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Rational swept surface constructions based on

differential and integral sweep curve properties

Rida T. Farouki and Kevin M. Nittler
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA.

Abstract

A swept surface is generated from a profile curve and a sweep curve by
employing the latter to define a continuous family of transformations
of the former. By using polynomial or rational curves, and specifying
the homogeneous coordinates of the swept surface as bilinear forms in
the profile and sweep curve homogeneous coordinates, the outcome is
guaranteed to be a rational surface compatible with the prevailing data
types of CAD systems. However, this approach does not accommodate
many geometrically intuitive sweep operations based on differential or
integral properties of the sweep curve — such as the parametric speed,
tangent, normal, curvature, arc length, and offset curves — since they
do not ordinarily have a rational dependence on the curve parameter.
The use of Pythagorean–hodograph (PH) sweep curves surmounts this
limitation, and thus makes possible a much richer spectrum of rational
swept surface types. A number of representative examples are used to
illustrate the diversity of these novel swept surface forms — including
the oriented–translation sweep, offset–translation sweep, generalized
conical sweep, and oriented–involute sweep. In many cases of practical
interest, these forms also have rational offset surfaces. Considerations
related to the automated CNC machining of these surfaces, using only
their high–level procedural definitions, are also briefly discussed.

Keywords: swept surface; profile curve; sweep curve; homogeneous coordinates;
rational surface; Pythagorean–hodograph curve; geometrical transformation.
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1 Introduction

Sweep operations provide an intuitive approach to constructing surfaces from
two parametric curves, a profile curve p(u) and sweep curve s(v). The points
of the sweep curve determine a family of transformations acting on the profile
curve, such that the continuum of its transformed instances generates a swept

surface R(u, v). In addition to the profile and sweep curves, a swept surface
construction requires a precise specification of the nature of the geometrical
transformation associated with each point of the sweep curve.

Two familiar cases are the surface of extrusion and surface of revolution.
In the former case, the sweep curve is a line segment, whose points specify a
family of translations of the profile curve. In the latter case, the sweep curve
is a circular arc, whose points specify a family of rotations of the profile curve
about an axis orthogonal to the plane of the circle. Ruled surfaces, quadrics,
and cyclides are further elementary surfaces that can be defined by intuitive
sweep operations. These are just the simplest examples of the diverse surface
types that can be constructed using generalized sweep operations.

Although many current commercial CAD systems incorporate some swept
surface capability, it is often of limited scope or incurs approximation of the
precise surface geometry. The universal reliance of CAD systems on rational
parametric surface representations limits the swept surface types that can be
exactly generated, and necessitates the use of data–intensive approximations
for those that cannot. The intent of the present study is to illustrate how the
family of exact rational swept surface constructions can be greatly expanded
by employing Pythagorean–hodograph (PH) curves [10] as sweep curves. The
PH curves possess rational differential and integral properties — parametric
speed, arc length, tangent and normal, curvature, and offset curves — that
facilitate the construction of a rich variety of rational swept surfaces in which
the geometrical transformations of the profile curve are explicitly dependent
on these properties of the sweep curve, not just its point coordinates.

Perhaps the earliest systematic approach to swept surface constructions
was proposed in the late 1970s by Hinds and Kuan in two little–known papers
[24, 25] (see also Section 13.8 of [10]). In their methodology, an elegant matrix
algebra is employed to directly construct the swept surface R(u, v) from the
profile and sweep curves p(u) and s(v). Assuming that they are both rational
cubic curves, they can be represented by 4 × 4 matrices in which one index
is associated with a homogeneous coordinate component, and the other with
the cubic basis functions. Similarly, R(u, v) can be represented as a rational
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bicubic surface through a 4 × 4 × 4 matrix, in which one index is associated
with a homogeneous coordinate component, and the others with cubic basis
functions in u and v. The 4×4×4 matrix that defines R(u, v) is generated by
contracting the 4×4 matrices defining p(u) and s(v) with a 4×4×4 selector

matrix, that serves to specify the nature of the geometrical transformations
of the profile curve p(u) associated with each point of the sweep curve s(v).

The essence of this approach lies in judicious choice of the selector matrix
elements, so as to implement the desired sweep operation. The coordinates of
the sweep curve points may be used to define translations, scalings, rotations,
and perspectivities of the profile curve — but only in certain combinations,
determined by linear dependence of the homogeneous coordinates of R(u, v)
on those of p(u) and s(v). For example, if the profile and sweep curves are
planar, it is not possible to define a translational sweep of p(u) along s(v),
such that p(u) always lies in the normal plane of s(v), since the orientation of
this plane does not ordinarily have a rational dependence on v. However, if
s(v) is a PH curve, it has a rational unit normal vector, so a rational surface
R(u, v) defined by the above sweep operation becomes possible.

