología (IANIGLA), Mendoza Prov. from outcrop below El Condor till and glacio-lacustrine deposit corresponding to ice margin lake (39°30' S, 71°15' W), Junín de los Andes, Neuquén Prov. Coll and subm Dec 1983 by J Rabassa.

Comment (JR): correlation with beginning of El Condor glaciation. Estimated age: 40,000 yr. Another portion of same sample was dated at 27,740 ± 555 (SI-6384; Stuckenrath, pers commun).

Punta Hermengo series

Estuarine sediments containing mollusk shells from valley-fill deposit of Late Pleistocene and
Holocene ages, Punta Hermengo (38°18′ S, 57°52′ W), Miramar, Buenos Aires Prov. Samples coll and subm 1981 by F Fidalgo and J Figini, FCNyM.

LP-86. Sample I

3400 ± 110

Carbonate powder dispersed into sandy-silt sediment from exposed profile below Puesto Berrondo buried soil.

Comment: no pretreatment.

LP-87. Sample II

6680 ± 140

Shells (*Litoridina parchappei*) from exposed profile underlying Puesto Berrondo buried soil and Puesto Callejon Viejo paleosol.

Comment: no acid pretreatment.

General Comment: ages agree with proposed paleontologic-geologic sequence by Fidalgo and Tonni (1983) for upper continental sediments.

Arroyo Seco series

Pedogenic carbonate from stratigraphic sequence at archaeol Site 2 (38°21′38″ S, 60°14′39″ W), Arroyo Seco, Tres Arroyos, Buenos Aires Prov. Coll April 1981 by F Fidalgo and LATYR personnel.

LP-92. Sample I

1890 ± 80

Pedogenic carbonate from silty-sand sediment, 6% CaCO$_3$ conc, 0.7m depth.

Comment: no pretreatment. Age is younger than expected probably due to contamination by young carbon dissolved in meteoric waters that penetrated profile.

LP-93. Sample II

5740 ± 120

Pedogenic carbonate from silt with sand and clay sediment, 16% CaCO$_3$ conc, 0.75m depth.

Comment: no pretreatment.

LP-94. Sample III

5700 ± 120

Pedogenic carbonate from silt with clay and sand sediment, 14% CaCO$_3$ conc, 0.85m depth.

Comment: no pretreatment.

General Comment: concordance between LP-93 and -94 ages shows that this horizon corresponds to same weathering process. Chronologic sequence agrees with stratigraphic position of samples and other dates from same site (LP-53, 8390 ± 240 (Figini et al 1984: 132)).

Teatro Argentino series

Continental sediments named “Sedimentos Pampeanos” from ca 30m profile of Teatro Argentino building, La Plata city (34°54′36″ S, 57°56′03″ W), Buenos Aires Prov. Coll May 1981 by F Fidalgo and LATYR personnel.
Museo de la Plata Radiocarbon Measurements II

LP-95. Sample I

Pedogenic carbonate from 2.5m depth in sandy-clay silt sediment, 28% CaCO₃ by weight.

LP-96a. Sample II

Pedogenic carbonate from 5m depth in the same sediment as LP-95, 56% CaCO₃ by weight.

LP-96b.

Duplicate of LP-96a.

LP-98. Sample III

Pedogenic carbonate from 8.5m below discontinuous contact corresponding to one incipient K horizon. CaCO₃ from sandy-silt clay sediment, 10% by weight.

LP-99. Sample IV

Pedogenic carbonate from 9.5m depth below LP-98 in same sediment, 18% CaCO₃ by weight.

Comment: age is pooled mean of two determinations: LP-99a: 32,900 ± 1900 and LP-99b: 32,600 ± 2200.

General Comment: ¹⁴C ages agree with relative age of lithostratigraphic units; also they show more than one pedogenic cycle. LP-99 is probably contaminated by modern carbon; thus, age would be >32,700 yr. Age sediments cannot be established through palaeontologic or geologic evidence; Late Pleistocene age is suggested.

Las Escobas III series

Mollusk shells from Holocene marine coastal deposit belonging to Cerro de la Gloria member of Las Escobas Fm (Fidalgo, De Francesco & Colado 1973) at exposed profile in Rincon de Lopez (35°46'07" S, 57°24'30" W), Castelli, Buenos Aires Prov. Coll 1980-1982 by F Fidalgo and LATYR personnel. Shells identified by D Fernandez, FCNyM; calcite/aragonite x-ray diffraction analyses by M Iniguez Rodriguez, FCNyM.

LP-111. Sample I, Site 1

Shells (*Mactra isabelleana*) ca 1.9m depth below surface.

Comment: outer 20% of shells removed by acid pretreatment; remaining portion consisting of 4.9% calcite, 95.1% aragonite, was dated.

LP-112A. Sample II, Site 1

LP-112B. Sample II, Site 1

Shells (*Adelomedia brasiliana*) ca 1.9m depth below surface, assoc with LP-111.

Comment: LP-112A was outer 20% of shell removed by acid pretreatment and dated; remaining portion, -112B, consisting of 0.7% calcite and 98.3% aragonite, was dated.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Site</th>
<th>Depth</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP-114A</td>
<td>III, Site 1</td>
<td>6460 ± 110</td>
<td>LP-114A was outer 20% of shell removed by acid pretreatment and dated; remaining portion, -114B, consisting of 100% aragonite, was dated.</td>
</tr>
<tr>
<td>LP-114B</td>
<td>III, Site 1</td>
<td>7220 ± 100</td>
<td></td>
</tr>
<tr>
<td>LP-116</td>
<td>IV, Site 2</td>
<td>3490 ± 80</td>
<td>Shells (Mactra isabelleana) ca 2m below surface, 3.25m from Site 1.</td>
</tr>
<tr>
<td>LP-117A</td>
<td>V, Site 2</td>
<td>4320 ± 80</td>
<td></td>
</tr>
<tr>
<td>LP-117B</td>
<td>V, Site 2</td>
<td>3760 ± 60</td>
<td></td>
</tr>
<tr>
<td>LP-119A</td>
<td>VI, Site 2</td>
<td>4760 ± 110</td>
<td></td>
</tr>
<tr>
<td>LP-119B</td>
<td>VI, Site 2</td>
<td>4910 ± 110</td>
<td></td>
</tr>
<tr>
<td>LP-121A</td>
<td>VII, Site 2</td>
<td>3460 ± 70</td>
<td></td>
</tr>
<tr>
<td>LP-121B</td>
<td>VII, Site 2</td>
<td>3330 ± 50</td>
<td></td>
</tr>
<tr>
<td>LP-124A</td>
<td>VIII, Site 2</td>
<td>6850 ± 90</td>
<td></td>
</tr>
<tr>
<td>LP-124B</td>
<td>VIII, Site 2</td>
<td>6340 ± 90</td>
<td></td>
</tr>
</tbody>
</table>

Shell (Adelomedon brasiliana) ca 1.9m depth below surface, assoc with LP-111 and -112.

General Comment: shells died at different ages and were redeposited, which is consistent with nature of deposit.

Las Escobas IV series

Mollusk shells belonging to Cerro de La Gloria member of Las Escobas Fm, from exposed profile of Canal 15 (35°58'21" S, 57°29'16" W). Samples were extracted in vertical sequence; identified by D Fernandez; calcite/aragonite x-ray diffraction analyses by M Iñiguez Rodriguez.
LP-110. Sample 14
4510 ± 110

Shells (*Mactra isabelleana*) from ca 0.60m depth; outer 20% of shell removed by acid; remaining portion consisting of 25% calcite and 75% aragonite, was dated.

LP-147. Sample 14
4220 ± 110

Shells (*Mactra isabelleana*) from ca 0.60m depth; outer 35% of shell removed by acid pretreatment and dated, remaining portion was discarded; calcite was not determined.

LP-109. Sample 13
4550 ± 100

Shells (*Mactra isabelleana*) from ca 1m depth; outer 20% of shell removed by acid; remaining portion consisting of 30% calcite and 70% aragonite, was dated.

LP-154. Sample 13
4610 ± 90

Shells (*Mactra isabelleana*) from ca 1m depth; outer 35% of shell removed by acid pretreatment and dated, inner portion was discarded; calcite was not determined.

LP-108. Sample 12
4800 ± 90

Shells (*Mactra isabelleana*) from ca 1.60m depth; outer 20% of shell removed by acid; remaining portion consisting of 5% calcite and 95% aragonite, was dated.

LP-158. Sample 12
4680 ± 70

Shells (*Mactra isabelleana*) from ca 1.60m depth; outer 35% of shell removed by acid pretreatment and dated, remaining portion was discarded; calcite was not determined.

LP-107. Sample 11
4440 ± 110

Shells (*Mactra isabelleana*) from ca 2.40m depth; outer 20% of shell removed by acid; remaining portion consisting of 100% aragonite, was dated.

General Comment: Samples 12, 13 and 14 were divided into two portions for dating inner and outer fractions.

LP-113. Río Sauce Grande-La Toma
1150 ± 70

Wood (*Salix humboldtiana*) identified by J Bonisegna and R Villalba, IANIGLIA, from outcrop, 6m deep from top of ravine, Río Sauce Grande-La Toma (38°15' S, 61°45' W), Buenos Aires Prov. Coll and subm Feb 1984 by J Rabassa.

Comment (JR): Lujanese mammalian age estimated by correlation with strata containing extinct fauna. Other portion of same sample was dated at 1570 ± 45 (SI-6848; Stuckenrath, pers commun).

Cueva Tixi series

Carbonate layers in stratigraphic sequence of Tixi cave (37°58'30" S, 58°04'04" W), containing palaeontologic and archaeological debris, in slope of La Vigilancia range, General Alvarado, Buenos Aires Prov. Coll Dec 1983 by F Fidalgo and LATYR personnel.
LP-140. Sample I
Carbonate from layer, 0.23m thick, at top of stratigraphic sequence.
Comment: no pretreatment was made.

LP-139. Sample II
Carbonate from layer, 0.05m thick, 0.38m depth below LP-140.
Comment: no pretreatment was made.

General Comment: these ages agree with stratigraphic sequence and relative chronology based on faunal remains.

Valle del Rio Sauce Grande series
Snail shells from Upper Pleistocene and Holocene continental deposits corresponding to Agua Blanca Fm and Saavedra Fm. Coll and subm Feb 1985 by J Rabassa. Mollusk shells identified by D Fernandez; x-ray diffraction analyses by M Iniguez Rodriguez.

LP-115. Balneario Saldungaray SG 96 32,300 ± 1800
Snail shells (Plagiodontes patagonicus) dispersed through middle sandy member of Agua Blanca Fm at 210m above msl (38°12' S, 61°46' W), Saldungaray, Buenos Aires Prov.
Comment: inner fraction (70%) was used with 2% calcite and 98% aragonite.

LP-118. Camino Saldungaray RP 51 9780 ± 140
Snail shells (Plagiodontes patagonicus) dispersed through piedmont deposit of superior member of La Toma Fm at 180m above msl (38°14' S, 61°43' W), Ruta Provincial 51, Saldungaray.
Comment: inner fraction was used with 10% calcite and 90% aragonite.

LP-120. Lartigau 113.9 ± 0.7 pMC
Snail shells (Plagiodontes patagonicus) coll alive on shrubs growing on outcrop of La Toma Fm at 180m above msl (38°23' S, 61°38' W) Lartigau, Buenos Aires Prov.
Comment: flesh was separated from shell in boiling water; inner shell fraction (90%) was used.
General Comment: snail shells (Plagiodontes patagonicus and Austroborus lutescens) from upper member of Saavedra Fm were dated at 5500 ± 200 and 3890 ± 110 (SI-6450A and SI-6450B; Stuckenrath, pers commun). LP-118 and both SI ages agree with Holocene age of these stratigraphic units. LP-115 confirms Upper Pleistocene age of unit, which had been attributed to Lujanese mammalian age. LP-120 shows current depletion of 14C atmospheric level marked by snails.

La Plata Eubalena series
Mandibular branch (Eubalena australis) from Holocene marine sediments corresponding to Las Escobas Fm (34°53'39" S, 57°56'47" W) Ensenada, Buenos Aires Prov. Coll and subm Aug 1982 by F Fidalgo. Taxonomic determination was made by E Tonni, FCNyM.
LP-141a. Bone grinding <0.17mm 4600 ± 100
LP-141b. 5690 ± 250
LP-141c. 4870 ± 160

Comment: each sample was pretreated according to Longin (1971) in 1M HCL for 15 min.

LP-141d. Bone grinding <2.0mm 4420 ± 80
LP-141e. 3880 ± 90
LP-141f. 3750 ± 80
LP-141g. 3960 ± 100
LP-141h. 4040 ± 90
LP-141i. 4070 ± 90

Comment: each sample was pretreated in 1M HCL for 24 hr in vacuum.

General Comment: in this study, we have introduced variations in pretreatment (time and particle-size) in order to recover the maximum protein content and assure the total dissolution of inorganic matrix. We did not obtain a complete acid dissolution of inorganic matrix in LP-141a, -141b and -141c. We obtained a complete acid dissolution of bone and an increase of protein flocculate in LP-141d, -141e, -141f, -141g, -141h and -141i. In all cases, collagen was extracted according to Longin (1971) in HCL solution pH 2-3 at 80°C for 24 hr and used for dating. Several determinations were made to evaluate variability of dates.

LP-141j Total bone acidification 1060 ± 90

Comment: CO₂ from acid evolution of bone sample. This result shows trend of inorganic contamination.

Baradero series

Bone (Balaenoptera cf physalus) from estuarine sediments corresponding to Las Escobas Fm near Baradero city (33°50’ S, 59°30’ W) Buenos Aires Prov, from 0.30-0.50m depth. Coll July 1986 by A Figini and F Fidalgo, identified by E Tonni.

LP-153a. 5630 ± 100
Collagen.

LP-153b. 5420 ± 110
Duplicate.

Comment: both samples were pretreated in 1M HCL for 24 hr in vacuum; collagen was extracted according to Longin (1971). Pooled mean was reported as LP-153: 5540 ± 80.

LP-153c. 2710 ± 110
CO₂ from bone acidification.

Comment: this age shows trend of inorganic contamination.

Lobería series

Bone sample from continental deposit of Late Pleistocene and Holocene ages, corresponding
to La Postrera Fm, Lobería (38°09' S, 58°48' W), Buenos Aires Prov. Coll, identified and subm Aug 1986 by E Tonni.

LP-152a.
10,590 ± 120
Collagen from dermal ossicles of *Glossotherium (Pseudolestodon) myloides.*

LP-152b.
10,860 ± 130
Duplicate.

Comment: pretreatment and collagen extraction of both samples equal to LP-153a and -153b. Pooled mean reported was LP-152: 10,710 ± 90.

LP-152c.
4150 ± 90
CO₂ from bone acidification.

Comment: this age shows trend of inorganic contamination.

ARCHAEOLOGIC SAMPLES

Argentina

LP-85. CPV/96 Pichileufú
2530 ± 90
Charcoal from occupational floor at 0.68-0.70m depth, level VIII, Río Pichileufú Cave (41°04' S, 70°52' W), Pilcaniyeu, Río Negro Prov. Coll and subm March 1981 by R Ceballos, Fac Humanidades, Univ Nac Rosario (UNR).

Comments (RC): corresponds to postglacial guanaco hunters of Northern Patagonia. (Myriam Tarragó (MT)): provides ante quem date for wall engravings which were covered by Levels I-XI. Such engravings are supposedly related to the cave's most ancient inhabitants. See Ceballos and Perona (1983) for discussion.

LP-88. Fortin Marias II ó Fortin Necochea, Locus 2
6010 ± 400
Collagen from guanaco bone fragments at 0.9-1.0 below datum, Quad C21, Fortin Necochea (37°23'49" S, 61°08'15" W), near La Madrid city, Buenos Aires Prov. Coll by M Silveira and E Crivelli and subm Jun 1981 by A Sanguinetti, Inst Antrop, Fac Filosofia y Letras, Univ Nac Buenos Aires, (UBA).

LP-89. Guayra Azul I
1100 ± 60
Charcoal at 0.26m depth, Layer 2, Sec 3, Alero Guayra Azul I (22°57'56" S, 66°15'16" W), Cochinoca, Jujuy Prov. Coll by A Fernandez Distel and subm Jun 1981 by M Califano, Centro Argentino Etnol Am, CAEA.

