Title
DOUBLE REGGE-POLE MODEL ANALYSIS OF pp \rightarrow A++ p n-- AT 6.6 GeV/c

Permalink
https://escholarship.org/uc/item/7wv9c47w

Authors
Berger, Edmond L.
Gellert, Eugene
Smith, Gerald A.
et al.

Publication Date
1968-02-27
University of California
Ernest O. Lawrence Radiation Laboratory

DOUBLE REGGE-POLE MODEL ANALYSIS
OF $pp \rightarrow \Delta^{++} p \pi^{-}$ AT 6.6 GeV/c

Edmond L. Berger, Eugene Gellert, Gerald A. Smith,
Eugene Colton, and Peter E. Schlein

February 27, 1968

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
DOUBLE REGGE-POLE MODEL ANALYSIS
OF $pp \rightarrow \Delta^{++}p \pi^- \atop AT 6.6 \text{ GeV/c}$

Edmond L. Berger, Eugene Gellert, Gerald A. Smith,
Eugene Colton, and Peter E. Schlein

February 27, 1968
DOUBLE REGGE-POLE MODEL ANALYSIS
OF \(pp \rightarrow \Delta^{++} p \pi^- \) AT 6.6 GeV/c

Edmond L. Berger

Lawrence Radiation Laboratory
and
Physics Department
Dartmouth College, Hanover, N. H.

and

Eugene Gellert and Gerald A. Smith

Lawrence Radiation Laboratory
University of California, Berkeley, California

and

Eugene Colton and Peter E. Schlein

Physics Department
University of California, Los Angeles, California

February 27, 1968

ABSTRACT

Reasonable fits to invariant mass, momentum transfer, and Treiman-Yang angle distributions for the reaction \(pp \rightarrow \Delta^{++} p \pi^- \) at 6.6 GeV/c are obtained from a double Regge-pole model with pion exchange.

Results obtained from a detailed double Regge-pole exchange-model analysis of the reaction \(pp \rightarrow \Delta^{++} p \pi^- \) are presented in this paper. The data were derived from a sample of four-prong events of the type \(pp \rightarrow pp \pi^+ \pi^- \) produced by 6.6-GeV/c incident protons. Initial discussion of approximately one quarter of the data presented in this paper has been published. The \(\Delta^{++} p \pi^- \) final state is produced peripherally, with predominance of small momentum transfers to the final \(\Delta^{++} \) and p. Moreover, a plot of the invariant
mass of the $\Delta^{++} \pi^{-}$ system evidences a large enhancement in the range 1.38 to 1.58 GeV.

The basic assumption made in this study is that the process $pp \rightarrow \Delta^{++} p \pi^{-}$ proceeds primarily via doubly peripheral collisions of the type diagrammed in Fig. 1, in which the exchanged lines represent Regge poles. We wish to emphasize that, although this model appears to adequately describe the data, we do not interpret our results as necessarily casting doubt on the validity of certain unreggeized OPE calculations. Rather, we wish only to emphasize the application of the Regge pole model of this paper to inelastic three-body scattering processes.

The requirement that quantum numbers combine appropriately at the three vertices of Fig. 1 limits the possible pairings of Regge-pole exchanges in the diagram. In this analysis, only those diagrams in which a pion Regge pole couples at the $p\Delta^{++}$ vertex are retained. Other diagrams (for example, ρ coupling at the $p\Delta$ vertex) are eliminated because they are not expected to contribute significantly to the cross section for small $\pi\Delta$ mass. However, on the left side of the diagram, all Regge poles which participate in $\pi^{-} p$ elastic scattering may be present; and, because the c.m. energy of the overall reaction is relatively low, all of these are expected to contribute significantly. In summary, therefore, Fig. 1 is to be understood as representing a pion trajectory coupled at the $p\Delta^{++}$ vertex and then a sum over all allowed trajectories between the pp and middle $\pi\pi$ vertex.

