Title
Tsunami Information Sources: Part 4 (With a section on impulsively generated waves by a rapid mass movement, either submerged, or into a body of water)

Permalink
https://escholarship.org/uc/item/7x21s45s

Author
Wiegel, Robert L.

Publication Date
2008-03-14
INTRODUCTION

A great amount of technical information on tsunamis is available in journals, books, reports, newspapers, and websites. After the Sumatra-Andaman Islands Earthquake and the accompanying Indian Ocean Tsunami of 26 December 2004, the author updated his list of tsunami information sources, and made the citations available in a 115 page report. The sources are listed in the following categories:

Articles, papers, reports, by author(s)
Bibliographies
Books, monographs, pamphlets
Catalogs of events
Collections
Journals, newsletters
Maps
Organizations
Proceedings, symposia, workshops
Videos, photographs

For convenience, some sources are listed twice, under title and under author(s).

In searching the technical literature, it should be recalled that the water waves now most commonly known as tsunamis, in the past were also called tidal waves or seismic sea waves.

The author continued to update the list, and modified the presentation in three subsequent reports, of which this is the last one. The four reports are in print and electronic format; they are:


Tsunami Information Sources. Part 2 (by Robert L. Wiegel, University of California, Berkeley, CA, UCB/HEL 2006-1, 18 April 2006, 36 pp, about 200 additional sources); available in printed format, and on a diskette. It is also available in electronic format at the Water Resources Center Archives (WRCA), University of California,
Tsunami Information Sources; Part 3 (by Robert L. Wiegel, University of California, Berkeley, CA, UCB/HEL 2006-3, 18 December 2006, 23 pp, about 440 additional sources) available in printed format, and on a diskette. It is also available in electronic format at the Water Resources Center Archives (WRCA), University of California, Berkeley, CA
http://www.lib.berkeley.edu/WRCA/tsunamis.html

This is Part 4 of the report (by Robert L. Wiegel, UCB/HEL 2008-1, 14 March 2008, 64 pp, about 800 additional sources). It is available on a diskette at the Water Resources Center Archives, 410 O'Brien Hall, University of California, Berkeley, CA 94720-1718, and in electronic format at http://www.lib.berkeley.edu/WRCA/tsunamis.html

Most of the nearly 5,000 sources are publications or reports. Many of the publications referred to are available in the Water Resources Center Archives, or other parts of the University of California Library System.

As in Part 2 and in Part 3, two components of the present report are:

1. Sections A and B. Sources added, and corrections to a few listed previously.

2. Sections C and D. References in Sections A and B (and a few from the earlier report that were not so listed), that can be classified in one of the following two categories:

Section C. Planning and engineering for design for tsunami mitigation/protection; adjustments to the hazard; damage to structures and infrastructure.

Section D. Tsunami propagation nearshore; induced oscillations; runup/inundation (flooding) and drawdown.

A new section has been added in the present report. It is Section E. Impulsively generated waves by a rapid mass movement, either submerged (submarine), or into (subaerial), the ocean, a bay, lake, reservoir, river. The mass movement may be a landslide, rockfall, debris avalanche, slump, rigid body.

Much is known about damage to structures and infrastructure by tsunamis, and to injury and loss of life (public safety), on land and in harbors; including secondary damage such as oil spill, spread, and fire. How does one plan, engineer, construct new, retrofit old, and manage for protection/mitigation in regard to tsunami hazards, and how does one adjust to the hazards: What is the relative importance of zoning/land-management, open-space, elevation, tsunami-resistant structures, defense structures (breakwaters, seawalls, dikes, gates, forests/groves, drainage canals), aesthetics, convenience/inconvenience to people, public education. The knowledge of these subjects is widely scattered, and from the several thousand tsunami information sources listed in the first report, and in Parts 2, 3, and 4, the author has listed several hundred sources on these subjects in Section C of Parts 2, 3, and 4.

Closely associated with the above subjects are tsunami propagation nearshore (such as edge waves, Mach-reflection/Mach-stem, wave trapping, refraction/diffraction, wave focusing, wave scattering, bay and harbor oscillations); and the runup of tsunamis onto shore (and drawdown/ receding floodwater). Runup may occur as a fast rising tide, or a surge, or a bore. In addition to information on inundation/flooding, the subject runup and drawdown
includes flow characteristics of the water; and the resulting scouring and sediment movement. It includes transport of wreckage, other debris, boats, automobiles, and other floating objects, including buildings which are not adequately attached to their foundations and floated away. Several hundred sources on these subjects are listed in Section D of Parts 2, 3, and 4.