Comments (MC): evaluation of hypothesis about aboriginal relations with San Pedro de Atacama, Chile. (MT): corresponds to Late Formative period of Quebrada de Humahuaca and Puna region's
chronologic sequence. It would be contemporary to Tiahuanaco Expansive period of both Atacama region and Bolivian Highlands.

LP-91. Abra de la Ventana

Charcoal at 0.4-0.7m depth, Cueva del Abra (38°05' S, 62° W) Sierra de la Ventana region, Buenos Aires Prov. Coll and subm June 1979 by A Castro, Fac Ciencias Nat y Museo (FCNyM), Univ Nac La Plata (UNLP).

Comment (AC): this is the first date for lithic material that corresponds to Tandiliense industry in this cave, and represents an early occupation of Pampa Bonaerense.

LP-90. Los Matos II

Charcoal from archaeologic refuse at 0-0.40m depth, Test Pit B, Los Matos II, Quebrada de Los Matos (25°07' S, 64°52' W), Anta Dept, Salta Prov. Coll and subm Oct 1983 by A Fernandez, FCNyM.

Comments (AF): charcoal specks dispersed throughout deposit. Date should determine chronologic span of La Candelaria culture at AD 400-700. (MT): date was rejected because deposits were disturbed by bulldozer's action and date did not correspond to what was expected.

Inca Cueva series

LP-102. M-2

Charcoal at 0.50-0.53m depth, Quad L3a.

LP-137. M-1

Stem and leaves (*Hypsocharis* sp) at 0.45-0.52m depth, Quad M4a.

Comment: sample was boiled in 2% HCL.

General Comments (CA): date should determine relative synchrony in presumed occupation level. Samples correspond to different quadrants and deposition episodes in refuse area. (MT): LP-102 and -137 respectively, date medium and lower strata. Both samples agree with AC-564: 9900 ± 200 and CSIC-4980: 9230 ± 70 from habitation area. The four dates correspond to archaic hunter-gatherer occupation level in rock-painting shelter. Layer 2 includes several features such as subcircular room floor, postholes and five storage pits dug into sandy substrate. Stemless triangular dart points are similar to those recovered at Huachichocana III-E3 (Tumbaya Dept), La Cueva (Yavi Dept) both in Jujuy Prov and Tuina in northern Chile. See Aschero (1980) for discussion.

LP-104. Cabo San Pablo 1

Charcoal from shell midden at 0.25-0.28m depth, Cabo San Pablo region, Tierra del Fuego. Coll and subm Nov 1983 by L Borrero, Inst Ciencias Antrop, UBA.
Comment (LB): dates cultural remains assoc with Selk'nam technology. Should provide chronologic framework for human occupation of Cabo San Pablo area and its inter-site relations.

LP-105. Antumpa R II G-5

Comments (SRC & MHL): date should provide chronologic framework for occupation of circular dwelling in agricultural village of Quebrada de Humahuaca area. (MT): this is one of first dates for this area which places site towards end of Early Formative period of northwestern Argentina. See Hernandez Llosas, Renard and Podestá (1983-1985).

LP-136. Los Toldos M3 85

Charcoal fragments from 0.35-0.45m depth, in topmost Layer 4 and beneath ash layer, Cave 3, Los Toldos (47°28' S, 68°50' W), Santa Cruz Prov. Coll and subm March 1985 by A Cardich, FCNyM.

Comments (AC): date should provide chronology of Casapedrense occupation in this cave. (MT): confirms relationship between end of Casapedrense lithic industry occupation and cave’s volcanic ash layer.

LP-142. Pueblo Viejo de la Cueva

Charcoal from hearth at 0.60-1.0m depth, Level III-V, Sec 1, Quad A, Pueblo Viejo de la Cueva (22°50' S, 65° 22' W), Quebrada de Humahuaca, Jujuy Prov. Coll and subm Jan 1984 by S Basilico de Valter and R Brito, Secy Cult Educ, Jujuy Prov.

Comments (MT): assoc with abundant domestic ware and La Isla ceramic style together with faunal remains corresponding to Middle and Late Formative period of Quebrada de Humahuaca region.

LP-144. Cueva Traful III

Charcoal from hearth at 3.65-3.87m depth, Layer 17, Traful III (also known as Los Maitenes Cave) (40°42'15" S, 71°09' W), Valle Encantado, Los Lagos, Neuquen Prov. Coll and subm April 1985 by D Curzio, Prog Estudios Prehist, CONICET-UBA.

Comment (DC): sample corresponds to first preceramic occupation of cave assoc with some flakes.

Alero Los Cipreses series

Samples from archaeologic site Alero Los Cipreses (40°38'45" S, 71°19' W), Trafal Lake, Neuquén Prov. Coll and subm March 1985 by M Silveira, Inst Antropol, UBA.

LP-145. PTA-6 no. 9

Charcoal from hearth at 0.45-0.5m depth, Quad 3.
Museo de la Plata Radiocarbon Measurements II

LP-159. **PTA-6 no. 12**

Charcoal from hearth at 0.70-0.75m depth, Layer 4, Quad 6.

General Comment (MS): date should determine chronologic framework for ceramic and non-ceramic components of site.

Casa Piedra de Ortega series

Charcoal from Casa Piedra de Ortega, Paraje Corralito (40°44' S, 70°42' W), Pilcaniyeu, Río Negro Prov. Coll and subm March 1985 by E Crivelli, Fac Filosofía y Letras, UBA.

LP-146. **CPO 10/85**

Charcoal from hearth at 1.43-1.48m below datum, Layer i, Quad G3.

Comment (EC): dates first occupation of cave and gives *terminus ante quem* for engravings in bedrock.

LP-168. **CPO 5/86**

Charcoal at 1.25-1.29m below datum, Layer e2, Quads G1 and H1.

Comment (EC): dates aceramic phase of northern Patagoniense lithic industry.

General Comment (EC): both dates agree with cave's stratigraphy as well as with other dates from same site (all unpub): AC-951: 2710 ± 100 from Layer H; AC-936: 1440 ± 80 from Layer 3; LP-191: 280 ± 50 from Layer e2.

LP-156. **Talampaya**

Wooden artifact (*Larrea* sp) identified by L Berridi and R Mamblona, Esc Sup Bosques UNLP, from Talampaya site (29°46'05" S, 67°46'07" W) Independencia, La Rioja Prov. Coll and subm Sept 1985 by M Gonaldi, Inst Antrop, Univ Prov La Rioja.

Comment (MT): from man-made lookout dug into rocky scarp assoc with other wooden objects, basketry, leather, wool, feathered sticks, maize and a domestic-ware sherd, which were lying on a bed of straw and branches, covered by a thick layer of pebbles. Date is related to Early Formative period of Valliserrana region of northwestern Argentina.

LP-157. **Playa Grande no. 9**

Charcoal from shell midden at 0.10m depth, Playa Grande (48°58' S, 67°27' W) Santa Cruz Prov. Coll and subm March 1986 by A Cardich, FCNyM, UNLP.

Comment (MT): should date Santa Cruz's coastal occupation.

LP-160. **Punta Bustamante**

Charcoal at 0.35m depth, 70-80m amsl at 1500m off shoreline, from Rudd I site (51°33'30" S, 68°58'40" W), Punta Bustamante, Guer Aike, Santa Cruz Prov. Coll and subm Feb 1985 by E Mansur, Centro Austral Investigaciones Científicas, CADIC.
LP-165. La Huerta

Charcoal from refuse area at 1.45-1.78m depth, Quad C1, Layer XV-XVI, La Huerta (23°30' S, 65°20' W), Quebrada de Humahuaca, Jujuy Prov. Coll and subm May 1986 by R Raffino, FCNyM, UNLP.

Comments (RR): this date shows Inka-Humahuaca cultural contact in NW Argentina. (MT): date corresponds to refuse area in center of La Huerta town; related to pre-Inka phase of site. Upper layers show cultural contact between Humahuaca and Inka cultures and European objects.

LP-166. Los Flamencos I

Bone collagen (Lama sp) from Los Flamencos I (37°40' S, 62°25' W), Campo Fernandez, Saavedra, Buenos Aires Prov. Coll and subm May 1986 by A Austral, FCNyM, UNLP.

Comment (MT): sample from upper layers of archaeologic stratigraphy of non-ceramic component. Date should provide chronologic framework for pampean pottery, resulting in date somewhat later than expected (4000 BP).

LP-167. Lago San Roque

Human bone collagen at 0.70m depth, Lago San Roque Beach (31°22' S, 64°33' W), Carlos Paz city, Cordoba Prov. Coll and subm Jan 1987 by Poder Judicial de Cordoba (Cordoba Dept Justice).

Comment: data requested for judicial investigation.

LP-169. Susques

Wood (Trochocereus sp) from roof of house, Susques (23°16' S, 66°16' W), Jujuy Prov. Coll, identified and subm May 1986 by A Fernandez Distel.

Comment (AFD): date should provide chronologic framework for architectural structures related to Late Regional Developments period of Puna de Atacama region.

REFERENCES

UNIVERSITY OF WISCONSIN RADIOCARBON DATES XXVI

RAYMOND L STEVENTON and JOHN E KUTZBACH

Center for Climatic Research, Institute for Environmental Studies
University of Wisconsin-Madison, 1225 West Dayton Street, Madison, Wisconsin 57306

Procedures and equipment used in the University of Wisconsin laboratory have been described in previous date lists (Bender, Bryson & Baerreis 1965; Steventon & Kutzbach 1986). Except as otherwise indicated, wood, charcoal and peat samples are pretreated with dilute NaOH-NA₄P₂O₇ and dilute H₃PO₄ before conversion to counting gas methane; when noted, marls and lake cores are treated with acid only. Very calcareous materials are treated with HCL instead of H₃PO₄.

The dates reported have been calculated using 5568 yr as the half-life of ¹⁴C. The standard deviation quoted includes only 1σ of the counting statistics of background, sample and standard counts. Background methane is prepared from anthracite; standard methane from NBS oxalic acid. The activities of the dated samples for which δ¹³C values are listed have been corrected to correspond to a δ¹³C value of −25‰; the activity of the standard methane has been corrected to −25‰.

Sample descriptions are based on information supplied by those who submitted samples.

ACKNOWLEDGMENTS

This research is supported by the National Science Foundation under Grant #ATM-8902849. We thank the UW-Madison Geology and Geophysics Department, Gas Research Institute Grant #133-P287, for use of the Finnegan MAT 251 isotope ratio mass spectrometer and for the assistance of its operator, Kevin Baker. We also wish to thank Jodie O’Gorman and Joe Ezzo for laboratory assistance.

ARCHAEOLOGIC SAMPLES

United States

Iowa

Turkey River Mound Group (13CT1) series

Wood charcoal coll 1964 from Turkey River Mounds, Clayton Co (42°43’N, 91°02’W) by M McKusick and subm by W Green, Univ Iowa (Green 1988a; McKusick 1964).

WIS-2049.

2550 ± 60
δ¹³C = −26.9‰

Sample from Burial 4, Mound 37, an extended adult who was decapitated post mortem or perimortem. Red Ocher was directly associated.

¹Raymond L Steventon retired in 1989 as Director of the University of Wisconsin Radiocarbon Laboratory. Dr Christine Prior assumed responsibility of the Radiocarbon Laboratory December 1, 1989.
WIS-2050.

Sample from Burial 1 and 2, Mound 38 (cremated skulls), probably part of same mortuary program as articulated burials 3-11 located at base of mound in association with Red Ocher grave goods.

2580 ± 60
δ¹³C = -25.0‰

WIS-2051. Archaeological site 13CT228

Wood charcoal coll Nov 1987 from site in Clayton Co (42°44'N, 91°08'W) by W Green and J Cordell and subm by W Green. Dates a Durst phase occupation situated within a Holocene terrace along Turkey River, NE Iowa. First date for non-rockshelter Late Archaic occupation in region.

WIS-2069. Archaeological site 13TM173

Soil horizon from site in Tama Co (42°57'N, 92°34'W) coll by D Richardson and J D Anderson and subm by W Green. Dates paleosol in alluvial fan deposit in which microdebitage was found. Underlain by main-valley flood deposits of Iowa River.

WIS-2076. Archaeological site 13ML176

Red elm (Ulmus rubra) charcoal from site 13ML176, Mills Co (41°07'N, 95°47'W), coll June 1984 by S Schermer and subm by W Green. Sample from outer rings of a central support post (Feature 12) of a Nebraska phase (Glenwood locality) earthlodge (Green 1988b).

Wisconsin

Camp Indianola site (47Da533) series

Wood charcoal coll May-July 1986 from Camp Indianola, Dane Co (43°07'N, 89°26'W) by S L Stand, S K Salzsider, M L Propson and J A Clark, and subm by V Dirst, Wisconsin Dept Nat Resources, Madison.

WIS-1993.

Sample from Feature 7, a Middle Woodland trash pit containing Kegonsa Stamped sherds, chert flakes and fire-cracked rock.

1840 ± 60
δ¹³C = -26.6‰

Sample from hearth believed to be associated with Kegonsa Stamped ceramics in adjacent living space.

Modern
δ¹³C = -26.7‰

WIS-1995.

Sample from Feature P. Dates Late Woodland occupation believed contemporary with stockade.

1420 ± 70
δ¹³C = -26.3‰
Ot site (47Lc262) series

Comment: a total of 193 storage pits were excavated on a ridge north of cemetery; majority are contemporary with each other.

WIS-1979.

Sample from Feature 1, S01 W97, 32cm below surface. Burial goods were found with each of three individuals recovered during limited testing.

WIS-2027.

Sample from Feature 1, S01 W97, 70 - 80cm depth.
\[\delta^{13}C = -26.9\%o \]

WIS-2028.

Sample from Feature 1, S01 W97, 80 - 90cm depth.
\[\delta^{13}C = -27.3\%o \]

WIS-2029.

Sample from Feature 1, S01 97, 40 - 50cm depth.
\[\delta^{13}C = -27.0\%o \]

WIS-2030.

Sample from Feature 1, S01 W97, 50 - 60cm depth.
\[\delta^{13}C = -27.1\%o \]

WIS-2031.

Sample from Feature 1, S01 W97, 60 - 70cm depth.
\[\delta^{13}C = -25.8\%o \]

WIS-1980.

Sample from Feature 3, N97 W56, 90 - 100cm depth.
\[\delta^{13}C = -25.9\%o \]

WIS-1981.

Sample from Feature 7, N99 W56, 100 - 110cm depth.
\[\delta^{13}C = -26.5\%o \]

WIS-2015.

Sample from Feature 11, N64 W47, refuse pit, 20 - 70cm depth.
\[\delta^{13}C = -25.3\%o \]

WIS-2016.

Sample from Feature 1, N54 W39, 30 - 40cm depth.
\[\delta^{13}C = -25.3\%o \]
Tremaine site (47Lc95) series

Comment: Tremaine village complex covers ca 48ha and incorporates various site numbers (47Lc95, Lc149, Lc262 and Lc359). Since no European trade goods were found, complex is assumed to be prehistoric.

WIS-2042. 560 ± 60
Sample from Feature 9, S31 E170, 30 - 90cm depth. $\delta^{13}C = -27.0\%$

WIS-2026. 760 ± 70
Sample from Feature 5, N12 W8, 100 - 110cm depth. $\delta^{13}C = -22.3\%$

WIS-2039. 480 ± 60
Sample from Feature 1, N12 W16, 70 - 80cm depth. $\delta^{13}C = -27.1\%$

WIS-2040. 590 ± 50
Sample from Feature 5, N12 W8, 80 - 100cm depth. $\delta^{13}C = -26.5\%$

WIS-2041. 350 ± 60
Sample from Feature 3, N18 W6, 50 - 100cm depth. $\delta^{13}C = -26.9\%$

WIS-2068. 540 ± 70
Sample from Feature 5, N12 W8, 100 - 120cm depth. $\delta^{13}C = -26.1\%$

WIS-2052. 1470 ± 50
Sample from Feature 8, N142 W50, 50 - 60cm depth. No diagnostic artifacts.

WIS-2063. 1630 ± 50
Sample from Feature 8, N140 W50, 50 - 60cm depth. No diagnostic artifacts.