The approach proposed herein may be considered a generalization of the
rational swept surface constructions introduced by Hinds and Kuan [24, 25] to
accommodate geometrical transformations dependent on certain differential
and integral properties of a Pythagorean–hodograph sweep curve s(v). This
opens up a much richer class of swept surface constructions amenable to exact
representation within the prevailing geometry data types of CAD systems.
As in [24, 25] a key motivation is the ability to fabricate such surfaces on CNC
machines, using only a high–level procedural definition of the surface. In this
context, the ability to efficiently compute certain surface properties, such as
the unit surface normal vector, is essential. However, the focus of this paper
is on the construction of swept surfaces and computation of their geometrical
properties. Since the CNC machining application incurs additional technical
considerations, it will be deferred to a subsequent study.

The plan for the remainder of this paper is as follows. Section 2 reviews
some preparatory material on the homogeneous–coordinate representation of
rational curves and surfaces, the construction and properties of planar PH
curves, and some basic principles for the construction and machining of swept
surfaces. Section 3 describes the scaled–rotation sweep, a representative case
of the “traditional” swept surface types defined by bilinear forms in the profile
and sweep curve homogeneous coordinates, and some intrinsic limitations of
these forms are identified. The generalization to sweep operations dependent
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on differential or integral properties of a (PH) sweep curve yields a remarkable
variety of new possibilities. The goal of this paper is to introduce these novel
surface types through illustrative examples of practical interest, rather than
to attempt an exhaustive categorization. Consequently, Sections 4–7 present
basic definitions, constructions, and examples for several important cases —
the oriented–translation sweep, offset–translation sweep, oriented–involute
sweep, and generalized conical sweep. For simplicity, these cases all employ
planar sweep curves, but Section 8 briefly describes a type of swept surface
that addresses the additional orientational freedom associated with a spatial
sweep curve: the rotation–minimizing sweep. Finally, Section 9 summarizes
and assesses the key contributions of this study, and identifies some promising
directions for further extending and applying them.

2 Rational swept surfaces

The term swept surface (or swept volume) is often used to refer to the region
defined as the union of the instances of a rigid body that executes a general
spatial motion — such surfaces are of great importance in modeling material
removal in CNC machining, collision avoidance in robotics, and related fields
[2, 3, 5, 6, 26, 27, 36, 37]. A closely related concept is the generalized cylinder

(or cone) that has seen widespread application as a basic shape primitive in
computer vision and biomedical applications [1, 7, 20, 28, 29, 30, 32].

In the present context, we are interested in the process of using two curves
to intuitively design a smooth surface, by imposing a continuous family of
transformations on an “initial” (profile) curve, parameterized by the points
of the other (sweep) curve. The emphasis is on achieving greater flexibility
in the types of the allowed transformations, subject to the requirement that
the outcome must be a rational surface. Before we introduce this generalized
family of rational swept surfaces, we must review some basic facts concerning
the homogeneous coordinate representation of rational curves and surfaces,
the advantages of employing PH curves in sweep transformations, and key
principles governing the construction and machining of such surfaces.

2.1 Homogeneous coordinates

A point in three–dimensional projective space is specified by its homogeneous

coordinates (W, X, Y, Z). If W = 0, these homogeneous coordinates identify
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a point at infinity. If W 6= 0, they identify a finite point, with the Cartesian
coordinates (x, y, z) = (X/W, Y/W, Z/W ). Note that only the ratios of the
homogeneous coordinates matter — i.e., (W, X, Y, Z) and (cW, cX, cY, cZ)
identify exactly the same point in projective space for any value c 6= 0.

A projective transformation is a linear map in projective space, specified
by a 4 × 4 matrix through the relation
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. (1)

This embodies all affine transformations, in which no finite point is mapped
to a point at infinity, and vice–versa — including shape–preserving mappings
(translation, rotation, reflection, uniform scaling) and non–shape–preserving
mappings (shear transformations); and also perspectivities in R

3 — in which
finite points may be mapped to points at infinity, and vice–versa.

A rational curve in R
3 is defined by giving its homogeneous coordinates as

polynomial functions W (ξ), X(ξ), Y (ξ), Z(ξ) of a parameter ξ. The Cartesian
coordinates of such a curve are defined by

(x(ξ), y(ξ), z(ξ)) =

(

X(ξ)

W (ξ)
,

Y (ξ)

W (ξ)
,

Z(ξ)

W (ξ)

)

.