In Section E [impulsively generated waves caused by a rapid mass movement (landslide, debris avalanche, rockfall, slump, rigid body) in, or into, the ocean, a bay, lake, reservoir] - in addition to the hydrodynamics of wave formation and travel, references are given about submarine slides and other mass movements. An important aspect is the time histories of the mass movements (accelerations, speeds), but little is known about this. Also, when did the underwater slides that have been identified occur? This information is needed to develop a base for estimating the probability of occurrence, but little is known. About 500 information sources are listed herein.

Acknowledgements

I wish to acknowledge my appreciation to the Water Resources Center Archives staff and its Director Linda Vida for their great help in finding some difficult to obtain publications; in particular Paul S. Atwood, Kady Ferris, and Trina Pundurs for their help for those on websites and other computer sources. I want to thank John M. Wiegel for his continuous help in searching for sources on websites via computer search engines.
1. SECTIONS A AND B. ADDITIONS, OR CORRECTIONS, TO THE FIRST THREE REPORTS

A. BIBLIOGRAPHIES; BOOKS, MONOGRAPHS, AND PAMPHLETS; JOURNALS AND NEWSLETTERS; MAPS; ORGANIZATIONS; PROCEEDINGS, SYMPOSIA, AND WORKSHOP; VIDEO AND PHOTOGRAPHS

Bibliographies

No additions

Books, Monographs, and Pamphlets


The Indian Ocean Tsunami, eds. Tad S. Murty, U. Aswathanarayana, and N. Nirupama, Taylor & Francis/ Balkema, The Netherlands, 2007, 491 pp


Marine Oil Terminal Engineering and Maintenance Standards, Draft #6, California State Lands Commission, Dec. 2000


http://ioc.unesco.org/indotsunami/mauritus05/MG037.pdf

Proceedings of the International Workshop: Local Tsunami Warning and Mitigation, eds. B.W. Levin and M.A. Nasov, Janus-L., Moscow, 2002


Risk Analysis of Coastal Flooding Due to Distant Tsunamis, by E. Gica, Ph.D. thesis, Univ. Hawaii at Manoa, Honolulu, 2005


Seaside, Oregon Tsunami Pilot Study -- Modernization of FEMA Flood Hazard Maps, by Tsunami Pilot Study Working Group, NOAA OAR Special Report, NOAA/OAR/PMEL, Seattle, WA, 2006, 94 pp and 7 appendices


Tsunami and Disaster Management Law and Governance, by C. Raj Kumar and D.K. Srivastava, Sweet and Maxwell Asia, Publishers, 2006, 274 pp


Tsunami Wave Hydrodynamics, by E.N. Pelinovsky, Russian Academy of Sciences, Nizhi Novgorod, 1996, 275 pp


Catalogs


"Large Historical Tsunamis Based on Information from NOAA Historical Tsunami Database", Table 1-1, p. 6, Scientific and Technical Issues in Tsunami Hazard Assessment of Nuclear Power Plant Sites, by Science Review Working Group, NOAA Pacific Marine Environmental Laboratory (PMEL), Seattle, WA, NOAA, Tech. Memo. OAR PMEL-136, May 2007, 123 pp and CD-ROM with Appendices A-D.


Collections

No additions

Journals and Newsletters


Maps

"Existing and Planned DART Installations," (Deep-ocean Assessment and Reporting of Tsunamis), map showing location is in Scientific and Technical Issues in Tsunami Hazard Assessment of Nuclear Power Plant Sites, by Science Review Working Group, Pacific Marine Environmental Laboratory (PMEL), NOAA, Seattle, WA, May 2007, p. 102


Seaside, Oregon Tsunami Pilot Study -- Modernization of FEMA Flood Hazard Maps, by Tsunami Pilot Study Working Group, NOAA OAR Special Report, NOAA/OAR/PMEL, Seattle, WA, 2006, 94 pp and 7 appendices


International Tsunami Museum, Khaolak, Thailand (see Sattler, 2006)
http://tsunami.orst.edu/workshop/2006/agenda.html

International Tsunami Museum, Khaolak, Thailand (see Sattler, 2006)