Because the initial particles are identical, we must impose the required antisymmetrization of the reaction amplitude. This is properly accomplished by adding to Fig. 1 a diagram in which the initial particle momenta are interchanged. Because cuts are taken in momentum transfer, the interference
term is less than 10% of the contribution from one diagram alone, and is therefore ignored altogether. The two diagrams are incorporated by taking twice the magnitude of one.

The differential cross section for the reaction \(pp \rightarrow p\pi^+ \Delta^{++} \) is given by

\[
d\sigma = \left(\frac{1}{2\pi} \right)^5 (4F_t)^{-1} \left(\sum |M|^2 \right) d\phi_3 ,
\]

in which \(F_t \) equals the proton mass times the incident proton lab momentum, and \(d\phi_3 \) is the differential element of phase space.

The Toller variable analysis of multi-Regge exchange processes by Bali, Chew, and Pignotti \(^{1,2}\) serves as the basis for this study. The double-Regge-pole hypothesis is adopted for the absolute square of the invariant amplitude, \(M \), summed over final spins and averaged over initial spins. After some reduction, this is expressed as

\[
\sum |M|^2 = \frac{(\pi\omega')^2 N}{(1 - \cos \pi\omega)} \left(\sum |M'_{\pi^+ p}|^2 \right)
\]

\[
\times \left[s_0^{-1} \left[s_{\pi\Delta} - t_{pp} - m_p^2 + \frac{1}{2} t_{p\Delta}^{-1} \left(m^2_{\pi\Delta} - m_p^2 - t_{p\Delta} \right) \left(m^2_p - t_{pp} - t_{p\Delta} \right) \right] \right]^{2\alpha_{\pi}}.
\]

In Eq. (2), the aforementioned factor of 2 has been incorporated; \(\alpha_{\pi} \) is the pion Regge trajectory; \(\omega' \) is the slope of that trajectory evaluated at \(t_{p\Delta} = m_{\pi}^2 \); and \(N \) is a slowly varying function of \(t_{p\Delta} \) in which have been combined both the reduced residue function and the usual ratio of gamma functions. The quantity \(M'_{\pi^+ p} \) is the amplitude describing the full scattering of a Reggeized pion off a proton yielding the final, physical \(\pi^+ p \) state. In view of the fact that a complete prescription for the coupling of two trajectories to a physical state (the middle vertex) does not yet exist and because the sum of many trajectories on the left hand side of the diagram is to be taken, \(M'_{\pi^+ p} \) is
approximated by the on-mass-shell physical $\pi^- p$ elastic scattering amplitude whose magnitude, squared and appropriately summed, is given in terms of the elastic differential cross section by

$$\sum |M^\pi^- p|^2 = 64\pi^2 s \left(\frac{d\sigma}{d\Omega} \right)_{\pi^- p}.$$

(3)

The approximation clearly requires that $t_{p\Delta}$ be small. The insertion of the on-shell distribution appears justified in this calculation because the shape parameters of the angular distribution of the scattered proton p, as measured in the rest frame of the final $p\pi^-$ system, are in good agreement with those for free $p\pi^-$ scattering. Empirical data were used for $d\sigma/d\Omega$.

The pion Regge trajectory has not yet been empirically determined, as have other trajectories, from two-particle scattering experiments. In this study a linear trajectory was assumed, and its slope at $t_{p\Delta} = m_\pi^2$ was fixed at $\alpha' = 1.0 (\text{GeV})^{-2}$, consistent with the general philosophy of approximately equal slopes for all trajectories and in rough agreement with the value obtained by Arbab and Dash from an analysis of np charge exchange data.

In order to reduce the number of free parameters, the function $N(t_{p\Delta}^\pi)$ was chosen to be a constant whose value is determined by requiring that the Regge model expression (Eq. 2) be identical to the elementary one-pion-exchange (OPE) model expression in the limit that $t_p \to m_\pi^2$. The OPE expression, with Δ^{++} spin factors evaluated at $t_{p\Delta} = m_\pi^2$, is given by

$$\sum |M_{\text{OPE}}|^2 = \frac{64\pi \Gamma m_\Delta^3 \left(\sum |M^\pi^- p|^2 \right) (t_{p\Delta} - m_\pi^2)^{-2}}{\left((m_\Delta + m_p)^2 - m_\pi^2 \right)} \left((m_\Delta - m_p)^2 - m_\pi^2 \right)^{4/2}.$$

(4)

In Eq. (4), the width of the $\Delta, \Gamma = 120 \text{ MeV}$ is expressly incorporated.