Bachmann site (47Sb202) series

WIS-1982. 250 ± 50
Sample from Feature 33. $\delta^{13}C = -27.7\%$
WIS-1983.
1100 ± 70
Sample from Feature 73. $\delta^{13}C = -26.2\%o$

WIS-2038. Double site (47P181)
890 ± 220

Fred Edwards site (47Gt377) series

Wood charcoal coll Aug 1987 from Fred Edwards site, Grant Co (42°43'30"N, 90°50'58"W) by F Finney and subm by J B Stoltman, Dept Anthropol, Univ Wisconsin-Madison. Samples date Middle Mississippi/Late Woodland contact in SW Wisconsin (Steventon & Kutzbach 1986: 1211; 1987: 403; 1988: 371).

WIS-2044.
840 ± 70
$\delta^{13}C = -27.2\%o$
Sample from Feature 155, a structure with a basin 30m deep containing two distinct fill episodes and five ceramic vessels.

WIS-2061.
840 ± 70
$\delta^{13}C = -26.7\%o$
Sample from Feature 148, Post 11, a palisade line located at S end of site. Twenty posts were excavated during 1987 field season.

WIS-2062.
1040 ± 50
$\delta^{13}C = -26.5\%o$
Sample from Feature 148, Post 12 (same as WIS-2061, above).

Viola Rockshelter site (47Ve640)

Wood charcoal coll Sept 1980 from Viola Rockshelter, Vernon Co (43°28'38"N, 90°41'15"W) and subm by J Theler, Mississippi Valley Archaeology Center, La Crosse.

WIS-2105.
1220 ± 70
$\delta^{13}C = -26.5\%o$
Sample from Feature 3, a deep pit with west half eroded down a slump bank. Ceramics exhibit Havana-ware characteristics.

WIS-2106.
1810 ± 80
$\delta^{13}C = -26.3\%o$
Sample from Test Pit F, area B, a neatly stratified burned layer containing large sherds from a single vessel that compares to Prairie ware with grit temper rather than sand temper.

Midway Village site (47Lc19) series

Wood charcoal coll 1984-1988 from Midway Village site, La Crosse Co (43°56'35"N,
91°16'53"W) by J Gallagher, R Boszhardt, R Rodell and A La Fond and subm by R Boszhardt, Mississippi Valley Archaeology Center, La Crosse.

WIS-2107.

Sample from Feature 2 (W 1/2), Zone A, containing large quantities of refuse representing last usage. Pit contained 2 Oneota vessels, 1 with bold vertical finger trails and 1 with a unique variety of Allamakee trailed of the Valley View phase.

\[300 \pm 50 \]
\[\delta^{13}C = -26.2\%o \]

WIS-2108.

Sample from Feature 89, Zones A and B, a stratified basin-shaped pit containing a large section of an Oneota vessel that compares with Brice Prairie phase type Perrot Punctated.

\[650 \pm 50 \]
\[\delta^{13}C = -26.2\%o \]

WIS-2109.

Sample from Feature 222, Level 7, underlying a layer of ash and charcoal containing an Oneota rim section of a Perrot Punctate vessel that represents a Brice Prairie phase occupation.

\[470 \pm 50 \]
\[\delta^{13}C = -26.1\%o \]

WIS-2110.

Sample from Feature 234, a large shallow basin pit containing Valley View phase Allamakee trailed ceramics.

\[440 \pm 50 \]
\[\delta^{13}C = -26.9\%o \]

WIS-2111.

Sample from Feature 276, a shallow basin pit containing a large section of an Oneota vessel with Allamakee trailed and Lake Winnebago trailed attributes.

\[570 \pm 50 \]
\[\delta^{13}C = -21.1\%o \]

WIS-2112.

Sample from Feature 2(W 1/2), Zone B, representing the lower portion of a large storage/processing pit. See WIS-2107, above.

Old Spring site series (47Wn350)

Charred wood coll July 1987 from Old Spring site, Winnebago (44°10'N, 88°52'W) and subm by D F Overstreet, Great Lakes Archaeological Research Center, Inc, Milwaukee. Samples from burned structural timbers in semi-subterranean houses and from single-episode storage/refuse pits. Occupation represents earliest well-defined Oneota complex (McKern phase) in E Wisconsin. Dates clarify relationship between Emergent Mississippian and Oneota.

WIS-2087.

Sample from Feature 200, storage/refuse pit.

\[730 \pm 50 \]
\[\delta^{13}C = -25.8\%o \]
University of Wisconsin Radiocarbon Dates XXVI

WIS-2088.
Sample from Feature 167, storage/refuse pit.
\[\delta^{13}C = -26.3\%o \]

WIS-2092.
Sample from Feature 117, storage/refuse pit.
\[\delta^{13}C = -25.7\%o \]

WIS-2093.
Sample from Feature 110, storage/refuse pit.
\[\delta^{13}C = -26.4\%o \]

WIS-2094.
Sample from Feature 158, storage/refuse pit.
\[\delta^{13}C = -26.8\%o \]

WIS-2095.
Sample from Feature 156, storage/refuse pit.
\[\delta^{13}C = -25.7\%o \]

WIS-2096.
Sample from Feature 179E, burial pit in house floor.
\[\delta^{13}C = -25.7\%o \]

Algeria

WIS-2067. Khanguet-el-Mouhaad site
Comment: sample was submitted as upper Capsian 6000-9500 BP and dated to add information on the archaeology of the Algerian Sahara.

Pakistan

Harappa site series

WIS-2043.
Sample from Lot 526, upper level of mature Harappan habitation on Mound AB.
\[\delta^{13}C = -25.5\%o \]

WIS-2053.
Sample from Lot 309 and 311, topmost layers of mature Harappan habitation on Mound E.
\[\delta^{13}C = -25.5\%o \]
WIS-2074.
3700 ± 60

$\delta^{13}C = -25.9\%$
Sample from Lot 798, Feature 7b, lower layer of a hearth filled with ash and charcoal. Upper and lower layers were divided by mud plaster which was burned red and had chaff impressions.

WIS-2075.
3830 ± 60

$\delta^{13}C = -23.0\%$
Sample from Lot 547, Feature 25, fill above Floor 25.

Portugal

Agroal site series

Charcoal coll July 1988 from Agroal, Vila Nova de Ourém (39°40'45"N, 08°26'15"W) and subm by K T Lillios, Dept Anthropology, Yale Univ, New Haven, Connecticut. Three samples coll from levels associated with flint and quartzite cores, flakes and bladelets, and handmade ceramics.

Comment: believed to be contemporary with site’s Bronze-Age occupation. Dates, however, which range from the 13th - 17th centuries AD are contemporary with much of excavated ceramics and coins recovered in later levels of site. Significant disturbance of site’s Bronze-Age levels, perhaps due to tilling, must account for association of recent charcoal with prehistoric artifacts.

WIS-2081.
310 ± 50

$\delta^{13}C = -24.8\%$
Sample from Pits 16-23, Level 5 (70cm depth), 147m elevation.

WIS-2082.
450 ± 50

$\delta^{13}C = -25.3\%$
Sample from Pit 14, Level 3a (45cm depth), 145m elevation.

WIS-2083.
670 ± 50

$\delta^{13}C = -24.8\%$
Olea sp and Crataegus sp from Pits 12 and 13, Level 3a (45cm depth), 145m elevation. Charcoal identified by L McWeeney, Yale Univ.

GEOLOGIC SAMPLES

United States

Alaska

Sitkinak Island series

Samples coll July 1988 from Sitkinak Island (56°35'N, 154°05'W) and subm by T Byrne, Geological Science Dept, Brown Univ, Providence, Rhode Island. Dated to provide information on a recently active fault zone.
WIS-2077.
2060 ± 50
Intertidal mud and surf grass (Phyllospadix) from uplifted marine terrace 2m above mean sea level.

WIS-2078.
3140 ± 60
Intertidal mud and surf grass (Phyllospadix) from uplifted marine terrace 5m above mean sea level.

Pleasant Island site series

Cores coll Sept 1988 from small lake area in Tongass Natl Forest (58°21'N, 135°39'W) by D R Engstrom, J Almendinger and J Janssens and subm by D R Engstrom, Univ Minnesota, Minneapolis. All depths from peat surface; elevation 150m. Previously dated (Steventon & Kutzbach 1988: 375).

WIS-2089.
9440 ± 100
Bryophyte peat, 195 - 200cm depth overlying contact with mineral soil. Core taken 40cm above lake level, 15m E of E drain.

WIS-2098.
850 ± 50
Bryophyte peat, 83.8 - 88.8cm depth. Same core as WIS-2089, above.

WIS-2099.
4060 ± 70
Bryophyte peat, 159.7 - 164.7cm depth. Same core as WIS-2089, above.

WIS-2090.
7680 ± 80
Sedge peat, 245 - 250cm depth, overlying contact with mineral soil. Core taken 392cm above lake level, 35m SE of shore.

WIS-2091.
8300 ± 100
Sedge peat, 345 - 350cm depth, overlying contact with mineral soil. Core taken 333cm above lake level, 40m SW of shore.

WIS-2100.
10,530 ± 110
Light brown gyttja, 574 - 582cm below lake surface, water depth 3.64m.

WIS-2080. La Perouse
2690 ± 60
Core coll July 1988 from a small lake between lateral moraines of Dagelet and La Perouse Glaciers, Glacier Bay Natl Park and Preserve (58°31'N, 137°18'W) by H E Wright, Jr and D R Engstrom and subm by D R Engstrom. Peat, 86 - 92cm from water/sediment interface, water depth 5.3m. Dates minimum age of lake basin and ice retreat from early Neoglacial advance.

WIS-2101. Dagelet
1080 ± 60
Core coll July 1988 from a small lake at terminus of Dagelet Glacier, Glacier Bay Natl Park
and Preserve (58°31'N, 137°20'W) by H E Wright, Jr and D R Engstrom and subm by D R Engstrom. Limnic sediment, 22 - 31cm from water/sediment interface, water depth 3.8m. Dates minimum age of lake basin and ice retreat from early Neoglacial advance.

WIS-2104. Brady

Core coll July 1988 from a small lake at terminus of Brady Glacier, Glacier Bay Natl Park and Preserve (58°19'N, 136°41'W) by H E Wright, Jr and D R Engstrom and subm by D R Engstrom. Limnic sediment, 35 - 44cm below water/sediment interface, water depth 7.7m. Dates minimum age of lake basin and ice retreat from early Neoglacial advance.

California

WIS-2086. Gumboot Lake

Core coll Sept 1988 from Gumboot Lake, Shasta Co (41°12'30"N, 122°30'30"W) and subm by M Edwards, Dept Geography, Univ Oregon, Eugene. Basal sample dates minimum age for local deglaciation in Trinity Alps.

Connecticut

Cedar Swamp series

Core coll May 1988 from Cedar Swamp, Pequot Indian Reservation (41°27'30"N, 71°57'30"W) and subm by R S Webb, Brown Univ. Depths in cm below surface. Previously dated (Steventon & Kuzbach 1988: 376).

WIS-2054.

Fine-grained peat, 33 - 39cm depth.

WIS-2055.

Fine-grained peat, 68 - 73cm depth.

WIS-2056.

Fine-grained peat, 96 - 102cm depth.

Delaware

Longhauser Pond series

Core, 10cm diam, coll June 1987 from Longhauser Pond, New Castle Co (39°23'05"N, 75°40'30"W) and subm by R S Webb. Sampled to provide sediment accumulation rate above and below a major stratigraphic hiatus at 70cm, first noticed in Walters Puddle series (Steventon & Kuzbach 1987: 403-404). All depths from water/sediment interface, water depth 40cm.

WIS-2007.

Organic silt to clay, 30 - 35.5cm depth.
WIS-2008. 6190 ± 90
Organic silt; rootlets removed by sieving, 64 - 69cm depth.

WIS-2009. 10,820 ± 100
Inorganic to organic poor silt, 71 - 78cm depth.

WIS-2010. 11,610 ± 100
Inorganic silt, sand and clay, 86 - 92cm depth.

Leipsig Salt Marsh series
Core coll June 1987 from Leipsig Salt Marsh, Kent Co (39°14'25"N, 75°31'15"W) and subm by A J Smith, Brown Univ. Dated to provide temporal control within core.

WIS-2013. 2230 ± 70
Peat with silt, 316 - 321cm depth.

WIS-2014. 2120 ± 70
Organic silty mud containing plant fibers, 269 - 274cm depth.

Prison Pond series
Core coll June 1987 from Prison Pond, Walker Co (39°20'20"N, 75°36'45"W) and subm by R S Webb. Measurements from water/sediment interface, water depth 55cm.

WIS-2022. 2650 ± 80
Organic silt to clay, 24 - 26.5cm depth.

WIS-2023. 11,760 ± 150
Inorganic to organic-poor silts, 34 - 41cm depth.

WIS-2024. Walters Puddle 2370 ± 80
Core coll June 1988 from Walters Puddle, New Castle Co (39°24'N, 75°41'30"W) and subm by R S Webb. Fine silt and clay, organic-rich sediment, 25 - 28.5cm below water/sediment interface, water depth 1m. Previously dated (Steventon & Kutzbach 1987: 403-404).

St Jones River series
Core coll June 1987 from St Jones River, Kent Co (39°08'N, 75°30'W) by J E Pizzuto and subm by E E Whallon, Univ Delaware, Newark. Measurements from surface. Site contains archaeological artifacts. Dates useful for paleoenvironmental reconstruction.

WIS-2037. 1890 ± 220
Matted fiber ball, 300cm depth.
WIS-2033.
Peaty mud, 330 - 334cm depth.

WIS-2034. Duck Creek
Core coll June 1987 from Duck Creek, Kent Co (39°18’30"N, 75°36’W) by J E Pizzuto and subm by E E Whallon. Peat, 200 - 203cm depth. Deepest basal marsh peat in locality. Shows initiation at transgression of brackish tidal marsh into area.

WIS-2035. Mill Creek
Core coll Aug 1987 from Mill Creek, Kent Co (39°18’N, 75°34’30"W) by J E Pizzuto and subm by E E Whallon. Muddy peat from 193cm below surface. Deepest evidence for marsh environment along this tidal stream.

WIS-2036. Leipsig River site
Core coll Aug 1987 from Leipsig River site, Kent Co (39°14’30"N, 75°35’W) by J E Pizzuto and subm by E E Whallon. Muddy peat, 217 - 220cm below surface. Deepest evidence for marsh deposit, may mark transgression of saline tidal waters into area.

Nowakowski Pond series
Core, 10cm diam, coll June 1987 from Nowakowski Pond, New Castle Co (39°23’9"N, 75°40’40"W) and subm by R S Webb. Sampled to provide dates above and below a stratigraphic hiatus at 60cm, first noticed in Walters Puddle (Steventon & Kutzbach 1987: 403-404). All depths from water/sediment interface, water depth 32cm.

WIS-2011.
Organic silt to clay, sieved to remove rootlets, 57 - 59cm depth.

WIS-2012.
Inorganic to organic poor silt, 64 - 67cm depth.

Florida

WIS-1984. Phosphate mine site
Highly decomposed peat from open-pit phosphate mine near Bartow, Polk Co (27°51’N, 81°50’W) coll by T Ager, USGS and subm by L Shane and H E Wright, Jr, Univ Minnesota, Minneapolis. Sample dates top of 30m peat deposit under 11m of sand.

WIS-2057. Barchampe Lake
Core coll March 1986 from Barchampe Lake, Jefferson Co (30°08’N, 80°08’W) by E Grimm and W A Watts and subm by W A Watts, Trinity Coll, Dublin, Ireland. Sandy lake peat, 890 - 897cm below surface. Dated to provide information on vegetation and climate history of Florida and SE United States.
University of Wisconsin Radiocarbon Dates XXVI

Georgia

WIS-2058. Langdale Pond 7890 ± 80
Core coll March 1986 from Langdale Pond, Lowndes Co, near Georgia-Florida border (30°48'36"N, 83°16'59"W) by E Grimm and W A Watts and subm by W A Watts. Humified peat, 760 - 767 cm below surface. Dated to provide information on vegetation and climate history of Florida and SE United States.

Illinois

WIS-2097. Spring Hill Bog site 9780 ± 100
δ¹³C = −26.4‰
Wood coll 1980 from Spring Hill Bog, Whiteside Co (41°75'N, 90°00'W) by A Swain, R Steventon, K Gajewski and M Winkler and subm by M Winkler, Univ Wisconsin-Madison. Sample dates Late Glacial/Early Holocene water-level change in Rock River drainage basin.

Massachusetts

Herring River Marsh-Estuary series

Cores coll Oct 1986 from Herring River Marsh, Barnstable Co (41°06'N, 70°04'W) by R A Orsen and C T Roman, Center for Coastal and Environmental Studies, Rutgers Univ, New Brunswick, New Jersey. Samples subm by M Winkler, Univ Wisconsin-Madison. Dated to determine long-term accretion rates in both salt and brackish-freshwater systems. Acid treatment only.