Jakarta Tsunami Information Center (JTIC), website
http://www.jtic.org

NOAA Center for Tsunami Research, NOAA, Pacific Marine Environmental Laboratory (PMEL), Seattle, WA

http://www.nap.edu/catalog/11619.html

Intergovernmental Coordination Group for the Tsunami Early Warning and Mitigation System in the North Eastern Atlantic, the Mediterranean and Connected Seas (ICG/NEAMTWS), First Session, Rome, Italy, 21-22 November 2005, UNESCO, Intergovernmental Oceanographic Commission (IOC), Reports of Governing and Major Subsidiary Bodies, 2006


Intergovernmental Coordination Group for the Tsunami Early Warning and Mitigation System in the North Eastern Atlantic, the Mediterranean and Connected Seas (ICG/NEAMTWS), First Session, Rome, Italy, 21-22 November 2005, UNESCO, Intergovernmental Oceanographic Commission (IOC), Reports of Governing and Major Subsidiary Bodies, 2006


Proceedings of the International Symposium on Tsunami Reconstruction with Geosynthetics: Protection, Mitigation, and Rehabilitation of Coastal and Waterway Erosion Control, Bangkok, Thailand, 2005

Proceedings of the National Workshop on Tsunami and Mitigation Measures, Department of Ocean Engineering, IIT Madras, 2005, Indian Institute of Technology, Madras

Proceedings of the Special Asia Tsunami Session at APAC 2005, Jeju-do, Korea, 2005

Proceedings of Tsunami Risk Workshop, Theory, Practice, and Plans, Moscow, Russia, June 2000, ed. V.K. Gusiakov, 2001


Videos and Photographs

Videos

Animation of the Tsunami from the 1906 San Francisco Earthquake, Small Scale QuickTime, 10 MB; Large Scale Quicktime, 17 MB, by U.S. Geological Survey, Western Coastal and Marine Geology, Tsunamis and Earthquakes, 2007 http://walrus.wr.usgs.gov/tsunami/

Animation of the 26 December 2004 Indian Ocean Local Tsunami, by U.S. Geological Survey, Western Coastal and Marine Geology, Tsunamis and Earthquakes, QuickTime, high resolution, 17.0 MB, 2007 http://walrus.wr.usgs.gov/tsunami/

Photographs


B. ARTICLES, PAPERS, REPORTS


Adams, W.M., and J.M. Jordan, Jr., Model Study of Tsunami Amplification Around the Island of Gahu, Hawaii, Center for Engineering Research, Univ. Hawaii, Honolulu, HI, 1968


Altinok, Y., and S. Ersoy, "Tsunamis Observed On and Near the Turkish Coast," Natural Hazards, Vol. 21, Nos. 2-3, 2000, pp 185-203


"Classification of Tsunami Hazard Along the Southern Coast of India: An Initiative to Safeguard the Coastal Environment from a Similar Debacle," Science of Tsunami Hazards, Vol. 24, No. 1, 2006, pp 3-23


Chaudhry, M.H., and G.N. Kosowan, Memorandum on Determination of Hydraulic Characteristics of Initial Wave Generated by Downie Slide, Development Dept., B.C. Hydro and Power Authority, Vancouver, B.C., Canada, April 1975


CIBA, Report on Assessment of Loss Due to Tsunami in Brackish Water Aquaculture and Fisheries Sectors in Coastal States of Andhra Pradesh, Tamil Nadu, and Kerala, 2005, pp 37


Demirbas, E., Comparison of Analytical and Numerical Approaches for Long Wave Runup, M. Sc. thesis, Middle East Technical University, Civil Engineering Dept., Ocean Engineering Research Center, Turkey, May 2002


Diposaptono, Subandono, Puji Pujiono, and Fumihiko
Manoa, Honolulu, 2005


Gisler, Galen, Robert Weaver, Michael L. Gittings, "SAGB Calculations of the Tsunami Threat from La Palma," Science of Tsunami Hazards, Vol. 24, No. 4, 2006, pp 288-301


Greenberg, B.A., T.S. Murty, and A. Ruffman, "A Numerical Model for the Tsunami in Halifax Harbour Due to the Explosion in December 1917," Marine


Ivelskaya, Tatiana, "Kurile 2007 Marine Expedition, First Stage Results," Tsunami Newsletter, Vol. 39, No. 1, Jan.-March 2007, pp 5-6


Jayakumar, S., D. Ilangovan, et al., "Run-up and Inundation Limits Along Southeast Coast of India During the 26 December Indian Ocean Tsunami," Curr. Sci., Vol. 88, 2005, pp 1,741-1,743