With this determination of $N(t_{p\Delta}^\pi)$, normalization is entirely fixed and there remains only one free parameter in the Regge model matrix element,
the scale constant s_0. Because varying s_0 essentially serves to vary the slope of $d\sigma/dt_{p\Delta}$, s_0 was determined by a fit to that experimental distribution. For various s_0, the differential cross section in $t_{p\Delta}$ was computed by substituting Eq. (2) into Eq. (1) and numerically integrating over allowed phase space, subject to the same cuts taken in the data. (The mass of Δ^{++} was fixed at 1.22 GeV). As shown in Fig. 2, the value $s_0 = 0.8 (\text{GeV})^2$ provided the best overall fit. The deviation at the smallest values of $t_{p\Delta}$ may be associated with the fact that a spin-averaged analysis is used here and thus subtleties (as well as extra parameters) associated with the couplings of the various helicity states are washed out. Moreover, the analysis done here assumes no dependence in the Regge-model matrix element on the Toller variable ω associated with the middle vertex function.\cite{1,9} Independent evidence indicates that such an approximation does injustice to behavior at the very low momentum transfer.\cite{2}

With the determination of s_0, the Regge matrix element is entirely fixed. In order to remain within the expected range of validity of the model and approximations, a further cut restricting $|t_{p\Delta}| < 0.5 (\text{GeV})^2$ was taken and the distribution $d\sigma/ds_{\pi\Delta}$ was calculated. This is shown in Fig. 3(a). The experimental peak is centered at 1.46 to 1.48 GeV and has a full-width at half maximum of 200 MeV, whereas the Regge model curve has a value of 250 MeV. The Regge model curve is uniformly too high and somewhat too broad at low $s_{\pi\Delta}$ to be called a good fit; however, it reproduces the trend of the data quite well considering the very limited number of parameters involved.

Also presented on Fig. 3(a) is a curve resulting from integrating the OPE matrix element (Eq. 4) multiplied by a simple exponentially falling form factor in $t_{p\Delta}$; $F(t_{p\Delta}) = \exp\left[0.8 (t_{p\Delta} - m_{\pi}^2)\right]$. This form factor was chosen
in order that the modified OPE model yield a distribution \(\frac{d\sigma}{d^4p_\Delta} \) falling as rapidly in \(t_{p_\Delta} \) as does the experimental distribution. The OPE curve is clearly a much less satisfactory fit. However, this hardly exhausts the variety of modifications at OPE. Specifically, the work of Colton et al.,\(^{10}\) using off-mass-shell modifications to the OPE model proposed by Dürr and Pilkuhn, indicates that OPE can reproduce the features of the data in Fig. 3a. The reason for the increased low-mass enhancement of the Regge model in comparison with OPE is discussed in Ref. 2.

The most encouraging support for the Regge-model analysis comes from examining the Treiman-Yang-angle distribution. The angle is defined in the rest frame of the final \(p\pi^- \) system by

\[
\phi = \cos^{-1}\left[\frac{\left(\vec{p}_1 \times \vec{q}_1 \right) \cdot \left(\vec{q}_2 \times \vec{p}_2 \right)}{\left| \vec{p}_1 \times \vec{q}_1 \right| \left| \vec{q}_2 \times \vec{p}_2 \right|} \right].
\]

Physically, in the rest frame of definition, \(\phi \) is a rotation angle about the three-momentum vector \(\vec{p}_1 \) which, in that frame, is the three-momentum of the exchanged pion system. The distribution in \(\phi \), therefore, should reflect the spin character of the exchange. In Fig. 3(b), the data as well as curves resulting from the Regge and OPE models are shown. The Regge model adequately agrees with the data, yielding both the observed asymmetry about 90 deg and the peaking towards 180 deg.