WIS-1986. 1610 ± 70
Brown silt with clay, roots and rhizomes, 236 - 240 cm depth. Sample HR-1-240.

WIS-1996. 2330 ± 240
Gray clays with sand, roots and rhizomes, 326 - 330 cm depth. Sample HR-1-330.

WIS-1997. Modern
Gray clays with sand, roots and rhizomes, 29 - 33 cm depth. Sample BB-2-D33.

WIS-2017. 1290 ± 190
Gray clays with sand, silt, roots and rhizomes, 151 - 155 cm depth. Sample HR-3-155.

WIS-2025. 760 ± 190
Brown/gray clays with silt, sand, roots and rhizomes, 68 - 72 cm depth. Sample DH-1-072.

WIS-2032. 380 ± 90
Gray clays with silt, roots and rhizomes, 46 - 50 cm depth. Sample HR-5-050.
Nipmuck Pond series

Core coll Sept 1984 from Nipmuck Pond, Worcester Co (41°58′31″N, 71°07′30″W) by J T Overpeck, R S Thompson, and R S Webb and subm by P Tsadeis, Brown Univ. Core is being used for Holocene pollen analysis. All depths from water/sediment interface, water depth 6.3m.

WIS-1987.
Gyttja, 39.1 - 57.1cm depth.

WIS-1988.
Gyttja, 131 - 150cm depth.

WIS-1989.
Gyttja, 181 - 195cm depth.

WIS-1990.
Gyttja, 206 - 221cm depth.

WIS-1991.
Gyttja, 276 - 285cm depth.

WIS-1992.
Gyttja, 456 - 495cm depth.

Great Pond, Truro series

WIS-1976.
Gyttja, 418 - 427cm depth. $\delta^{13}C = -28.9‰$

WIS-2018.
Gyttja, 374 - 380cm depth.

WIS-2019.
Clayey gyttja, 413 - 423cm depth.

WIS-2071.
Gyttja, 142 - 147cm depth. $\delta^{13}C = -29.6‰$
WIS-2072.

Gyttja, 66 - 71cm depth.
$\delta^{13}C = -30.3\%o$

Great Pond, Wellfleet series

Livingstone core coll Oct 1986 from Great Pond, Wellfleet, Barnstable Co (41°56'25"N, 70°00'03"W) by M Winkler, R Webb, J Overpeck, J Portnoy, K Gajewski and subm by M Winkler. All depths from water/sediment interface, water depth 16.2m. Acid treatment only.

WIS-1977.

Gyttja, 690 - 711cm depth. Basal date.

WIS-2065.

Gyttja, 186 - 194cm depth.
$\delta^{13}C = -28.3\%o$

WIS-2066.

Gyttja, 441 - 449cm depth.
$\delta^{13}C = -26.6\%o$

Dyer Pond series

Livingstone core coll Oct 1986 from Dyer Pond, Wellfleet, Barnstable Co (41°56'19"N, 70°00'35"W) by M Winkler, R Webb, J Overpeck, J Portnoy, K Gajewski and subm by M Winkler. All depths from water/sediment interface, water depth 10.5cm. Acid treatment only.

WIS-1978.

Silty gyttja, 710 - 717.5cm depth. Basal date.
$\delta^{13}C = -26.8\%o$

WIS-2070.

Gyttja, 450 - 457cm depth.
$\delta^{13}C = -27.9\%o$

WIS-2103.

Gyttja, 51 - 56cm depth.
$\delta^{13}C = -28.4\%o$

WIS-2005. Duck Pond, Provincetown

Core coll Oct 1986 from Duck Pond, Barnstable Co (42°03'00"N, 70°11'30"W) and subm by M Winkler. Peaty gyttja, 103 - 103.5cm below water surface, water depth 50cm. Acid treatment only.

WIS-2006. Bennett Pond, Provincetown

Core coll Oct 1986 from Bennett Pond, Barnstable Co (42°03'30"N, 70°12'00"W) and subm by M Winkler. Gyttja from 90cm below water surface, water depth 70cm. Acid treatment only.
McKusker's Pond series

Livingstone core coll Aug 1985 from McKusker's Pond, Barnstable Co (941°49'23"N, 69°58'03") by R S Webb, E A Scharf, J Karb and S Clemens and subm by P Newby, Brown Univ. Measurements from water/sediment interface, water depth 48 cm. Acid treatment only.

WIS-2020.
Organic lake sediment, 248 - 253 cm depth.

WIS-2021.
Organic lake sediment, 263 - 267 cm depth.

High Head Dune Bog series

Samples coll Nov 1987 from High Head area, Cape Cod Natl Seashore, Barnstable Co (42°03'30"N, 70°07'30"W) and subm by M Winkler. Acid treatment only.

WIS-2084.
Sandy peat from Dune Bog #4, 7.5 - 8.5 cm below surface.

WIS-2102.
Organic sand from Dune Bog #5, 5 - 6 cm below surface.

Michigan

Lake Sixteen series

Core coll Feb 1987 from Lake Sixteen, Cheboygan Co (45°35'N, 84°20'W) and subm by R P Futyma, New York State Museum, Albany. For previous dates from site, see Futyma and Miller (1986). Depth in cm from water/sediment interface, water depth 105 cm. Acid treatment only.

WIS-1999.
Gyttja, 192 - 196 cm depth.

WIS-2000.
Silt mixed with organic lake sediment, 225 - 231 cm depth.

Ohio

East Twin Lake site series

Core from East Twin Lake, Portage Co (41°11'50"N, 81°20'W) coll April 1988 by L C K Shane and H E Wright, Jr and subm by L C K Shane, Univ Minnesota, Minneapolis. Dated to provide vegetation/climate history of NE Ohio. Depths from water surface, water depth 11 m.

WIS-2045.
Gyttja, 1170 - 1179 cm depth.
University of Wisconsin Radiocarbon Dates XXVI

WIS-2046.
Gyttja, 1344 - 1352cm depth.

WIS-2047.
Gyttja, 1802 - 1810cm depth.

WIS-2048.
Clay/silt limnic sediment, 2046 - 2058cm depth.

WIS-2064. Andreas site
Core coll April 1988 from Andreas site, Portage Co (41°12'50"N, 81°21'53") by L C K Shane and H E Wright, Jr and subm by L C K Shane. Wood, 174 - 177cm below hummock surface. Dated to provide vegetation/climate history of NE Ohio.

Oregon

Bolan Lake series
Core coll Sept 1988 from Bolan Lake, Josephine Co (42°01'30"N, 123°27'30"W) and subm by M Edwards, Dept Geography, Univ Oregon, Eugene. Dated to determine sedimentation rate. Depths in cm from water surface, water depth 10.9m.

WIS-2079.
Wood, fir (Abies) identified by D Christensen, US Forest Products Lab, Madison, Wisconsin; 1841 - 1846cm depth.

WIS-2085.
Gyttja, 1967 - 1972cm depth.

Rhode Island

Fresh Pond series
Core coll Jan 1988 from Fresh Pond, Block Island (41°09'30"N, 71°34'30"W) by P W Dunwiddie and R S Webb and subm by P W Dunwiddie, Massachusetts Audubon Society. All measurements from water/sediment interface, water depth 6.7m.

WIS-2059.
Silty organic gyttja, 264 - 272cm depth.

WIS-2060.
Silty organic gyttja, 362 - 372cm depth.
Wisconsin

Devil's Island Bog series

Core coll from Devil's Island, Apostle Islands, Ashland Co (47°04'N, 90°43'W) and subm by A M Swain, Univ Wisconsin-Madison.

WIS-2002. 5010 ± 80
Peat and peaty clay, 95 - 105cm depth. Dates initiation of peat growth in bog.

WIS-2073. 1990 ± 50
Peat, 65 - 70cm depth. Dates beginning of increase in spruce and alder pollen and decrease in birch pollen.

Wyoming

WIS-2001. Soda Lake 9750 ± 90
Two adjacent cores coll Aug 1987 from Soda Lake, Teton Natl Forest (43°31'15"N, 110°15'W) and subm by C Barnosky, Carnegie Museum, Pittsburgh, Pennsylvania. Organic silt with shell, 1787 - 1802cm below water surface, water depth 10.65m, alt 2384m. Acid treatment only.

Peru

Tunsho site

Sample coll Sept 1986 from Tunsho site, Junin Prov (11°50'S, 75°06'W) and subm by H E Wright, Jr. Peat growth at this site started as soon as glacier retreated from terminal moraine.

WIS-1969. 250 ± 60
Peat, 139 - 144cm depth.

WIS-1998. 920 ± 200
Organic detritus from base of gravels deposited by glacial outwash from terminal moraine.

WIS-1970. Huaytapallana Stream cut 650 ± 60
Sample coll Sept 1986 from stream in Nevada Huaytapallana, Junin Prov (11°50'S, 75°06'W) and subm by H E Wright, Jr. Organic detritus in silts related to retreat of Late Pleistocene glacier overlain by Late Holocene moraine.

WIS-1971. Verdecocha B 610 ± 70
Basal peat coll Sept 1986 from Verdecocha, 45km S W of LaOroya, Junin Prov (11°55'S, 76°03'W) and subm by H E Wright, Jr. Peat, at 92 - 97cm depth, dates recession of Late Holocene ice from terminal moraine.
WIS-1972. Pucuta B

Basal peat coll Sept 1986 from Pucuta, 45km SW of LaOroya, Junin Prov (11°54'S, 76°01'W) and subm by H E Wright, Jr. Peat, at 269 - 274cm depth, was formed as Late Holocene glacier retreated from terminal moraine.

WIS-1973. Laguna Tranca Grande

Basal lake sediment coll Sept 1986 from Laguna Tranca Grande, Junin Prov (11°45'S, 75°13'W) and subm by H E Wright, Jr. Dates time of glacial recession from terminal moraine.

WIS-1985. Laguna Tipicocha

Basal lake sediment coll Sept 1987 from Laguna Tipicocha, Junin Prov (11°45'S, 75°13'W) and subm by H E Wright, Jr. Sample, at 1059 - 1067cm depth, dates time of glacial recessional lake formation.

Lake Tuctua series

Core coll Sept 1986 from Laguna Tuctua, Junin Prov (11°43'S, 74°57'W) and subm by H E Wright, Jr. Samples provide sediment accumulation rate and pollen influx. Previous date, WIS-1940 (Steventon & Kutzbach 1988: 382). Depth measurements from water surface, water depth 8.7m

Organic lake sediment, 1000 - 1005cm depth.

WIS-2004.

Organic lake sediment, 1145 - 1155cm depth.

REFERENCES

Bender, MM, Bryson, RA and Baerreis, DA 1965 University of Wisconsin radiocarbon dates I. Radiocarbon 7: 399-407.
Green, W 1988a Archaeological and paleoenvironmental studies in the Turkey River valley, northeastern Iowa. Research Papers 13, Office of the State Archaeologist, Iowa City, Iowa.
_____ (ms) 1988b Glenwood culture paleoenvironment and diet, western Iowa. Ms subm to Iowa Science Foundation; ms on file, Office of the State Archaeologist, Iowa City, Iowa.
NOTES AND COMMENTS

CALIBRATING NEW ZEALAND RADIOCARBON DATES OF MARINE SHELLS

B G MCFADGEN

Conservation Sciences Centre, Dept of Conservation, PO Box 10420, Wellington, New Zealand

and

M R MANNING

Institute of Nuclear Sciences, D S I R, Private Bag, Lower Hutt, New Zealand

ABSTRACT. Radiocarbon activity of 11 modern marine shell samples from the New Zealand region is enhanced compared with the surface layers of the average world ocean. The measured enhancement, ΔR, is equivalent to −31 ± 13 years. On this basis, the Institute of Nuclear Sciences will now use a value of −30 years in reporting calibrated ages for marine shell samples.

INTRODUCTION

Stuiver, Pearson and Braziunas (1986) modeled the history of radiocarbon variations in the surface ocean layers using measured atmospheric changes and knowledge of gas exchange rates between the atmosphere and the oceans. The resulting calibration curve for the average world ocean has a long-term trend which parallels that of the atmosphere, with much smoother short-term variations.

To use the curve for a particular region, we calculate a factor, ΔR, which is a measure of the regional enhancement or depletion of radiocarbon due, for example, to local anomalies such as upwelling of old sea water. ΔR is the difference between the radiocarbon activity of the regional ocean and the surface layers of the average world ocean in AD 1950. Calculation of ΔR is based on the conventional radiocarbon age of samples of known calendar age collected from the area. Stuiver, Pearson and Braziunas (1986) give values for many parts of the world including New Zealand. The value given for New Zealand (−65 ± 25 yr) was calculated from the results of five samples, four of which were unreferenced (Stuiver, Pearson & Braziunas 1986, Table 1). We present here a new estimate of ΔR for the New Zealand region, which is based on 11 marine shell samples dated by the Institute of Nuclear Sciences, for which we are confident of the actual age and provenience.

CALCULATION OF ΔR

Table 1 lists the 11 shell samples. Some of these results include early measurements in which samples were compared to a Pinus radiata standard. These were modified slightly from previously published values following a re-evaluation of this older standard relative to the conventional NBS oxalic acid standard (Melhuish, pers commun, 1989). McFadgen (1978) previously published Samples 1-7. Samples 8-11 were not published; Table 2 lists sample details. We calculated conventional ages with respect to the 0.95 oxalic acid standard and included isotopic fractionation corrections as defined by Stuiver and Polach (1977). We determined model age from Stuiver, Pearson and Braziunas (1986, Fig 10A). The difference between conventional age and model age for each sample is an estimate of ΔR. The estimates range between −100 and +40 years. The range is not significant (T test, Ward & Wilson 1978, Chi-squared = 9.07, df = 10, P = 0.525);
TABLE 1
Calculation of ΔR

<table>
<thead>
<tr>
<th>Sample</th>
<th>Date coll</th>
<th>Date run</th>
<th>NZ no.</th>
<th>R no.</th>
<th>PR no.</th>
<th>δ¹⁴C</th>
<th>Δ¹⁴C</th>
<th>Conv age (P)</th>
<th>Model age (Q)</th>
<th>ΔR (P-Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1955</td>
<td>1956</td>
<td>2439</td>
<td>42/2</td>
<td>A0854</td>
<td>+1.2</td>
<td>-52 ± 5</td>
<td>427 ± 39</td>
<td>490</td>
<td>-63 ± 39</td>
</tr>
<tr>
<td>2</td>
<td>1953</td>
<td>1957</td>
<td>114</td>
<td>15/1</td>
<td>A0886</td>
<td>-1.3</td>
<td>-62 ± 5</td>
<td>506 ± 39</td>
<td>490</td>
<td>+16 ± 39</td>
</tr>
<tr>
<td>3</td>
<td>1957</td>
<td>1958</td>
<td>3203</td>
<td>333/1B</td>
<td>A1193</td>
<td>+0.4</td>
<td>-60 ± 5</td>
<td>489 ± 40</td>
<td>490</td>
<td>-1 ± 40</td>
</tr>
<tr>
<td>4</td>
<td>1954</td>
<td>1972</td>
<td>1481</td>
<td>42/2/1</td>
<td>A6284</td>
<td>+2.7</td>
<td>-62 ± 4</td>
<td>494 ± 35</td>
<td>490</td>
<td>+4 ± 35</td>
</tr>
<tr>
<td>5</td>
<td>1949</td>
<td>1973</td>
<td>1813</td>
<td>43/49</td>
<td>C0221</td>
<td>-0.2</td>
<td>-55 ± 6</td>
<td>432 ± 46</td>
<td>490</td>
<td>-58 ± 46</td>
</tr>
<tr>
<td>6</td>
<td>1925</td>
<td>1973</td>
<td>1814</td>
<td>43/50</td>
<td>C0218</td>
<td>+1.1</td>
<td>-65 ± 7</td>
<td>515 ± 56</td>
<td>475</td>
<td>+40 ± 56</td>
</tr>
<tr>
<td>7</td>
<td>1923</td>
<td>1973</td>
<td>1799</td>
<td>45/191</td>
<td>C0340</td>
<td>+0.2</td>
<td>-52 ± 6</td>
<td>410 ± 46</td>
<td>475</td>
<td>-65 ± 46</td>
</tr>
<tr>
<td>8</td>
<td>1954</td>
<td>1979</td>
<td>4698</td>
<td>58/23</td>
<td>A7733</td>
<td>+0.8</td>
<td>-58 ± 4</td>
<td>451 ± 32</td>
<td>490</td>
<td>-39 ± 32</td>
</tr>
<tr>
<td>9</td>
<td>1954</td>
<td>1955</td>
<td>2421</td>
<td>AB11/27</td>
<td>A0332</td>
<td>-0.6</td>
<td>-52 ± 8</td>
<td>422 ± 62</td>
<td>490</td>
<td>-68 ± 62</td>
</tr>
<tr>
<td>10</td>
<td>1954</td>
<td>1955</td>
<td>2433</td>
<td>AB15/19/1</td>
<td>A0335</td>
<td>+3.2</td>
<td>-57 ± 8</td>
<td>464 ± 62</td>
<td>490</td>
<td>-26 ± 62</td>
</tr>
<tr>
<td>11</td>
<td>1954</td>
<td>1955</td>
<td>2431</td>
<td>AB1402/1A</td>
<td>A0343</td>
<td>-0.9</td>
<td>-48 ± 6</td>
<td>390 ± 44</td>
<td>490</td>
<td>-100 ± 44</td>
</tr>
</tbody>
</table>

Weighted mean of ΔR = -31 ± 13 years
Range of ΔR is not significant
InRange unweighted mean = 41 years
(Chi-squared = 9.07 df = 10, P = 0.525)

we can infer no significant variation in the radiocarbon activity of surface sea water around New Zealand from these data. The weighted mean of ΔR has a value of -31 ± 13 years.

