Pressure dependence of the Néel and the superconducting transition temperature of CeCo(In_{0.9}Cd_{0.1})_{5} studied by thermal expansion

J.G. Donatha,*, P. Gegenwarta,b, M. Nicklasa, F. Steglicha, L.D. Phamc, Z. Fiskd

aMax-Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
bFirst Physics Institute, University of Göttingen, 37077 Göttingen, Germany
cUniversity of California, Davis, CA 95616, USA
dUniversity of California, Irvine, CA 92697, USA

Abstract

We present low-temperature thermal expansion measurements on the nominally 10\% Cd doped CeCoIn\textsubscript{5}. While the superconducting transition temperature is monotonically suppressed, an antiferromagnetic phase evolves in CeCoIn\textsubscript{5} by Cd-doping. For the uniaxial pressure dependence of the Néel temperature along \(c \), we find \(\left(\frac{\partial T_N}{\partial p} \right)_c = 0.206 \text{ K/GPa} \). The magnetic field dependence (for \(B_{\parallel c} \)) of \(T_N \) is stronger compared to CeRhIn\textsubscript{5}. As no traces of a superconducting transition are resolved in thermal expansion along the \(c \)-axis, we estimate a lower limit of the in-plane pressure dependence to \(\left(\frac{\partial T_c}{\partial p} \right)_{\perp c} = 0.38 \text{ K/GPa} \).

\(\odot \) 2007 Elsevier B.V. All rights reserved.

\textbf{PACS}: 75.30.—m; 75.30.Kz; 75.50.Ee; 74.25.Bt; 74.62.Yb; 74.70.Tx

\textbf{Keywords}: CeCoIn\textsubscript{5}; Heavy fermion superconductivity; Heavy fermion antiferromagnet; Thermal expansion; 115

1. Introduction

The tetragonal CeMI\textsubscript{5} (\(M = \text{Co, Rh, Ir} \)) family of heavy fermion compounds is ideally suited to study the interplay of magnetic and superconducting (SC) ground states. While CeRhIn\textsubscript{5} orders antiferromagnetically (AFM) below \(T_N = 3.8 \text{ K} \) \cite{1}, CeIrIn\textsubscript{5} \cite{2}, and CeCoIn\textsubscript{5} \cite{3} superconduct below \(T_c = 0.4 \) and 2.3 K, respectively. The observed non-Fermi liquid behavior in the Co-115 close to the upper critical field of the superconductivity is believed to originate from a magnetic quantum critical point which coincides with the upper critical field for superconductivity \[4,5\]. By doping Cd on the In-sites, CeCoIn\textsubscript{5} can be driven to an AFM ground state and shows superconductivity below \(T_c \approx 1.3 \text{ K} \). In a wide range of concentration and pressure, both, SC and AFM coexist \[6\].

2. Results

Here, we present thermal expansion measurements on CeCo(In_{0.9}Cd_{0.1})_{5}, which orders AFM commensurate with the crystal lattice at \(T_N \approx 3 \text{ K} \) \cite{7}. The magnetic intensity below \(T_c \approx 1.3 \text{ K} \), where superconductivity is observed in electrical resistivity and specific heat, changes only marginal which points to a coexistence of AFM and SC \cite{8}. The nominally 10\% Cd-doped sample can be considered to be shifted by 1.6 GPa with respect to CeRhIn\textsubscript{5} derived from the temperature pressure phase diagram for the latter \[6\].

The uniaxial thermal expansion coefficient along the \(c \)-direction \(\alpha_c \) \(\text{was obtained by means of a high resolution capacitive dilatometer adapted to a } ^3\text{He}/^4\text{He dilution refrigerator. Its relative resolution of up to } 10^{-11} \text{ allows to study pressure dependences of the Néel temperature and the SC transition temperature most sensitively.} \)

Previous specific heat studies showed that \(T_c \) is monotonically suppressed by Cd doping and vanishes at \(x \approx 0.15 \). Simultaneously, antiferromagnetism appears at \(x \approx 0.05 \) and the Néel temperature increases as \(x \) increases.
In Fig. 1, the magnetic contribution to the specific heat is shown, measured in a commercial physical property measurement system (PPMS, quantum design). A lambda-like anomaly, indicative for a second order phase transition is detected at \(T_N \). A second, much smaller anomaly marks the onset of superconductivity. In the right part of Fig. 1, the thermal expansion parallel to the tetragonal \(c \)-direction vs. temperature is plotted. The Neel temperature \(T_N \approx 3 \) K is in good agreement with the aforementioned results of \(C(T) \). An SC phase transition, however, could not be resolved at lower temperatures.