It should be noted, however, that the fits to the \(s_{\pi\Delta} \) and \(\phi \) distributions are not entirely independent arguments in favor of the Regge model. A kinematic relationship connects the two variables, viz.,

\[
s_{\pi\Delta} = A(s_{\pi p}, t_{p\Delta}, t_{pp}) + \cos \phi B(s_{\pi p}, t_{p\Delta}, t_{pp}), \tag{5}
\]

in which \(A \) and \(B \) are positive-valued in the physical region. Thus a matrix element in which there is explicit dependence on \(s_{\pi\Delta} \), such as in the Regge
model, may in general yield a nonisotropic distribution in \(\phi \). On the other hand, the OPE model leads to an enhancement of low values of the \(\pi\Delta \) mass but a flat distribution in \(\phi \). This is because the enhancement of low \(\pi\Delta \) masses is a kinematic reflection of the relative enhancement in that matrix element of small values of the momentum transfers \(t_{pp} \) and \(t_{p\Delta} \); the matrix element remains independent of \(\phi \) (unless such dependence is added in an ad hoc fashion, as in Ref. 10).

The agreement between the double Regge model and the data should not be interpreted as precluding the existence of resonances in the \(\pi\Delta \) system. Indeed, recent work on the \(\pi\!\!\!N \) problem strongly suggests that direct channel resonances are already contained in the cross-channel Regge amplitude. 11

One of us (E. L. B.) is grateful for hospitality and valuable conversations to Professor Geoffrey F. Chew and the Theoretical Group of Lawrence Radiation Laboratory, Berkeley, where this analysis was begun.
FOOTNOTES AND REFERENCES

* Work supported in part by the U. S. Atomic Energy Commission.
† Presently here.
‡ Presently at Physics Department, Michigan State University, East Lansing, Michigan.

4. For example, as discussed in Refs. 1 and 2, if a ρ trajectory couples to the pΔ vertex and a pion to the pp vertex, then

\[dσ/α \left(\frac{s_{πp}}{s_{πΔ}} \right)^{α_ρ - α_π} \ln \left(\frac{s_{πp}}{s_{πΔ}} \right), \]

thus tending to suppress low values of \(s_{πΔ} \), since \(α_π < α_ρ \).

8. A physically identical angle is also defined by Chan et al. (Ref. 1).

FIGURE CAPTIONS

Fig. 1. Basic double Regge pole exchange diagram studied here. The p_i and q_j are four momenta; $t_{p\Delta} = (q^2 - p_1^2)^2$; $s_{\pi\Delta} = (q + q_2); etc.$

Fig. 2. Distribution in the invariant four-momentum-transfer-squared carried by the pion exchange for the reaction $pp \rightarrow \Delta^{++}\pi^-$. The Δ^{++} is defined as $1.16 < \text{mass} (p\pi^+) < 1.28$ GeV. In order to eliminate the quasi-two-body $\Delta^{++}\Delta^0$ final state from the sample, only those events with mass $(p\pi^-) > 1.34$ GeV were retained. The plot contains 3915 events, of which 188 are double Δ^{++}'s, counted twice.

Fig. 3. (a). Distribution in the invariant-mass-squared of the $\pi\Delta$ system. The plot contains 2214 events with $t_{p\Delta} \leq 0.5$ GeV2, mass $(p\pi^-) > 1.34$ GeV. Less than 3% of the events are double Δ^{++}'s.

(b). Treiman-Yang angle distribution for 2471 events with $t_{p\Delta} \leq 0.6$ GeV2 and mass $(p\pi^-) > 1.34$ GeV.
Fig. 1
Regge model fit

$\alpha'_\pi = 1.0 \ (\text{GeV})^{-2}$

$s_0 = 0.8 \ (\text{GeV})^2$
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.