Early measurements of dissolved inorganic carbon in surface sea waters in the New Zealand region give closely comparable δ¹⁴C values to those shown in Table 1. For example, NZ2419, collected December 1954, gave δ¹⁴C = -53 ± 8%o and NZ2751, collected September 1956, gave δ¹⁴C = -58 ± 5%o.

TABLE 2
Details of Samples 8-11 (unpub). All 4 samples are from the west Wellington coast on the southwest corner of the North Island

<table>
<thead>
<tr>
<th>Sample</th>
<th>Shell species</th>
<th>Provenience</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Alcithoe arabica</td>
<td>Pauatahanui Inlet</td>
</tr>
<tr>
<td>9</td>
<td>Halitotis sp</td>
<td>Makara Beach</td>
</tr>
<tr>
<td>10</td>
<td>Cellana sp</td>
<td>Makara Beach</td>
</tr>
<tr>
<td>11</td>
<td>Chione stutchburyi</td>
<td>Makara Beach</td>
</tr>
</tbody>
</table>

CALIBRATION OF NEW ZEALAND MARINE SHELL DATES

New Zealand marine shell dates have usually been reported by the Institute of Nuclear Sciences with respect to a New Zealand Marine Shell Standard. The standard was intended to take into account radiocarbon depletion of the marine environment by making a constant offset to the conventional radiocarbon age.

Rafter et al (1972) estimated the depletion from one shellfish collected live from Pounawaea in 1955, which gave a Δ¹⁴C of -54%o for the marine environment in 1950. In order to compensate for depletion of ¹⁴C in the surface oceans due to burning of fossil fuels, a further correction of +13%o is applied to samples from the pre-industrial marine environment, based on a simple 3-box carbon cycle model developed by O'Brien (Rafter 1968). The net estimated depletion of -41%o gave an offset of 336 years (Jansen 1984).
More recent ocean carbon models (e.g., Maier-Raimer & Hasselmann 1987; Toggweiler, Dixon & Bryan 1989) suggest that the surface of the western Pacific Ocean would have been rather more depleted in 14C in pre-industrial times and, hence, a larger correction should be used. We consider that such models are not yet robust enough to be used to calibrate radiocarbon dates.

A serious defect in using a constant correction for marine shells is that it does not allow for secular variations in atmospheric and oceanic 14C. The effect of secular changes in the world average surface ocean value for 14C over the last 2000 years has been at least as large as the industrial effect, and in the opposite direction (Stuiver, Pearson & Brazunas 1986, Fig 3). Stuiver, Pearson and Brazunas' calibration procedure, which we prefer, allows for simultaneous consideration of both secular and regional variation of 14C in the marine environment.

Until such time as a better calibration procedure is determined, the Institute will report calibrated ages for marine shells from the New Zealand region using the marine calibration curve of Stuiver, Pearson and Brazunas (1986), and $\Delta R = -30$ years. Note that we implicitly assume that ΔR itself has not changed with time (e.g., that there has been no change in ocean circulation patterns affecting the New Zealand region) because we have no historical marine samples of known age with which to determine such a change.

Previously reported shell dates may be converted to calibrated dates under the new procedure using Stuiver, Pearson and Brazunas' (1986) calibration curve, either in graphic form or in the computer program (Stuiver and Reimer 1986). The old marine shell dates are first converted to conventional dates by adding 336 years to the dates reported in terms of the 5568-yr half-life. If dates are to be converted graphically, then Stuiver, Pearson and Brazunas' curve (1986, Figs 11A-S) should be used with $\Delta R = -30$ years. If the computer program is used, then ΔR (-30 years), and the standard error of ΔR (± 13 years), should be entered at the appropriate prompts.

If the above procedure is used to correct previously reported dates to calibrated dates using Method A of Stuiver and Reimer (1986), the magnitude of the correction can be summarized as follows in Table 3:

<table>
<thead>
<tr>
<th>Previously reported age (yr BP)</th>
<th>Approximate change in years (new calibrated age - previously reported age)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 - 500</td>
<td>between $+20$ and -30, variable</td>
</tr>
<tr>
<td>500 - 750</td>
<td>between -10 and -90, decreasing with age</td>
</tr>
<tr>
<td>750 - 1650</td>
<td>between -70 and -120, variable</td>
</tr>
<tr>
<td>1650 - 2100</td>
<td>between -100 and 0, increasing with age</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENT

Shell Sample 8 was kindly provided by the National Museum of New Zealand.
REFERENCES

Jansen, HS 1984 Radiocarbon dating for contributors. *Institute of Nuclear Sciences Internal rept R-328*.

APPLICABILITY OF 'NEW TECHNOLOGY' SCINTILLATION COUNTERS
(PACKARD 2000 CA/LL AND 2260 XL) FOR 14C DATING

G T COOK, A G HOLD, PHILIP NAYSMITH and ROBERT ANDERSON

Glasgow University Radiocarbon Dating Laboratory
Scottish Universities Research and Reactor Centre, East Kilbride G75 0QU, Scotland

ABSTRACT. The results of this study indicate that scintillation counters employing burst-counting circuitry are capable of producing accurate age measurements. Replicate analyses confirm the validity of the minimum error of 50-60 years quoted on routine age measurements carried out at this laboratory.

INTRODUCTION

We have conducted in this laboratory during the past two years a great deal of research into the use of the Packard range of counters employing burst-counting circuitry, with particular emphasis on their applicability to 14C dating (Cook, Harkness & Anderson 1989; Cook et al 1989, 1990). The results of these studies have demonstrated how it is possible to maximize efficiency and stability of counting conditions by careful optimization of the scintillation cocktail. Nevertheless, the ultimate criterion for assessing the counters’ applicability for 14C dating must be the production of accurate and precise age measurements. To formally assess this, we undertook a number of replicate analyses on a large sample of oak known to have an age in excess of 5000 BP. This allowed us to assess the precision on replicate analyses and relate this to the quoted minimum error on routine measurements. We synthesized sufficient benzene to measure 4.5g in an ‘old technology’ counter (Packard 4530) and 2g in the Packard 2000 CA/LL and 2260 XL (new technology). Results of the recently completed International Collaborative Study (Scott et al 1990) demonstrated no systematic laboratory bias from measurements made on the Packard 4530. Thus, we could compare with a system of proven accuracy.

EXPERIMENTAL

A large section of oak constituting ca 100 years’ growth was finely chopped and subjected to alternate acid and alkali extractions followed by bleaching with hypochlorite solution to produce cellulose. The cellulose was then further ground, thoroughly mixed and split into several sub-samples of sufficient size to synthesize ca 7g of benzene. We vialled 4.5g of the benzene into 20ml glass-sealable low-potassium borosilicate ampules, using butyl-PBD bis-MSB in toluene as the scintillation cocktail (Stenhouse & Baxter 1983). This technique is not used in either the 2000 CA/LL or 2260 XL. Instead, a cocktail consisting of butyl-PBD/bis-MSB dissolved in benzene is weighed into standard 7ml low-potassium screw-cap vials. The benzene is then removed by freeze drying. Sufficient cocktail is added to make the ultimate ratio of fluors/sample benzene 2.8mg butyl-PBD and 3.0mg bis-MSB/g of benzene. We made this modification to eliminate possible variations in dissolved oxygen in the samples from the sealing process on 7ml ampules, which could influence the pulse-shape analysis and lead to variations in counting efficiency (Cook et al 1989).

We synthesized seven replicate samples of the cellulose to benzene. We then counted the 4.5g samples solely in the Packard 4530 (2400 min) while the 2g samples were counted first in the Packard 2260 XL (2500 min) and then in the Packard 2000 CA/LL (2500 min).
The results in Table 1 indicate no significant differences between the weighted means of the seven age measurements ± 1 standard deviation (σ). Indeed, those of the Packard 2000CA/LL and 2260 XL are identical (5519 ± 23 BP) whereas that of the Packard 4530 is highly comparable (5507 ± 20 BP). Similarly, when one estimates a simple mean on the 7 measurements for each counter, only 6 years separate the 3 counters under study. Further, the standard deviations are quite consistent with the error on an individual measurement. For the Packard 4530, the standard deviation is slightly higher (56 years, cf ca 46); for the 2000 CA/LL, it is somewhat lower (37 cf ca 60) and for the 2260 XL, they are virtually identical (57 cf ca 60).

Table 1

<table>
<thead>
<tr>
<th>Replicate no.</th>
<th>Packard 4530</th>
<th>Conventional ages BP</th>
<th>Packard 2000 CA/LL</th>
<th>Packard 2260 XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5489 ± 48</td>
<td>5469 ± 67</td>
<td>5469 ± 67</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5500 ± 49</td>
<td>5525 ± 62</td>
<td>5581 ± 59</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5630 ± 52</td>
<td>5562 ± 58</td>
<td>5495 ± 59</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5486 ± 47</td>
<td>5531 ± 52</td>
<td>5521 ± 61</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5477 ± 46</td>
<td>5463 ± 60</td>
<td>5586 ± 62</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5468 ± 39</td>
<td>5525 ± 60</td>
<td>5430 ± 60</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5536 ± 43</td>
<td>5543 ± 64</td>
<td>5541 ± 55</td>
<td></td>
</tr>
<tr>
<td>Mean ± 1σ</td>
<td>5512 ± 56</td>
<td>5517 ± 37</td>
<td>5518 ± 57</td>
<td></td>
</tr>
<tr>
<td>Weighted mean</td>
<td>5507 ± 20</td>
<td>5519 ± 23</td>
<td>5519 ± 23</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

We conclude from the results presented here that the new Packard scintillation counters employing burst-counting circuitry are capable of producing accurate age measurements. The results were entirely consistent with those from a Packard 4530, which was successfully used in the recent International Collaborative Study (Scott et al 1990). Further, the results are consistent with a minimum error of 50-60 years generally quoted on routine age measurements.

We stress, however, that the performance of this type of new technology scintillation counter can vary according to the scintillation cocktail employed. The one used in this study was selected only after exhaustive research.

References

RADIOCARBON UPDATES

The editors are instituting this new section to report news and events that we think will be of interest to our readers. Please let us know if you have newsworthy items to include here by contacting Renee Kra, Managing Editor.

New Organization

The Association of Carbon-14 Laboratories (ACL) has been established. WG Mook of the Isotope Physics Laboratory, Groningen, is Coordinator. RADIOCARBON is the communication medium among laboratories. Address news items to Austin Long, Editor. All other correspondence should be sent to Prof Mook. One of the functions of ACL is to provide assistance to radiocarbon laboratories in countries that do not have access to hard currency. To date, RADIOCARBON has sent current subscriptions to five laboratories at a reduced rate paid for by ACL. Annual membership fees will be set at the price of dating one sample. Please wait for a forthcoming letter from WG Mook with more details.

Publications

The editors of RADIOCARBON regret to announce that the publication of the Proceedings of the 13th International Radiocarbon Conference, Dubrovnik, Yugoslavia - Volume 31, No. 3, 1989 - has been delayed. We are making every effort to speed up the printing process, and hopefully, the Proceedings will appear this summer. In the meantime, our regular publication schedule continues.

The Proceedings of the International Workshop on Intercomparison of Radiocarbon Laboratories, Glasgow, September 12-15 1989 will appear in our next issue, Volume 32, No. 3, 1990. Subscribers will automatically receive this issue, which also may be purchased separately for $40.00.

"Radiocarbon After Four Decades" will be a co-publication between RADIOCARBON and the University of Arizona Press. This will be the symposium volume for the commemorative meeting in Lake Arrowhead, California, June 4-8, 1990. The publication will be a hardcover volume, edited by RE Taylor, Austin Long and Renee Kra. It will be offered at a discount to subscribers; it will not be part of the regular RADIOCARBON series.

Moves

Prof WG Mook is the new director of The Netherlands Institute for Sea Research (NIOZ) in Texel. He will still keep 20% of his position at the Isotope Physics Laboratory in Groningen. At present, Dr Hans van der Plicht is acting director of the lab.

Archie Kaufman of the Weizmann Institute has left the field of radiocarbon dating for his first love, the U series. He is presently on sabbatical at the University of Quebec.

Stephen W Robinson has left the USGS, Menlo Park. The last we heard, he was meeting-hopping in Europe.
Charles S Tucek of Radiocarbon Ltd of Lampasas, Texas, has driven his equipment-laden vehicle to Tucson, where he has joined the staff of the Environmental Radioisotope Center at The University of Arizona.

Bob Otlet and Jill Walker have left the Isotope Measurements Laboratory to set up a new, private carbon-14 measurement laboratory, called, at present, Radiocarbon Dating. They can be contacted at Downs Croft, The Holloway, Harwell, Oxon (Tel 235 835386) and would welcome calls from old friends and colleagues.

The Harwell Isotope Measurements Laboratory has been amalgamated with the Uranium Series Disequilibrium section at Harwell under Dr Miro Ivanovich and will continue to function with Dr Jeremy Dearlove as the Laboratory Manager, no longer carrying out archaeological dating but concentrating on industrial applications. Any correspondence pertaining to radiocarbon measurements should be directed to Dr Dearlove.

Retirements

Gordon Pearson of the Queen’s University of Belfast has retired. Gerry McCormac is his successor.

Prof Dr HW Scharpenseel of the University of Hamburg has retired.

Raymond L Steventon of the University of Wisconsin-Madison has retired. Dr Christine Prior is the new director of this lab.