Kench, P.S., R.F. McLean, R.W. Brander, S.L. Nichol, S.G. Smithers, M.R. Ford, K.E. Parnell,


Kitamura, N., T. Kotaka, and J. Kataoka, "Ofunato-Shizugawa Chiku (Region between Ofunato and Shizugawa)," in Geological Observations of the Sanriku Coastal Region Damaged by Tsunami Due to the Chile Earthquake in 1960, ed. E. Kon’no, Contribution Institute of Geology Paleontology, Tohoku University, No. 52, 1961, pp 28-40

Knight, Bill, "Model Predictions of Gulf and Southern Atlantic Coast Tsunami Impacts from a Distribution of Sources," Science of Tsunami Hazards, Vol. 24, No. 5, 2006, pp 304-312


Kowalik, Z., "Relationship Between Tsunami Calculations and Physics," in 2nd Tsunami Symposium, Honolulu, Hawaii, USA, May 28-30, 2002


Kumar, C. Raj., and D.K. Srivastava, Tsunami and Disaster Management Law and Governance, Sweet and Maxwell Asia, Publishers, 2006, 274 pp


Loomis, Harold G., "Momentum as a Useful Tsunami


Montessus de Ballore, F., La Science Seismologique, A. Colin, Paris, 1907, 579 pp (a few quotes in English, in Gutenberg, 1939).


Moore, A., Y. Nishimura, G. Gelfenbaum, T.
Study of Waves from Downie Slide, report, North Vancouver, B.C., Canada, Aug. 1976


Panizzo, A., G. Bellotti, P. De Girolamo, Oxfam Briefing Note, (Indian Ocean tsunami), March 2005


the 8th NCEE Conference, San Francisco, CA, USA, April 2006


Pinegina, T.K., J. Bourgeois, Tsunami Deposits and Paleo-tsunami History on Peninsula Kamchatskiy (56 deg.-57 deg. N), Kamchatka Region (Bering Sea), Russia, Preliminary Report, AGU, 1998


http://seac47-2.phys.msu.ru/proc/


http://seac47-2.phys.msu.ru/proc/


Pugh, Clifford A., Hydraulic Model Studies of Landslide-generated Water Waves -- Morrow Point Reservoir, U.S. Dept. Interior, Bureau of Reclamation, Engineering and Research Center, Denver, CO, Rept. REC-ERC-82-9, April 1982, 53 pp and microfich in envelope


http://seac47-2.phys.msu.ru/proc/


Vol. 22, No. S3, June 2006, pp S511-S544


Scheffers, A., "Tsunami Imprints on the Leeward Netherlands Antilles (Aruba, Curacao, Bonaire) and their Relation to Other Coastal Problems," Quart. Intnl., Vol. 120, 2004, pp 163-172


Schlichting, R.B., Establishing the Inundation Distance and Overtopping Height of Paleotsunami from the Late-Holocene Geologic Record at Open-Coastal Wetland Sites, Central Cascadia Margin, M.S. thesis, Portland State University, Portland, OR, USA, 2000, 166 pp


Science Applications International Corporation, "Test of Tsunami Warning Buoy a Success," Civil Engineering, Vol. 77, No. 4, April 2007, p. 29


Shigihara, V., and F. Imamura, "Numerical Simulation Landslide Tsunami," in 2nd Tsunami


Sundar, V., "Behaviour of Shoreline Between Groin Field and Its Effect on the Tsunami Propagation," inProc. 5th Int. Symp. on Ocean Wave Measurement and Analysis, WAVES 2005, Madrid, Spain, IAHR

Sundar, V., "Protection Measures Against Tsunami-type Hazards for the Coast of Tamil Nadu, India," in The Indian Ocean Tsunami, eds. T.S. Murty, U. Aswathanarayana, and N. Nirupama, Taylor & Francis/Balkema, The Netherlands, 2007, Ch. 34, pp 411-420

Suresh, I., et al., "The 2004 Indian Ocean Tsunami: Description of the Event and Estimation of Length of the Tsunami Region Source Based on Data from Indian Tide Gauge," in Proc. 11th Asian Congress of Fluid Mechanics (IIACFM), Institution of Engineers Malaysia (IBM), 2006, Paper No. 163


Synolakis, C.E., H.M. Fritz, and V.V. Titov, "Field Survey of the Indian Ocean Tsunami on Sri Lanka's South Coast," in Proc. 5th Conf. on Ocean Wave Measurement and Analysis, WAVES 2005, Madrid, Spain, 2005