A polynomial curve, corresponding to the special case W (ξ) = constant, has
a single point at infinity (namely, ξ → ±∞). However, a rational curve may
have many points at infinity, identified by the roots of the polynomial W (ξ).
Unlike polynomial curves, the set of rational curves of given degree is closed
under general projective transformations. Rational forms are essential for an
exact specification of basic curves, such as conic sections (the parabola is the
only conic that can be exactly specified as a polynomial curve).

Similarly, a rational surface in R
3 is defined by specifying its homogeneous

coordinates as polynomial functions W (u, v), X(u, v), Y (u, v), Z(u, v) of two
surface parameters u, v. Such a surface has the Cartesian coordinates

(x(u, v), y(u, v), z(u, v)) =

(

X(u, v)

W (u, v)
,

Y (u, v)

W (u, v)
,

Z(u, v)

W (u, v)

)

.

A polynomial surface corresponds to the special case W (u, v) = constant.
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The swept surface approach in [24, 25] takes the homogeneous coordinates
W (u), X(u), Y (u), Z(u) of the profile curve p(u) as elements of the column
vector on the right in (1), while the elements mjk of the 4×4 transformation
matrix are chosen to be linearly dependent on the homogeneous coordinates
W (v), X(v), Y (v), Z(v) of the sweep curve s(v). The outcome of the matrix
product (1) is then a rational surface specified by homogeneous coordinates
W (u, v), X(u, v), Y (u, v), Z(u, v) that are bilinear in W (u), X(u), Y (u), Z(u)
and W (v), X(v), Y (v), Z(v). The swept surfaces considered herein generalize
this approach by allowing the matrix elements mjk to also depend on certain
differential/integral properties of the sweep curve s(v), which is chosen to be
a PH curve so as to ensure that the outcome is a rational surface.

2.2 Pythagorean–hodograph curves

For a differentiable plane curve r(ξ) = (x(ξ), y(ξ)) the parametric speed

σ(ξ) = ‖r′(ξ)‖ =
√

x′2(ξ) + y′2(ξ) =
ds

dξ
(2)

is the rate of change of the arc length s with respect to the parameter ξ. The
unit tangent and normal vectors along r(ξ) are defined by

t(ξ) =
(x′(ξ), y′(ξ))

σ(ξ)
and n(ξ) =

(y′(ξ),−x′(ξ))

σ(ξ)
, (3)

so that n(ξ) = t(ξ)×k, where k is a unit vector in the positive z direction —
i.e., (n(ξ), t(ξ),k) is a right–handed orthonormal frame at each point of r(ξ).
The variation of the vectors (3) along r(ξ) is characterized by the relations

t′(ξ) = −σ(ξ) κ(ξ)n(ξ) and n′(ξ) = σ(ξ) κ(ξ) t(ξ) , (4)

where the (signed) curvature of r(ξ) is defined [23] by

κ(ξ) =
(r′(ξ) × r′′(ξ)) · k

σ3(ξ)
=

x′(ξ)y′′(ξ) − x′′(ξ)y′(ξ)

σ3(ξ)
. (5)

For an “ordinary” polynomial or rational curve r(ξ), the tangent and normal
(3) and the curvature (5) are not rational functions of the parameter ξ, since
the parametric speed (2) is the square–root of an irreducible polynomial or
rational function in ξ. Moreover, the arc length integral

s(ξ) =

∫ ξ

0

σ(t) dt (6)
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has (except in trivial cases) no closed–form analytic reduction, and must be
approximated by means of numerical quadrature.

A Pythagorean–hodograph (PH) curve, on the other hand, incorporates a
special algebraic structure in its derivative, ensuring that σ(ξ) is a polynomial

in ξ. Namely, r′(ξ) = (x′(ξ), y′(ξ)) has components specified [18] in terms of
relatively prime polynomials u(ξ), v(ξ) as

x′(ξ) = u2(ξ) − v2(ξ) , y′(ξ) = 2 u(ξ)v(ξ) . (7)

This is sufficient and necessary1 for satisfaction of the Pythagorean condition

x′2(ξ) + y′2(ξ) = σ2(ξ) ,

where the parametric speed is the polynomial σ(ξ) = u2(ξ)+v2(ξ). Since σ(ξ)
is a polynomial, the tangent and normal vectors (3) and the curvature (5) of
a PH curve are rationally dependent on the curve parameter ξ. Furthermore,
the arc length (6) is a polynomial in ξ, since it is the integral of the polynomial
parametric speed σ(ξ). Finally, the offset curves

rd(ξ) = r(ξ) + dn(ξ) (8)

at each (signed) distance d from r(ξ), i.e., the loci obtained by displacing by
distance d in the normal direction from each curve point, are rational curves.
When the sweep curve s(v) is specified as a PH curve, these properties allow
one to prescribe sweep transformations that are explicitly dependent upon its
parametric speed, tangent, normal, curvature, arc length, and offset curves,
while ensuring that the result is always a rational swept surface.