Honors

We extend congratulations to friends and associates who were recently elected to the National Academy of Sciences:

C Vance Haynes, Jr - The University of Arizona
Patrick V Kirch - University of California, Berkeley
Hans Oeschger - Physics Institute, University of Bern, Switzerland
LABORATORIES1,2

A
ARIZONA
Dr Austin Long
Laboratory of Isotope Geochemistry
Geosciences Department
University of Arizona
Tucson, Arizona 85721
Tel: 602-621-8888; Fax: 602-621-2672
E-mail: ALONG@ARIZRVAX; Tlx: 650-3839821

AC
INGERIS
Dr Enrique Linares
Pabellón INGEIS, Ciudad Universitaria
1428 Buenos Aires, Argentina

ALG
ALGIERS
Omar Rahmouni
Bd Frantz Fanon
BP 1147
Algiers, Algeria

ANL
ARGONNE NATIONAL LABORATORY
Walter Kutschera
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
Tel: 312-972-4026; Fax: 312-972-3903
E-mail: KUTSCHERA@ANLPHY

ANTW
ANTWERP UNIVERSITY
Prof R Vanhoorne
Dept of General Botany
State University Centre Antwerp
Groenenborgerlaan 171
B-2020 Antwerp, Belgium

ANU
AUSTRALIAN NATIONAL UNIVERSITY
Henry A Polach
Radiocarbon Dating Research
Australian National University
PO Box 4, Canberra 2600, Australia
Fax: 61-62-571893; Tlx: 62693
E-mail: munnaril@csc1.anu.oz!hap409@uunet.uu.net

B
BERN
Prof H Oeschger
Physikalisches Institut
Universität Bern
Südferrstrasse 5
CH-3012 Bern, Switzerland
Tel: 41-31-6544661
E-mail: U227@CBEBDA3T

Ba
BRATISLAVA
Prof Dr P Povinec, Dr Sc
Department of Nuclear Physics
Comenius University
Mlynská dolina F1
842 15 Bratislava, Czechoslovakia
Tel: 42-7-323 446; Tlx: UVT UK 935 02
Fax: 42-7-281 361

Beta
BETA ANALYTIC
Dr J J Stipp and Dr M A Tamers
Beta Analytic, Inc
4985 SW 74th Court
Miami, Florida 33155
Tel: 305-667-5167
E-mail: XNRBET22@SERVAX

1Please notify the Managing Editor of staff or address changes, telephone, telex or fax numbers and E-mail addresses.
2Country and city telephone codes are included wherever known. The country code for the United States is 1.
Birm BIRMINGHAM
 R E G Williams
 Department of Geological Sciences
 PO Box 363
 University of Birmingham
 Birmingham B15 2TT, England

Bin BERLIN
 Dr Günther Kohl
 Akademie der Wissenschaften der DDR
 Zentralinstitut für Alte Geschichte und Archäologie
 1086 Berlin, Liepzer Str 3/4
 German Democratic Republic

BM BRITISH MUSEUM
 Sheridan Bowman
 Research Laboratory
 The British Museum
 London WC1B 3DG, England
 Tel: 44-1-636 1555 ext; Tlx: 94013362 BMUS G

BS BIRBAL SAHNI INSTITUTE
 Dr G Rajagopalan
 Radiocarbon Laboratory
 Birbal Sahni Institute Paleobotany
 Post Box 106
 Lucknow-226 007, India
 Tel: 91-74291

BSG BROCK UNIVERSITY
 Howard Melville
 Department of Geological Sciences
 Brock University
 St Cathertines, Ontario L2S3A1, Canada
 Tel: 416-688-5550 ext 3522; Fax: 416-688-2789

CAR CARDIFF
 Quentin Dresser
 Department of Geology
 University of Wales
 PO Box 914
 Cardiff CF1 3YE, Wales

CENA CENTRO DE ENERGIA NUCLEAR NA AGRICULTURA
 Dr Luiz Carlos Ruiz Pessenda
 Seção de Radiomulcéides Naturais
 Centro de Energia Nuclear na Agricultura
 Universidade de Sao Paulo
 Caixa Postal 96
 13-400 Piracicaba, Sao Paulo, Brazil
 Tel: 55-0194-33-5122; Fax: 55-0194-22-8339
 Tlx: 019-1097

CG INSTITUTE OF GEOLOGY, SSB
 Dr Yijian Chen and Dr G Peng
 Radiocarbon Laboratory
 Institute of Geology
 State Seismological Bureau
 PO Box 634
 Beijing 100029, China
 Tlx: 6347

CRCA CAIRO
 Dr Shawki M Nakhla
 Cairo Carbon-14 Dating Laboratory
 Center of Research and Conservation of Antiquities
 Organization of Egyptian Antiquities
 Midan El Tahrir
 Cairo, Egypt

CSM COSMOCHEMISTRY LABORATORY
 Dr V A Alexeev
 VI Vernadski Institute of
 Geochemistry and Analytical Chemistry
 USSR Academy of Sciences
 Moscow, USSR
CU CHARLES UNIVERSITY
Jan Šílar
Department of Hydrogeology and Engineering Geology
Charles University
Albertov 6
CS-128 43 Praha 2, Czechoslovakia
Tel: 42-29 75 41-5

DE UNITED STATES GEOLOGICAL SURVEY
Dr I C Yang
U S Geological Survey, WRD
Box 25046, Mail Stop 421
Denver Federal Center
Denver, Colorado 80225
Tel: 303-236-5178; Fax: 303-236-5047

Deb DEBRECEN
Dr Ede Hertelendi
Institute of Nuclear Research
Hungarian Academy of Sciences (ATOMKI)
Bem tér 18/c, Pf 51
H-4001 Debrecen, Hungary
Tel: 36 52-17266; Tlx: 77210 ATOM H
Fax: 36 52-16181; E-mail: H499 SZE@ELLA.UUCP

DEM DEMOKRITOS
Dr Yannis Maniatis
Archaeometry Laboratory
National Research Centre for Physical Sciences "Demokritos"
Athens, Greece
Tel: 301-65 13 111; Fax: 301-65 19 430

DIC DICARB RADIOISOTOPE COMPANY
Irene C Stehli
DICARB Radioisotope Company
7711 SW 103 Avenue
Gainesville, Florida 32608-6214

F FLORENCE
Dr C M Azzi, L Bigioccia and F Gulisano
Radiocarbon Dating Laboratory
Istituto di Antropologia
Università di Firenze
Via del Proconsolo 13
50122 Florence, Italy

Fr FREIBERG
Prof Dr Klaus Fröhlich and Dr Detlef Hebert
Fachbereich Physik
Bergakademie Freiberg
9200 Freiberg, GDR

Fra FRANKFURT
Prof Dr Reiner Protsch
Radiocarbon Laboratory
J W Goethe-Universität
Siesmayerstrasse 70
6000 Frankfurt am Main, West Germany

FZ FORTALEZA
Prof M F Santiago
Departamento de Fisica
UFCE, Cx Postal 12 62
60,000 Fortaleza/CE, Brazil
Tel: 55-85-223-3174

GaK GAKUSHUIN UNIVERSITY
Dr Kunihiko Kigoshi
Gakushuin University
Mejiro, Toshima-ku
Tokyo, Japan
Tel: 81-3-986-0221 ext 482; Fax: 81-3-5992-1005
Laboratories

Gd
GLIWICE
Mieczyslaw F Pazdur and Andrzej Zastawny
Radiocarbon Laboratory
Silesian Technical University
Institute of Physics, C-14 Laboratory
ul Boleslawa Krzywoustego 2
Pl-44-100 Gliwice, Poland

Gif
GIF-SUR-YVETTE
Dr J Labeyrie or Mme G Delibrias
Centre des Faibles Radioactivités
Laboratoire mixte CNRS-CEA
91190 Gif-sur-Yvette, France
Tel: 33-1-69 82 35 53; Tlx: 69088546 CNRS Gif

GIN
GEOLOGICAL INSTITUTE
Dr L D Sulerzhitsky
Geological Institute
USSR Academy of Sciences
Pezhovsky Str 7
Moscow 117 337, USSR
Tel: 7-995-230-8136

GrN
GRONINGEN
Prof W G Mook
Isotopes Physics Laboratory
University of Groningen
Westeringsel 34
9718 CM Groningen, The Netherlands
Tel: 31-50-634759; Tlx: 77391 puiso nl
Fax: 31-50-633471; E-mail: MOOK@HGRRUG5

GSC
OTTAWA
Dr Roger N McNeely
Radiocarbon Dating Laboratory
Geological Survey of Canada
601 Booth Street
Ottawa, Ontario K1A 0E8, Canada
Tel: 613-995-4251; Fax: 613-996-9990
E-mail: MCNEELY@EMRCAN

GU
SCOTTISH UNIVERSITIES RESEARCH & REACTOR CENTRE
Prof M S Baxter and Dr G T Cook
GU Radiocarbon Dating Laboratory
Scottish Universities Research & Reactor Centre
East Kilbride
Glasgow G75 OQU, Scotland
Tel: 44-3552-20222; Tlx: 777888
Fax: 44-369 30

GX
GEOCHRON LABORATORIES
Harold W Krueger
Division Krueger Enterprises, Inc
24 Blackstone Street
Cambridge, Massachusetts 02139
Tel: 617-876-3691; Fax: 617-661-0148

HAM
UNIVERSITY OF HAMBURG
P Becker-Heidmann
Ordinariat für Bodenkunde
Universität Hamburg
Allende-Platz 2
D-2000 Hamburg 13, West Germany
Tel: 49-40-41 23-2003; Tlx: 2 14 732 unihhd
Fax: 49-40-41 23-2449

HAR
HARWELL
Dr J Dearlove
Isotope Measurements Laboratory
Nuclear Applications Centre
Bldg 10.46 AERE, Harwell
Oxfordshire, OX11 ORA, England
Tel: 44-235-432903 Tlx: 83135 ATOMHA G

3See RCD for RL Otlet and AJ Walker.
Laboratories

Hd HEIDELBERG
Prof K O Männich, D Berdau and Marianne Männich
Institut für Umweltphysik
Universität Heidelberg
Im Neuenheimer Feld 366
D-69 Heidelberg, West Germany
Tel: 49-6221-33 30; Tlx: 461-745 uni kl
E-mail: B01@DHDURZI

Hel HELSINKI
Högne Jungner
Radiocarbon Dating Laboratory
University of Helsinki
Snellmanninkatu 5
SF-00170 Helsinki 17, Finland
Tel: 358-0-1913436; Fax: 358-0-656591
E-mail: HJUNGNER@FINUH

HIG HAWAII INSTITUTE OF GEOPHYSICS
Robert W Buddemeier
Hawaiian Institute of Geophysics
University of Hawaii
2525 Correa Road
Honolulu, Hawaii 96822

Hv HANNOVER
Dr M A Geyh
Niedersächsisches Landesamt
für Bodenforschung
Postf 510153
D-3000 Hannover-Buchholz, West Germany
Tel: 49-511-643-2537; Tlx: 923 730 (bgr) ha d
Fax: 49-511-643-2304

I TELEDYNE ISOTOPES
James Buckley
Teledyne Isotopes
50 Van Buren Avenue
Westwood, New Jersey 07675
Tel: 201-664-7070; Tlx: 134474
Fax: 201-664-5586

IRPA INSTITUT ROYAL DU PATRIMOINE ARTISTIQUE
M Dauchot-Dehon, J Heylen and M Van Strydonck
Institut Royal du Patrimoine Artistique
1 Parc du Cinquantenaire
Brussels 4, Belgium
Tel: 32-2-735 41 60 TOT69; Tlx: BELGIARTES
Fax: 32-2-739 68 68

ISGS ILLINOIS STATE GEOLOGICAL SURVEY
Chao-li Liu and Dennis D Coleman
Geochemistry Section
Isotope Geochemistry Laboratory
Illinois State Geological Survey
615 E Peabody Drive
Urbana, Illinois 61820
Tel: 217-333-9083; Fax: 217-244-7004

IVAN INSTITUTE OF VOLCANOLOGY
Dr O A Braitseva
Institute of Volcanology
Bul Piipa 9
Petropavlovsk-Kamchatsky
683066 USSR

JGS GEOLOGICAL SURVEY OF JAPAN
Dr Hajime Kayanne
Marine Geology Department
Geological Survey of Japan
1-1-3, Higashi, Tsukuba
Ibaraki 305, Japan
Tel: 81-0298-54-3766; Tlx: 3652511 GSJ J
Fax: 81-0298-54-3533
LAMONT Guy G Mathieu Lamont-Doherty Geological Observatory of Columbia University Palisades, New York 10964 Tel: 914-359-2900

LIEGE STATE UNIVERSITY Prof Dr Jean Govaerts Lab d’application des radioéléments Chimie B6, Sart Tilman Liège, Belgium

LENIINGRAD Dr G Zaytseva and Dr Vu Svezhentsev Institute of Archaeology (Leningrad Section) USSR Academy of Sciences Dvortsovaya Nab 18 Leningrad 192 041, USSR Tel: 7-812-311-8156

Lodz Andrzej Kanwiszer and Pawel Trzeciak Radiochemical Laboratory Archaeological and Ethnographical Museum in Łódz pl Wolności 14 91-415 Łódz, Poland
Laboratories

LP
LA PLATA
Prof Anibal Juan Figini
Laboratorio de Tritio y Radiocarbono
Facultad de Ciencias Naturales y Museo
Paseo del Bosque
1900 La Plata, Argentina
Tel: 54-21 3-9125 int 03

Lu
LUND
Göran Skog
Radiocarbon Dating Laboratory
University of Lund
Tunavägen 29
S-223 63 Lund, Sweden
Tel: 46-46-107885; Fax: 46-46-104830

Lv
LOUVAIN-LA-NEUVE
Mr Etienne Gilot
Université Catholique de Louvain
Laboratoire de Carbon 14
Chemin du Cyclotron 2
1348 Louvain-la-Neuve, Belgium
Tel: 32-10-473126; Tlx: 59065 IPL B
Fax: 32-10-452183; E-mail: NUCL14@BUCLLN11

Ly
UNIVERSITY OF LYON
Mr Jacques Evin
Laboratoire de Radiocarbone
Centre de datations et d'Analyses Isotopiques
Université Claude Bernard-Lyon I
43, Boulevard du 11 Novembre 1918
69622 Villeurbanne-Lyon, France
Tel: 33-72-44-82-57; Tlx: 36-56

METU
MIDDLE EAST TECHNICAL UNIVERSITY
Dr Mustafa Ozbakan
Radiocarbon Dating Laboratory
METU Physics Department
06531 Ankara, Turkey
Tel: 90-4-223 71 00/5252-3253; Fax: 90-4-223 69 45
Tlx: 42761 otk tr.

MGU
MOSCOW
Prof P Kaplin, Dr O Parunin and Dr A Schulkov
Laboratory of Modern Deposits
Moscow State University
Leninske Gory
Moscow 117 234, USSR

ML
MIAMI
Dr H G Ostlund
Rosenstiel School of Marine and Atmospheric Science
University of Miami
Miami, Florida 33149
Tel: 305-361-4100

Mo
VERNADSKI INSTITUTE OF GEOCHEMISTRY
Dr A L Devirits
Vernadski Institute of Geochemistry and Analytical Chemistry
Academy of Sciences of the USSR
Kossygin Str 19
Moscow 117 337, USSR

N
NISHINA MEMORIAL (TOKYO)
Dr Fumio Yamashita
The Japan Radioisotope Association
2-28-45 Honkomagome, Bunkyo-ku
Tokyo, Japan 113

NTU
NATIONAL TAIWAN UNIVERSITY
Dr Tsung-Kwei Liu
Department of Geology
National Taiwan University
245 Choushan Rd
Taipei, Taiwan, China
Tel: 886-2-3635924; Fax: 886-2-3636095
Laboratories

Ny NANCY
Prof René Coppens and Dr Pierre Richard
Laboratoire de Radiogéologie
ENS de Géologie Appliquée et de Prospection Minière
Institut National Polytechnique de Lorraine
BP 452
54001 Nancy Cedex, France

NZ NEW ZEALAND
Dr Martin R Manning
Institute of Nuclear Sciences
DSIR, Private Bag
Lower Hutt, New Zealand
Tel: 64-4-690-448; Fax: 64-4-690-657
E-mail: MMANNING/KOSMOS
Internet: SRGIMRM@GRV.DSIR.GOV.NZ

Pi PISA
Laboratorio di Geologia Nucleare dell’Università
Dipartimento di Scienze della Terra
Via S Maria, 22
Pisa, Italy

PIT UNIVERSITY OF PITTSBURGH
Robert Stuckenrath
Carbon-14 Lab, U-PARC
365 William Pitt Way
Pittsburgh, Pennsylvania 15238
Tel: 412-826-5420

PRL PHYSICAL RESEARCH LABORATORY
Dr D P Agrawal and Dr Sheela Kusumgar
Radiocarbon Laboratory
Physical Research Laboratory
Navrangpura
Ahmedabad 380 009, India
Tel: 91-652129; Fax: 91-272-4425292; Tlx: 0121-6397
E-mail: Internet-root@prlplasma@shakti.uu.net; UUCP-uunet!shakti!plasma!prl!root

Pta PRETORIA
Dr J C Vogel
Natural Isotopes Division
National Physical Research Laboratory
CSIR
PO Box 395
Pretoria, South Africa
Tel: 27-12-841-3380s; Tlx: 321312 CSIR SA
Fax: 27 12-804 1354

Q CAMBRIDGE
Dr V R Switsur
University of Cambridge
Godwin Laboratory
Free School Lane
Cambridge CB2 3RS, England
Tel: 44-223-334875
E-mail: VRS1@PHOENIX.CAMBRIDGE.AC.UK

QL QUATERNARY ISOTOPE LABORATORY
Prof Minze Stuiver
Quaternary Isotope Laboratory AJ-20
Department of Geological Sciences
University of Washington
Seattle, Washington 98195
Tel: 206-545-1735; Fax: 206-543-3836
E-mail: MINZE@UWACDC