Tacoza Daily News, "The Big Cave-in," (tsunami, Commencement Bay, Puget Sound, WA), 29 Nov. 1894, p. 1


Trifunac, M.D., A. Hayir, and M.I. Todorovska, Near-field Tsunami Wave Forms from Submarine Slumps and Slides, Dept. Civil Eng. Rept No. CE 01-01, Univ. Southern California, Los Angeles, CA, 2001


Tsunami Pilot Study Working Group, Seaside, Oregon
Tsunami Pilot Study -- Modernization of FEMA Flood Hazard Maps, NOAA/OAR Special Report, NOAA/OAR/PMEL, Seattle, WA, 2006, 94 pp and 7 appendices


U.S. Agency for International Development (USAID), Tsunami Relief, Bureau for Legislative and Public Affairs, Washington, D.C., 2005


Walker, Daniel A., "Potential Overlooked Analogues to the Indian Ocean Tsunami in the Western and


Yalciner, A.C., N.H. Ghazali, and A.K.A. Wahab, December 26, 2004 Indian Ocean Tsunami Field Survey (July 09-10, 2005) at North West Peninsular Malaysia Coast, Penang and Langkawi Islands, 2005


2. SECTIONS C, D, AND E

C. PLANNING AND ENGINEERING DESIGN FOR TSUNAMI MITIGATION/ PROTECTION; ADJUSTMENTS TO THE HAZARDS; DAMAGE TO STRUCTURES AND INFRASTRUCTURE


Category 2 (Section D)

D. Tsunami Propagation Nearshore; Induced Oscillations; Runup/Inundations (Flooding), and Drawdown


Lynett, Patrick J., "Effect of a Shallow Water Obstruction on Long Wave Runup and Overland Flow


Peterson, C., R.K. Chadha, K.M. Cruikshank, M. Francis, G. Latha, T. Katada, J.P. Singh, and H. Yeh, "Preliminary Comparison of December 26, 2004 Tsunami Records from Southeast Indian and Southwest Thailand to Paleo tsunami Records of Overtopping Height and Inundation Distance from the Central Cascadia Margin, USA," communicated to the 8th NCREE Conference, San Francisco, CA, USA, April 2006


Schlichting, R.C., Establishing the Inundation Distance and Overtopping Height of Paleotsunami from the Late-Holocene Geologic Record at Open-Coastal Wetland Sites, Central Cascadia Margin, M.S. thesis, Portland State University, Portland, OR, 2000, 166 pp


Sundar, V., S.A. Sannasiraj, K. Murali, and R. Sundaravadivelu, "Runup and Inundation along the Indian Peninsula, Including the Andaman Islands, due to Great Indian Ocean Tsunami," Jour. Waterway, Port, Coastal, and Ocean Engineering, ASCE, Vol. 133, No. 6, Nov./Dec. 2007, pp 401-413.


SECTION E. IMPULSIVELY GENERATED WAVES BY A RAPID MASS MOVEMENT (LANDSLIDE, DEBRIS AVALANCHE, ROCKFALL, SLUMP, RIGID BODY), EITHER SUBMERGED OR INTO A BODY OF WATER.


Ambraseys, N.N., "The Seismic Sea Wave of July 9, 1956, in the Greek Archipelago," Journal of...
Geophysical Research, Vol. 65, No. 4, 1960, pp 1,257-1,265


Babcock, C.I., Impulsive Wave and Hydraulic Bore Inception and Propagation as Resulting from Landslides, a research problem presented to Georgia Inst. of Techn., Atlanta, Georgia, in partial fulfillment of the requirements for the degree M. Sc., in Civil Engineering, Oct. 1975


Borrero, J.C., F.I. Gonzalez, V.V. Titov, J.C.


Bowering, R.J., Landslide-generated Waves: A Laboratory Study, M.S. thesis, Queen's Univ., Kingston, Ontario, Canada, 1970

Brown, W.E., Underwater Subsidence at Kitimat: Sunday 27 April 1975, unpublished manuscript, Institute of Ocean Sciences, Patricia Bay, Fisheries and Environment Canada, Sidney, B.C., 1975, 8 pp

Bugge, T., Submarine Slides on the Norwegian Continental Margin with Special Emphasis on the Storegga Area, Continental Shelf and Petroleum Technology Research Institute, A/S Publ. 110, 1983, 152 pp


Calverly, Bob, "A Tsunami 50 Feet High Could Hit Southern California," a news release from USC Public Relations, 01/29/01, 2 pages