Assuming a scattering of \(\Delta z \approx 0.2 \times 10^{-6} / \)K of the data at \(T_c \approx 1.3 \) K, a lower limit of the uniaxial pressure dependence along \(c \) can be estimated with the Ehrenfest relation \((\partial T_c/\partial p) = V_m T_c (\Delta z/\Delta C) \) (\(V_m \); molar volume) to \((\partial T_c/\partial p)_c = 0.040 \) K/GPa, whereas the jump anomaly \(\Delta C \) has been estimated by an equal-area construction in \(C(T)/T \). The hydrostatic pressure dependence of the SC transition temperature can be derived from the temperature pressure phase diagram \([6,9]\) and is evaluated to \((0.8 \pm 0.2) \) K/GPa. This leads to the conclusion, that the uniaxial in-plane pressure dependence has to be at least \((\partial T_N/\partial p)_c = 0.38 \) K/GPa and accordingly a jump anomaly in the thermal expansion of \(\Delta z_{c} = 1.9 \times 10^{-6} / \)K is expected. Further measurements are needed to confirm this prediction.

The crystal structure of the CeMIn\(_5\) family which consists of an alternating series of CeIn\(_3\) and MIn\(_2\), stacked along \(c \), gives rise to extended 2D behavior in the physical properties. Thus, an anisotropy of the pressure dependences is expected which indeed has been observed in the isostructural compound CeRhIn\(_5\) \([10]\) and in undoped CeCoIn\(_5\). For the latter, the uniaxial pressure dependence of the SC transition temperature along \(c \) is \((\partial T_c/\partial p)_{c} = 0.18 \) K/GPa while in-plane \((\partial T_c/\partial p)_{c} = 0.3 \) K/GPa has been found \([11]\).

We now turn to the analysis of the antiferromagnetic phase transition. In Fig. 2, \(\Delta z_{c} \) is shown for various magnetic fields of \(B = 0, 2, 4, \) and \(7 \) T (\(B//c \)). The anomaly marks the temperature below which the system orders AFM. The uniaxial pressure dependence of the Neel temperature along \(c \) for \(B = 0 \) T yields \((\partial T_N/\partial p)_c = 0.206 \) K/GPa. In magnetic fields \((B//c) \), \(T_N \) is shifted to lower temperatures, similar to CeRhIn\(_5\), but with an about ten times stronger field dependence compared to the latter \([12]\). Hence, the antiferromagnetic ground state is much less stable than that of CeRhIn\(_5\) toward external magnetic fields. Since the orientation of the magnetic moments of the Cd-doped CeCoIn\(_3\) is not yet clarified, the origin of this difference remains unclear.

3. Summary

To summarize, we have studied the heavy fermion compound CeCo(In\(_{0.9}\)Cd\(_{0.1}\))\(_5\) by low-temperature thermal expansion measurements. While the results for the Neel temperature are in agreement with specific heat data, no sign of the SC phase transition could be resolved. We assign this to the anisotropy of the uniaxial pressure dependences in this family of compounds. A rough estimation in terms of the Ehrenfest relation leads to an expected jump anomaly of \(\Delta z_{c} \approx 1.9 \times 10^{-6} / \)K which needs to be verified experimentally in future measurements.

The pressure dependence of the Neel temperature yields \((\partial T_N/\partial p)_c = 0.206 \) K/GPa. The suppression of \(T_N \) in external magnetic fields \((B//c) \) is significantly stronger than for CeRhIn\(_5\).

Acknowledgments

Work at Dresden supported in part by the Fonds der Chemischen Industrie. Work at UC Davis and UC Irvine has been supported by NSF Grant no. 053360.
References