R ROME
Dr Francesco Bella, Istituto di Fisica
and
Dr Cesarina Cortesi, Istituto di Geochimica
Radiocarbon Dating Laboratory
University of Rome
Città Universitaria
00100-Rome, Italy
RCD Laboratories

RADIOCARBON DATING
Dr R L Otlet
Radiocarbon Dating
Downscroft
The Holloway
Harwell
Oxfordshire OX11 0LS, UK

Riga INSTITUTE OF SCIENCE - APPLICATION RESEARCH
Dr V S Veksler and Dr A A Kristin
Institute of Science - Application Research
Riga 50 Merkelya 11
Riga 226 050, Latvia
Tel: 7-0132-212-501; 213-636

RT REHOVOT GEOISOTOPE LABORATORY
Mr Israel Carmi
Geoisotope Laboratory
Department of Isotope Research
Weizmann Institute of Science
Rehovot, Israel
E-mail: CICARMI@WEIZMANN

RU RICE UNIVERSITY
J A S Adams
Department of Geology
Rice University
Houston, Texas 77001

S SASKATCHEWAN
Dr Gene Smithson
Saskatchewan Research Council
15 Innovation Boulevard
Saskatoon, Saskatchewan S7N 2X8, Canada
Tel: 306-933-5439; Fax: 306-933-7922

SFU SIMON FRASER UNIVERSITY
Mr Gary Nower
Archaeology Department
Simon Fraser University
Burnaby, British Columbia V5A 1S6, Canada

SMU SOUTHERN METHODIST UNIVERSITY
Dr Herbert Haas
Institute for the Study of Earth and Man
Southern Methodist University
Dallas, Texas 75275
Tel: 214-692-2763; Fax: 214-692-4289
E-mail: H1NR1001@SMUVM1

SOAN INSTITUTE OF GEOLOGY AND GEOPHYSICS
Dr L Orlova
Institute of Geology and Geophysics
Akademgorodok
Novosibirsk 630090, USSR
Tel: 7-35-26-54; 35-13-63; Tlx: 133123 KORA SU

SRR SCOTTISH UNIVERSITIES RESEARCH AND REACTOR CENTRE
Dr D D Harkness
NERC Radiocarbon Laboratory
Scottish Universities Research and Reactor Centre
East Kilbride
Glasgow G75 0QJ, Scotland
Tel: 44 3552 20222; Tlx: 777888 NELEK G

St STOCKHOLM
Prof Stefan Claesson
Laboratory for Isotope Geology
Swedish Museum of Natural History
Box 50007
S-104 05 Stockholm, Sweden
Tel: 46-8-666 40 00; Fax: 46-8-666 40 85

Su FINLAND
Tuovi Kankainen
Geological Survey of Finland
SF-02150 Espoo 15, Finland
Tel: 358-0-46931; Fax: 358-0-462205
SUA SYDNEY UNIVERSITY, AUSTRALIA
Dr Mike Barbetti
Macintosh Centre
Madsen Building F09
University of Sydney
Sydney, NSW 2006, Australia

T TRONDHEIM
Dr Reidar Nydal, Steinar Gulliksen and Knut Lövseth
Radiological Dating Laboratory
The Norwegian Institute of Technology
7034 Trondheim, Norway
Tel: 47-7-59 33 10; Fax: 47-7-592886

TA TARTU
Dr Evald Ilves and Dr A Liiva
Radiocarbon Laboratory
Institute of Zoology and Botany
Academy of Sciences of the Estonian Republic
Vanemuise St 21
Tartu 202 400, Estonian Republic
Tlx: 31466

TAM TEXAS A & M UNIVERSITY
Dr David Schink
Dept of Oceanography
Texas A & M University
College Station, Texas 77843
Tel: 409-845-3651

TB TBILISI
Dr A A Burchuladze
Radiocarbon Laboratory
Tbilisi University
Chavchavadze 3
Tbilisi 380 008, USSR
Tel: 7-8832-222105

TK UNIVERSITY OF TOKYO
Dr Naotune Watanabe
C-14 Dating Laboratory
University Museum (Shiryokan)
University of Tokyo
3-1 Hongo 7-chome
Bunkyo-ku, Tokyo 113, Japan

TKU TURKU
K Haihu and Prof K Pihlaja
Radiocarbon Dating Laboratory
University of Turku
SF-20500 Turku, Finland
Tel: 358-21-6338 506

Tin TALLINN
Dr Raivo Rajamäe
Isotope Geology Laboratory
Institute of Geology
Estonian Academy of Sciences
Estonia puiestee 7
Tallinn 200101, Estonian Republic
Tlx: 173160 POLIS SU; Fax: 7-0142-523624

TUNC TEHRAN UNIVERSITY NUCLEAR CENTRE
Dr A Mahdavi
Tehran University Nuclear Centre
PO Box 2989
Tehran, Iran

Tx TEXAS
Mr S Valastro, Jr or Dr E Mott Davis
Radiocarbon Laboratory
University of Texas at Austin
Balcones Research Centre
10,100 Burnet Road
Austin, Texas 78758
Tel: 512-885-3010
Labs

U

UPPSALA
Dr Ingrid U Olsson
Institute of Physics
University of Uppsala
Box 530
S-751 21 Uppsala, Sweden
Tel: 46-18-18 35 70; Tlx: 762 63 UPFY-S
Fax: 46-18-18 35 24; E-mail: FYSIO@SEMAX51

UB

BELFAST
Gerry McCormac
Palaeoecology Laboratory
The Queen's University
Belfast BT7 1NN, Northern Ireland
Tel: 44-232-245133 ext 3489; Tlx: 74487

UBAR

UNIVERSITY OF BARCELONA
Prof Gemma Rauret
Radiocarbon Laboratory
Dept Quimica Analitica
Universitat de Barcelona
c/Diagonal 647
08028 Barcelona, Spain
Tel: 34-3-3307311 ext 1180; Fax: 34-3-4111492
E-mail: D3QARTFO@EBOUBO11

UCLA

UNIVERSITY OF CALIFORNIA, LOS ANGELES
Prof Rainer Berger
Institute of Geophysics
University of California
Los Angeles, California 90024
Tel: 213-825-1469; Fax: 213-206-3051

UCR

UNIVERSITY OF CALIFORNIA, RIVERSIDE
Dr R E Taylor
Department of Anthropology
Institute of Geophysics and Planetary Physics
University of California
Riverside, California 92512
Tel: 714-787-5521; Fax: 714-787-5409
E-mail: RETAYLOR@UCRVMS

UD

UDINE
Dr Valerio Barbina, Prof Franco Calligaris, Dr Adriano Del Fabbro
and Dr Alessandro Turello
Centro di Ricerca Applicata e Documentazione
Via Pradamano, 2a
33100 Udine, Italy
Tel: 39-432-520543; Fax: 39-432-522722

UGa

THE UNIVERSITY OF GEORGIA
John E Noakes and Stan De Filippis
Center for Applied Isotope Studies
The University of Georgia
110 Riverbend Road
Athens, Georgia 30602
Tel: 404-542-1395

UGRA

UNIVERSITY OF GRANADA
Dr Cecilio González-Gómez
Laboratorio de Datación por Carbono-14
Universidad de Granada
Facultad de Ciencias
E-18071 Granada, Spain
Tel: 34-58-243361; Fax: 34-58-274258

UM

UNIVERSITY OF MIAMI
Dr J J Stipp and J M Bartel
Department of Geological Sciences
University of Miami
Coral Gables, Florida 33124
Tel: 305-667-5167
E-mail: XNRBET22@SERVAX

UQ

UNIVERSITY OF QUEBEC AT MONTREAL
Serge Occhietti and Pierre Pichet
Radiocarbon Laboratory
GEOTOP
University of Quebec at Montreal
PO Box 8888
Montreal, Quebec H3C 3P8, Canada
USGS US GEOLOGICAL SURVEY, MENLO PARK, CALIFORNIA
Deborah A Trimble
US Geological Survey
345 Middlefield Road
Menlo Park, California 94025
Tel: 415-329-4685 or 4684

VRI VIENNA RADIUM INSTITUTE
Dr Edwin Pak
Institut für Radiumforschung und Kernphysik
Universität Wien
Boltzmanngasse 3
A-1090 Vienna, Austria

W US GEOLOGICAL SURVEY
Dr Meyer Rubin
US Geological Survey
National Center, 971
Reston, Virginia 22092
Tel: 703-648-5350

WAT UNIVERSITY OF WATERLOO
Dr Peter Fritz
Department of Earth Sciences
Isotopes Laboratory
University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
Tel: 519-885-1211; Tlx: 069-55259
E-mail: FRITZ@DMOGSF11; Fax: 519-746-2543

WHOI WOODS HOLE OCEANOGRAPHIC INSTITUTION
Dr Ellen R M Druffel
Radiocarbon Laboratory
Department of Chemistry
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543
Tel: 508-548-1400 ext 2884
E-mail: "[E.DRUFFEL@OMNET]MAIL/USA%TELEMAIL"@AMES.ARPA

WIS WISCONSIN
Dr Christine A Prior
Center for Climatic Research
University of Wisconsin-Madison
1225 W Dayton Street
Madison, Wisconsin 53706
Tel: 608-262-7328; Fax: 608-262-5964
E-mail: Internet-CPRIOR@vms.macc.wisc.edu; Bitnet-CPRIOR@WISCMACC

Wk UNIVERSITY OF WAIKATO
Dr A G Hogg and Dr C H Hendy
Radiocarbon Laboratory
University of Waikato
Private Bag
Hamilton, New Zealand
Tel: 64-71-562889; Fax: 64-71-560115
E-mail: A.HOGG@WAIKATO.AC.NZ

WSU WASHINGTON STATE UNIVERSITY
Dr John C Sheppard
Department of Chemical and Nuclear Engineering
Washington State University
Pullman, Washington 99164
Tel: 509-335-4332

X WHITWORTH COLLEGE
Dr Edwin A Olson
Department of Earth Science
Whitworth College
Spokane, Washington 99218

XLLQ XIAN LABORATORY OF LOESS AND QUATERNARY GEOLOGY
Zhou Weijian
Xian Laboratory of Loess and Quaternary Geology
Academia Sinica
No. 3 Xiao Zhai Dong Lu Rd
Xian, Shaanxi Province, China
Tel: 86-029-53687; Tlx: Xian 1355
Laboratories

Z

ZAGREB
Dr Adela Sliepčević and Dr Dušan Srdoč
Institute "Ruder Boskovic"
41001 Zagreb, POB 1016, Yugoslavia
Tel: 38-41-424239; Tlx: 21383 yu irb zg
Fax: 38-41-425497

ACCELERATOR FACILITIES

AA

NSF-ARIZONA ACCELERATOR FACILITY
D J Donahue and P E Damon
NSF-Arizona Accelerator Facility for Radioisotope Analysis
Department of Physics
University of Arizona
Tucson, Arizona 85721
Tel: 602-621-2480; Fax: 602-621-4721
E-mail: AJTJULL@ARIZVAX

CAMS

CENTER FOR ACCELERATOR MASS SPECTROMETRY
Jay C Davis
Center for Accelerator Mass Spectrometry
PO Box 808
Livermore, California 94550
Tel: 415-423-1414; Fax: 415-423-7884

UNIVERSITÄT ERLANGEN-NÜRNBERG
Wolfgang Kretschmer
Physikalisches Institut
Universität Erlangen-Nürnberg
Erwin-Rommel-Str 1
D-8520 Erlangen, West Germany
Tel: 49-9131-857075; Fax: 49-9131-15249

ETH

ETH/ACCELERATOR MASS SPECTROMETER FACILITY
Willy Wölfli
ETH/AMS Facility
Institut für Mittelenergiephysik
Eidgenössische Technische Hochschule
CH-8093 Zürich, Switzerland
Tel: 41-1-377-2041
E-mail: AMS@CZHETHSA

GIF-SUR-YVETTE TANDETRON AMS FACILITY
F You and G M Raisbeck
Laboratoire René Bernas
91406 Orsay, France
and
J C Duplessy and M Arnold
Centre des Faibles Radioactivités
91190 Gif-sur-Yvette, France
Tel: 33.1.69.41.52.64; Fax: 33.1.69.41.52.68
E-mail: LESTRING@FRCPNII

NZA

INS-NEW ZEALAND ACCELERATOR MASS SPECTROMETRY LABORATORY
Dr Roger J Sparks
Institute of Nuclear Sciences
PO Box 31312
Lower Hutt, New Zealand
Tel: 64-4 666 919; Tlx: NZ 3814
Fax: 64-4 690 657

OxA

OXFORD RADIOCARBON ACCELERATOR UNIT
R E M Hedges
Oxford Radiocarbon Accelerator Unit
Research Laboratory for Archaeology and the History of Art
Oxford University
6 Keble Road
Oxford OX1 3QJ, England
Tel: 44-865 273939; Fax: 44-865-273418
E-mail: C14@V1.PH.OX.AC.UK

QLA

UNIVERSITY OF WASHINGTON ACCELERATOR MASS SPECTROMETRY FACILITY
George W Farwell and Pieter M Grootes
University of Washington Accelerator Mass Spectrometry Facility
Nuclear Physics Laboratory, Department of Physics
University of Washington GL-10
Seattle, Washington 98195
Tel: 206-543-4080; Tlx: 474096 UWUI
ASSOCIATED AGENCIES

We are expanding our list to include additional laboratories and scientific agencies with whom we have established contact. The editors welcome more information on these or other scientific organizations.
Dr T Bitvinskas
Institute of Botany
Lithuanian Academy of Sciences
Laives Str 53
Kaunas 233 000, Lithuania

Dr R Krenyavichus
Institute of Physics and Mathematics
Lithuanian Academy of Sciences
K Pozelos Str 54
Vilnius 232 000, Lithuania
Tel: 7-0122-641836

Dr V V Gudzenko
Institute of Geology
Ukrainian Academy of Sciences
Tchkalov 55a
Kiev, Ukrainian SSR
Tel: 7-044-2168984

Dr E Sobotovich and Dr N Kovalyukh
Institute of Geochemistry and Physics of Minerals
Ukrainian Academy of Sciences
Prosp Palladina 34
Kiev 68, Ukrainian SSR
Tel: 7-044-4440441

Dr H Arslanov
Institute of Geography
Leningrad State University
Sredny Prospect 41
Leningrad 193 004, USSR
Tel: 7-812-213 9023 ext 73

Prof V A Derachev
AF Ioffe Physico-Technical Institute
Academy of Sciences of the USSR
Polytechnicheskaya 26
Leningrad 194 021, USSR

Dr G E Kocharov
AF Ioffe Physico-Technical Institute
Polytechnicheskaya 26
Leningrad 194 021, USSR
Tel: 7-812-247-9167; 247-7928

Dr AV Lozhkin
Quaternary Geology and Geochronology Laboratory
Northeast Interdisciplinary Research Institute
USSR Academy of Sciences, Far East Branch
16 Portovaya SVKNII
Magadan 685000, USSR

Dr A Matveev
Institute of Geochemistry
Belorussian Academy of Sciences
Akademgorodok
Minsk 220 000, USSR

Dr M Alekseev
Soviet Section, INQUA
Pyshevsy per, 7
109017 Moscow, ZH-17 USSR
Tel: 7-095-230-80-26; 7-095-230-81-88

Dr O Chitschagova and Dr Alexander Cherkinsky
Institute of Geography
USSR Academy of Sciences
Staromonetnyi Str 29
Moscow 109 017, USSR

Dr L Dinesman
Institute of Evolutionary Morphology
USSR Academy of Sciences
Leninskyi prospect 33
Moscow 117 071, USSR
Dr Yu Karpytchev
Isotope Laboratory
Water Problems Institute
USSR Academy of Sciences
Sadovo-Tschemogryaskaya 13/3
Moscow 103 064, USSR

Dr V Kuptsov
Institute of Oceanography
USSR Academy of Sciences
Krasikov Str 23
Moscow 117 217, USSR

Dr V Polyakov
All-Union Hydrogeological Institute
Moscow District
Zelyonyi
142 452 Noginskyi rayon, USSR

Dr N Smirnov
Institute of Plant and Animal Ecology
8 March 202
Sverdlovsk 620008, USSR

Dr R Metskhvarishvili
Tbilisi University
Chavchavadze 1
Tbilisi 380 008, USSR
Tel: 7-8832-958959

Dr Yakhimovitch
Geology Institute
October Revolution 10
Ufa 450025, USSR

Dr A Orishchenko
Ural Pedagogical Institute
Schetschenko 85
Uralsk 417000, USSR

Dr A Sorotky
Institute of Geography
USSR Academy of Sciences
Radio Str 7
Vladivostok 690 032, USSR

Dr Y V Kuzmin
Pacific Institute of Geography
Far East Scientific Centre
Academy of Sciences
Vladivostok 690 032, USSR

Dr V Kostukevich
Institute of Frost
Sergelyakh
Yakutsk 677010, USSR
RADIOCARBON

Announces the Forthcoming Publication of the Following Special Issues:

<table>
<thead>
<tr>
<th>Proceedings of the 13th International Radiocarbon Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dubrovnik, Yugoslavia, 20-25 June 1988</td>
</tr>
<tr>
<td>Volume 31, No. 3, 1989 @ $60.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proceedings of the International Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Intercomparison of Radiocarbon Laboratories</td>
</tr>
<tr>
<td>Glasgow, Scotland, 12-15 September 1989</td>
</tr>
<tr>
<td>Volume 32, No. 3, 1990 @ $40.00</td>
</tr>
</tbody>
</table>

A workshop in Glasgow on the Intercomparison of Radiocarbon Laboratories was hosted by the University of Glasgow, Scottish Universities Research and Reactor Centre and the NERC 14C laboratory at East Kilbride. The scientific program of the workshop covered previous and current intercomparison studies among radiocarbon laboratories, as well as plans for accuracy improvement in this field. This issue contains papers and discussions and is part of the 1990 subscription.

| Four Decades of Radiocarbon Studies: |
| An Interdisciplinary Perspective |
| Lake Arrowhead, California, 4-8 June 1990 |
| Special Hardcover Edition Published by Radiocarbon and The University of Arizona Press |

This conference commemorates the dawn of radiocarbon as a dating, biological and environmental tracer isotope. This volume will document the major contributions of 14C dating to archaeology, biochemistry, environmental studies, geochemistry, geology, geophysics, hydrology and oceanography over the last 40 years. This monograph will be offered outside of our three regular issues, at a discount to subscribers.