Campbell, D.B., and N.A. Skermer, Report to B.C. Water Resources Service on Investigation of Sea Wave at Kitimat, B.C., Goldar Associates, Vancouver, B.C., Canada, report to B.C. Water Resources Service, June 1975, 9 pp, 6 figs., 1 appendix


Chaudhry, M.H., and G.N. Kosowan, Memorandum on Determination of Hydraulic Characteristics of Initial Wave Generated by Downie Slide, Development Dept., B.C. Hydro and Power Authority, Vancouver, B.C., Canada, April 1975


Driscoll, W., J.K. Weissel, and J.A. Goff, "Potential for Large-scale Submarine Slope Failure and Tsunami Generation along the U.S. Mid-Atlantic Coast," Geology, Vol 28, No. 5, 2000, pp 407-410


Science of Tsunami Hazards, Vol. 24, 2006, pp 288-301

Gjevik, B., and G. Pedersen, Numerical Simulation of Wave Generation and Run-up due to Rock Slide in the Qaumaruajuk Fjord, Greenland, Report 85418-1, Norwegian Geotechnical Institute, Oslo, Norway, 1986

Golder Associates, Report to British Columbia Water Resources Service on Investigation of Seawave at Kitimat, B.C., Golder Assoc., Vancouver, B.C., Canada, 1975, 9 pp


Grindlay, N., Volume and Density Approximations of Material Involved in a Debris Avalanche on the South Slope of the Puerto Rico Trench, Puerto Rico Civil Defense Report, 1998


Harbitz, C.B., Model Theory and Analytical Solutions for Large Water Waves Due to Landslides, Dept. of Mathematics, Univ. Oslo, Norway, Preprint Series No. 4, 1992


Kedding, Barbara H., Christopher F. Waythomas, and Alastair G. Dawson, editors, Landslides and Tsunamis, PAGEOPH Topical Volumes, Pure and Applied Geophysics, a special issue, Birkhauser, Basel, Vol. 157, Nos. 6/7/8, 2000, pp 871-1,313


Legg, Mark R., Jose C. Borrero, and Costas E. Synolakis, Evaluation of Tsunami Risk to Southern California Coastal Cities, the 2003 NEHRP Professional Fellowship Report, Earthquake Engineering Research Institute (ERRI), PF2002-11, January 2003, 32 pp and Appendix A (16 figns.), Appendix B (numerical "wave gage" time series for
Cases 2-7)


Ma, Kuo-Fong, Kenji Satake, and Hiroo Kanamori, "The Origin of the Tsunami Excited by the 1989 Loma Prieta Earthquake - Faulting or Slumping?", Geophys Research Letters, Vol. 18, No. 4, April 1991, pp 637-640


Mader, Charles L., and Sharon Lukas, SWAN-A Shallow Water, Long Wave Code, Hawaii Institute of Geophysics, Univ. Hawaii, Honolulu, HI, Rept. HIG-84; also Joint Institute for Marine and Atmospheric Research report, JIMAR 84-077, 1985


Maso, Miguel Sadera, The Eruption of Teal Volcano, January 30, 1911, U.S. Weather Bureau, Dept. Interior, Manila, Philippine Islands, 1911, 45 pp, 7 plates


Mercado, A., Investigation of the Potential


Norem, H., J. Locat, and B. Schieldrop, *An Approach to the Physics and the Modelling of


Northwest Hydraulic Consultants, Hydraulic Model Study of Waves from Downie Slide, report, North Vancouver, B.C., Canada, Aug. 1976


Pararas-Carayannis, G., "The Tsunami Generated from the Eruption of the Volcano of Santorini in


Shepard, F.P., "Depth Changes in the Sagami Bay During the Great Japanese Earthquake," Jour. Geol., Vol. 41, 1933, pp 527-536


Somerville, Paul, Hong Kie Thio, and Gene Ichinose, Probabilistic Tsunami Hazard Analysis, URS Corporation, Pasadena, CA, Office, 2005, 6 pp Email. paul_somerville@urscorp.com


Tacoma Daily News, "The Big Cave-in," (tsunami, Commencement Bay, Puget Sound, WA), 29 Nov. 1894, p 1


Tappin, D.R., P. Watts, G.M. McMurtry, Y. Lafoy,


Titov, V.V., B. Jaffe, F.I. Gonzalez, and G.


Visher, D.L., "Rockfall Induced Waves in


