Malignancies with Low Fluorodeoxyglucose Uptake at PET/CT: Pitfalls and Prognostic Importance

Robert R. Flavell, MD, PhD
David M. Naeger, MD
Carina Mari Aparici, MD
Randall A. Hawkins, MD, PhD
Miguel H. Pampaloni, MD, PhD
Spencer C. Behr, MD

Abbreviations: FDG = fluorine 18 fluoro-deoxyglucose, HCC = hepatocellular carcinoma, SUV = standardized uptake value

RadioGraphics 2016; 36:293–294
Published online 10.1148/rg.2015150073

Content Codes: GI MI NW

From the Department of Radiology and Biomedical Imaging, University of California–San Francisco, 505 Parnassus Ave, San Francisco, CA 94143. Recipient of a Certificate of Merit award for an education exhibit at the 2014 RSNA Annual Meeting. Received March 19, 2015; revision requested August 28 and received October 3; accepted October 23. All authors have disclosed no relevant relationships.

Address correspondence to S.C.B. (e-mail: spencer.behr@ucsf.edu).

Funding: The work was supported by the National Institutes of Health (grant 5T32EB001631-10).

R.R.F. supported by an RSNA Research Fellowship Grant and a Society of Nuclear Medicine and Molecular Imaging-Educational Research Foundation Mitzi & William Blahd, MD, Pilot Research Grant.

©RSNA, 2016

Fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) is commonly performed for staging and restaging of solid tumors. Although most solid tumors demonstrate high uptake of FDG, many others do not. Low FDG uptake may be due to various reasons, including tumors with low glucose metabolism or low cellularity, improper patient preparation, and small tumor size. The presence of low-level FDG uptake could be a source of scan misinterpretation in these low-cellularity or low-glucose-metabolizing tumors, including low-grade lung adenocarcinomas, renal cell cancers, and mucinous neoplasms. The ability to detect lesions at PET/computed tomography (CT) stems from many factors, including size of the lesion, ability of the tumor to concentrate FDG, proper patient preparation, background FDG uptake in surrounding tissues, and type of scanner used. Several examples of low-grade lung adenocarcinoma, renal cell cancer, and mucinous neoplasms are presented that have low FDG uptake.

For example, Figure 1 depicts a renal cell cancer without associated FDG avidity above background activity.

In many neoplasms, including hepatocellular carcinoma (HCC), lymphoma, and prostate cancer, there is strong evidence that increasing FDG avidity correlates with poor prognosis and poor response to treatment. In these cases, high FDG uptake likely correlates with de-differentiation or transformation to a more aggressive form of cancer. For example, in HCC, high FDG uptake predicts poor response to radiation therapy, transarterial chemoembolization, and liver transplantation and is also associated with higher stage and the presence of metastatic disease. Similarly, lesions with high FDG uptake in a patient with a known low-grade lymphoma are suspicious for high-grade transformation (also called Richter transformation). Therefore, in lymphoma, prostate cancer, and HCC, it is important for radiologists to report the degree of FDG uptake.

TEACHING POINTS

- Some malignancies will demonstrate low-level or absent FDG uptake, including renal cell cancer, low-grade lung adenocarcinomas, and mucinous neoplasms.
- In some malignancies, including HCC, prostate cancer, and low-grade lymphomas, the presence of high-level FDG uptake correlates with poor prognosis.
- In general, higher FDG uptake in these malignancies correlates with a poorly differentiated neoplasm that will have a relatively poor treatment response.
- In some malignancies, uptake of a second radiotracer is typically inversely correlated with uptake of FDG. This property is termed the flip-flop effect and is commonly seen in thyroid cancer and neuroendocrine tumors.

The full digital presentation is available online.
Importantly, poor \(^{123}\text{I}\) or \(^{131}\text{I}\) uptake correlates with poor treatment response to \(^{131}\text{I}\). In neuroendocrine and thyroid tumors, it is important to report the presence of iodine, pentetreotide, and FDG uptake. The online presentation provides a review of tumors with low FDG avidity, tumors in which FDG avidity carries prognostic importance, and cancers that exhibit the flip-flop phenomenon, with numerous case examples for each category.

Suggested Readings