For more information on ordering or subscriptions, please write to:

Radiocarbon
Department of Geosciences
The University of Arizona
4717 East Ft Lowell Road
Tucson, AZ 85712 USA
Tel: 602-881-0857
Fax: 602-881-0554
Bitnet: C14@ARIZRVAX
<table>
<thead>
<tr>
<th>PRICE LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceedings of the 13th International Radiocarbon Conference (Vol 31, No. 3, 1989)</td>
</tr>
<tr>
<td>Proceedings of the 12th International Radiocarbon Conference (Vol 28, Nos. 2A & 2B, 1986 - available separately at $30.00 ea)</td>
</tr>
<tr>
<td>Proceedings of the 11th International Radiocarbon Conference (Vol 25, No. 2, 1983)</td>
</tr>
<tr>
<td>Proceedings of the 10th International Radiocarbon Conference (Vol 22, Nos. 2 & 3, 1980)</td>
</tr>
<tr>
<td>Vol 32, Nos. 1-3, 1990 (includes Glasgow Proceedings)</td>
</tr>
<tr>
<td>Vol 31, Nos. 1-3, 1989 (includes Proceedings)</td>
</tr>
<tr>
<td>Vol 30, Nos. 1-3, 1988</td>
</tr>
<tr>
<td>Vol 29, Nos. 1-3, 1987</td>
</tr>
<tr>
<td>Vol 28, Nos. 1, 2A & 2B, 1986 (includes Proceedings)</td>
</tr>
<tr>
<td>Vol 27, Nos. 1, 2A & 2B, 1985</td>
</tr>
<tr>
<td>Vol 26, Nos. 1-3, 1984</td>
</tr>
<tr>
<td>Vol 25, Nos. 1-3, 1983 (includes Proceedings)</td>
</tr>
<tr>
<td>Vol 24, Nos. 1-3, 1982</td>
</tr>
<tr>
<td>Vol 23, Nos. 1-3, 1981</td>
</tr>
<tr>
<td>Vol 22, Nos. 1-4, 1980 (includes Proceedings)</td>
</tr>
<tr>
<td>Vols 11-21, 1969-1979</td>
</tr>
<tr>
<td>Vols 1-9, 1959-1967</td>
</tr>
<tr>
<td>Comprehensive Index (1950-1965)</td>
</tr>
<tr>
<td>Single Issue</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Out of Print:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol 10, Nos. 1&2, 1968</td>
</tr>
<tr>
<td>Vol 11, No. 2, 1969</td>
</tr>
<tr>
<td>Vol 12, No. 2, 1970</td>
</tr>
<tr>
<td>Vol 13, No. 1, 1971</td>
</tr>
<tr>
<td>Vol 14, No. 1, 1972</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special Package Offer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full set, Vols 1-30 (1959-1988) + free subscription for 1990!</td>
</tr>
<tr>
<td>Postage & handling USA</td>
</tr>
<tr>
<td>Foreign</td>
</tr>
</tbody>
</table>

*Price includes 5% state sales tax
Postage & handling will be added to back orders

Foreign postage on current volumes $10.00
CALL FOR ABSTRACTS

The date of the 14th International Radiocarbon Conference, May 20-24, 1991, is fast approaching. Participants who wish to present a paper(s) should submit an abstract(s) before September 15, 1990. The abstract(s) should be double spaced and should not exceed 200 words. Margins should measure 1.5in or 3.5cm on all four sides. Please include the title, author(s) and full address(es) at the top and provide telephone, telex, fax numbers and e-mail address in the cover letter. Send your abstract(s) to Dr. Austin Long at the above address.

Abstracts will be considered for inclusion in one of the prescribed sessions. Please indicate the session most suitable for each submitted abstract. Also indicate if you prefer to present your paper(s) in poster form:

--Isotopic Indicators of Global Change
--Environmental Sciences
--Archaeometry and Archaeology
--Geologic, Extraterrestrial and Atmospheric Studies
--Groundwater Modeling of 14C Data
--Solar Variations and Cosmic-Ray Effects
--Accelerator Mass Spectrometry
--Beta-Counting Techniques
--The Intercomparison Study
--Other General Topics

Specialized pre-conference workshops or short courses may include:

--Liquid scintillation counting
--Prospects for Temporal Extension of Radiocarbon Calibration
--Paleoenvironments of the Eastern Mediterranean

Please note our slightly revised timetable. The second circular will be sent in October, 1990 instead of May 1, 1990 and revised abstracts and registration will be due December 15, 1990. The second circular will contain full instructions for registration and hotel reservations.

The registration fee will be $175 before December 15, 1990 and $200 afterwards. The banquet will cost an additional $30 (credit cards accepted).

The conference will be at the Westward Look Resort, 245 East Ina Road, Tucson, AZ 85704. Tel: (602)297-1151; Telex: 165518; Fax: (602)297-9023; Toll-free numbers: Out-of-State (800)722-2500, In-State (800)624-5317.

The rate will be $60/room - single or double - plus tax (credit cards accepted). The same rate will apply 4 days before and after the conference. Every room has a refrigerator and wet bar. Full information and reservation packets will accompany our second circular.

Evening and social activities will include a conference reception and banquet, a trip to the Arizona Sonora Desert Museum and Old Tucson, laboratory tours, an optional trip to Kitt Peak National Observatory, companion tours and post-conference tours to the Grand Canyon and the Murray Springs Clovis site. Alternative tours are being planned.

Please note that air fares into Phoenix are generally lower than into Tucson. We are arranging a direct shuttle from both Phoenix and Tucson airports to the hotel.

Remember - Abstracts are due September 15, 1990
QUATERNARY SCIENCE REVIEWS

The International Review and Research Journal

Editor-in-Chief: DAVID Q BOWEN, Institute of Earth Studies, UCW, University of Wales, Penglais Campus, Aberystwyth SY23 3DB, UK

Quaternary Science Reviews caters for all aspects of Quaternary science, and includes, for example, geology, geomorphology, geography, archaeology, soil science, palaeobotany, palaeontology, palaeoclimatology and the full range of applicable dating methods. The dividing line between what constitutes the review paper and one which contains new original data is not easy to establish, so QSR also publishes papers with new data especially if these perform a review function, or can be so adapted for a wider perspective, for example, as in methods of dating. All the Quaternary sciences are changing rapidly and subject to re-evaluation as the pace of discovery quickens; thus the eclectic and comprehensive role of Quaternary Science Reviews keeps readers abreast of the wider issues relating to new developments in the field.

A Selection of Papers
V MARKGRAF (USA), Palaeoclimates in Central and South America since 18,000 BP based on pollen and lake-level records.
K-E BEHRE (FRG), Biostratigraphy of the last glacial period in Europe.
A-M LÉZINE (France) & J CASANOVA (Canada), Pollen and hydrological evidence for the interpretation of past climates in tropical West Africa during the Holocene.
N EYLES, C H EYLES (Canada) & A M McCABE (UK), Sedimentation in an ice-contact subaqueous setting: the mid-Pleistocene ‘North Sea Drifts’ of Norfolk, UK.
J P BRADBURY (USA), Late Quaternary lacustrine paleoenvironments in the Cuenca de Mexico.

Indexed/Abstracted in: Curr Cont ASCA, Chem Abstr Serv, Geo Abst, Geo Bib & Indx, INSPEC Data, Curr Cont Sci Cit Ind, Curr Cont SCISEARCH Data

Subscription Information
1990: Volume 9 (4 issues)
Annual subscription (1990) DM 355.00
Two-year rate (1990/91) DM 674.50
ISSN: 0277-3791 (00636)

PERGAMON PRESS plc
Member of Maxwell Macmillan Pergamon Publishing Corporation
Pergamon Press plc, Headington Hill Hall, Oxford OX3 0BW, UK
Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford NY 10523, USA

Advertising rate card available on request. Back issues and current subscriptions are also available in microform. The DM prices shown include postage and insurance. For subscription rates in the Americas, Japan, UK and Eire please contact your nearest Pergamon office. Prices and proposed publication dates are subject to change without prior notice.
NOTICE TO READERS AND CONTRIBUTORS

Since its inception, the basic purpose of RADIOCARBON has been the publication of compilations of \(^{14}\)C dates produced by various laboratories. These lists are extremely useful for the dissemination of basic \(^{14}\)C information.

In recent years, RADIOCARBON has also been publishing technical and interpretative articles on all aspects of \(^{14}\)C. We would like to encourage this type of publication on a regular basis. In addition, we will be publishing compilations of published and unpublished dates along with interpretative text for these dates on a regional basis. Authors who would like to compose such an article for his/her area of interest should contact the Managing Editor for information.

Other sections recently added to our regular issues include NOTES AND COMMENTS, LETTERS TO THE EDITOR and ANNOUNCEMENTS. Authors are invited to extend discussions or raise pertinent questions to the results of scientific investigations that have appeared on our pages. These sections include short, technical notes to relay information concerning innovative sample preparation procedures. Laboratories may also seek assistance in technical aspects of radiocarbon dating. Book reviews are also encouraged as are advertisements.

Manuscripts. Papers may now be submitted on both floppy diskettes and hard copy. When submitting a manuscript on a diskette, always include two hard copies, double-spaced, or wait until the final copy is prepared, after review, before sending the edited diskette. We will accept, in order of preference, WordPerfect, 5.1 or 5.0, Microsoft Word, WordStar or any major Macintosh or IBM word-processing software program. ASCII files, MS DOS and CPM formatted diskettes are also acceptable. The diskettes should be either 31/2" (720K or 1.44 megabytes) or 51/4" (360K or 1.2 megabytes). Radiocarbon papers should follow the recommendations in RADIOCARBON Style Guide (R, 1984, v 26, np, 1, p 152–158). Our deadline schedule for submitting manuscripts is:

<table>
<thead>
<tr>
<th>For</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol 33, No. 1, 1991</td>
<td>Sept 1, 1990</td>
</tr>
<tr>
<td>Vol 33, No. 3, 1991</td>
<td>May 1, 1991</td>
</tr>
</tbody>
</table>

Half life of \(^{14}\)C. In accordance with the decision of the Fifth Radiocarbon Dating Conference, Cambridge, 1962, all dates published in this volume (as in previous volumes) are based on the Libby value, 5568 yr, for the half-life. This decision was reaffirmed at the 11th International Radiocarbon Conference in Seattle, Washington, 1982. Because of various uncertainties, when \(^{14}\)C measurements are expressed as dates in years BP the accuracy of the dates is limited, and refinements that take some but not all uncertainties into account may be misleading. The mean of three recent determinations of the half life, 5730 ± 40 yr, (Nature, 1962, v 195, no. 4845, p 984), is regarded as the best value presently available. Published dates in years BP can be converted to this basis by multiplying them by 1.03.

AD/BC Dates. In accordance with the decision of the Ninth International Radiocarbon Conference, Los Angeles and San Diego, 1976, the designation of AD/BC, obtained by subtracting AD 1950 from conventional BP determinations is discontinued in Radiocarbon. Authors or submitters may include calendar estimates as a comment, and report these estimates as cal AD/BC, citing the specific calibration curve used to obtain the estimate. Calibrated dates will now be reported as “cal BP” or “cal AD/BC” according to the consensus of the Twelfth International Radiocarbon Conference, Trondheim, Norway, 1985.

Meaning of \(\delta^{14}\)C. In Volume 3, 1961, we endorsed the notation \(\Delta\) (Lamont VIII, 1961) for geochemical measurements of \(^{14}\)C activity, corrected for isotopic fractionation in samples and in the NBS oxalic-acid standard. The value of \(\delta^{14}\)C that entered the calculation of \(\Delta\) was defined by reference to Lamont VI, 1959, and was corrected for age. This fact has been lost sight of, by editors as well as by authors, and recent papers have used \(\delta^{14}\)C as the observed deviation from the standard. At the New Zealand Radiocarbon Dating Conference it was recommended to use \(\delta^{14}\)C only for age-corrected samples. Without an age correction, the value should then be reported as percent of modern relative to 0.95 NBS oxalic acid (Proceedings 8th Conference on Radiocarbon Dating, Wellington, New Zealand, 1972). The Ninth International Radiocarbon Conference, Los Angeles and San Diego, 1976, recommended that the reference standard, 0.95 times NBS oxalic acid activity, be normalized to \(\delta^{14}\)C = – 19‰.

In several fields, however, age corrections are not possible. \(\delta^{14}\)C and \(\Delta\), uncorrected for age, have been used extensively in oceanography, and are an integral part of models and theories. For the present, therefore, we continue the editorial policy of using \(\Delta\) notations for samples not corrected for age.
FROM THE EDITOR
Gaining on Gutenberg
Austin Long .. iii

ARTICLES
AMS Radiocarbon Measurements on Foraminifera Shells from Deep-Sea Cores
Wallace S Broecker, Mieczyslawa Klas, Elizabeth Clark, Susan Trumbore, Georges Bonani, Willy Wölfli and Susan Ivy .. 119
Isotope-Ratio and Background Corrections for Accelerator Mass Spectrometry Radiocarbon Measurements
DJ Donahue, TW Linick and AJT Jull .. 135
Marine Turtle Bones From an Archaeological Site in Polynesia Yield Reliable Age Determinations
TS Dye .. 143
Radiocarbon Dating of the Neolithic Early Bronze Age Site of Mandalo, W Macedonia
Yannis Maniatis and Bernd Kromer .. 149
Preparative High-Performance Liquid Chromatographic Separation of Individual Amino Acids Derived from Fossil Bone Collagen
Gert Jaap van Klinken and Willem G Mook ... 155

DATE LISTS
Harwell Radiocarbon Measurements VIII
AJ Walker, Nigel Williams and RL Oilet .. 165
Museo de la Plata Radiocarbon Measurements II
AJ Figini, JE Carbonari and RA Huarte .. 197
University of Wisconsin Radiocarbon Dates XXVI
Raymond L Steventon and John E Kutzbach ... 209

NOTES AND COMMENTS
Calibrating New Zealand Radiocarbon Dates of Marine Shells
BG McFadgen and MR Manning ... 229
Applicability of 'New Technology' Scintillation Counters (Packard 2000 CA/LL and 2260 XL) for ^14C Dating
GT-Cook, AG Hold, P Naysmith and R Anderson 233

RADIOCARBON UPDATES ... 235
LABORATORIES .. 237
ANNOUNCEMENTS