The complex form [8], in which the coordinate components x(ξ) and y(ξ)
of a plane curve are interpreted as the real and imaginary parts of a complex–
valued function r(ξ) = x(ξ) + i y(ξ), offers a simple means of incorporating
the structure (7). Namely, any curve for which the hodograph r′(ξ) = w2(ξ)
is the square of a complex polynomial w(ξ) = u(ξ)+i v(ξ) is a PH curve. This
approach facilitates the development of many algorithms for constructing and
analyzing planar PH curves. PH quintics, for example, can be constructed
as interpolants to first–order Hermite data [17]; as C2 splines interpolating a
sequence of points under prescribed end conditions [15]; or through several
shape–constrained methods — e.g., see [9, 12, 22, 33, 34, 35].

1We focus here on primitive Pythagorean hodographs with gcd(x′(ξ), y′(ξ)) = constant.
Non–primitive examples can also be constructed by multiplying the expressions (7) with
a third polynomial w(ξ), but the resulting curves are singular at the real roots of w(ξ).
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In the present context, the sweep curve s(v) is usually defined as a planar
PH quintic segment, obtained by integrating the hodograph s′(v) = w2(v)
defined by a quadratic Bernstein–form polynomial

w(v) = w0(1 − v)2 + w12(1 − v)v + w2v
2 (9)

with complex coefficients w0,w1,w2. Then the parametric speed of s(v) is
the polynomial σ(v) = |w(v)|2, the arc length s(v) is obtained by integrating
this polynomial, and the tangent, normal, and curvature can be expressed as

t(v) =
w2(v)

σ(v)
, n(v) = − i

w2(v)

σ(v)
, κ(v) = 2

Im(w(v)w′(v))

σ2(v)
.

Complete details on the construction and properties of planar PH curves may
be found in [10].

2.3 Rational swept surface constructions

For simplicity, we typically assume that the profile and sweep curves are both
planar. This is not an essential assumption, but it makes the sweep operation
easier for the designer to formulate and interpret. To obtain a rational swept
surface through transformations of the profile curve p(u) that depend upon
certain differential or integral properties of the sweep curve s(v), the latter
must be a PH curve but the former may be any polynomial or rational curve.

Let (i, j,k) be unit vectors in the (x, y, z) directions. The profile curve is
typically specified in the (x, z) plane as p(u) = x(u) i+z(u)k, and the sweep
curve is specified in the (x, y) plane as s(v) = x(v) i + y(v) j. For brevity, we
use the same symbols x, y, z, σ, s, t,n, κ to denote the coordinate components,
parametric speed, arc length, tangent, normal, and curvature of the profile
and sweep curves — the independent variable serves to identify which of the
two curves they refer to. A surface R(u, v) generated from p(u) and s(v) by
a specified sweep operation is defined by homogeneous coordinates W (u, v),
X(u, v), Y (u, v), Z(u, v) such that

R(u, v) =
X(u, v)

W (u, v)
i +

Y (u, v)

W (u, v)
j +

Z(u, v)

W (u, v)
k . (10)

To ensure that R(u, v) is a rational surface W (u, v), X(u, v), Y (u, v), Z(u, v)
must be bivariate polynomials without common factors. The unit normal to
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the surface (10) is defined in terms of its partial derivatives by

N(u, v) =
Ru(u, v) × Rv(u, v)

‖Ru(u, v) × Rv(u, v) ‖ (11)

at each point where Ru(u, v) and Rv(u, v) are linearly independent, and the
offset surface at (signed) distance r from R(u, v) is defined by

Rr(u, v) = R(u, v) + r N(u, v) . (12)

To implement a particular sweep operation, one must specify W (u, v),
X(u, v), Y (u, v), Z(u, v) in terms of the quantites x, y, z, σ, s, t,n, κ for the
profile and sweep curves. Since the possibility of defining sweep operations in
terms of both the point coordinates and differential/integral properties of a
PH sweep curve s(v) opens up a vast array of rational swept surface types, we
do not attempt a systematic categorization of them at present. Instead, the
versatility of this approach is illustrated by several representative examples
that are of the primary interest in practical design problems.

2.4 Real–time CNC interpolator

The ultimate goal of this study is to develop a methodology for designing and
machining a wide variety of rational swept surfaces. The intent is to drive a
computer numerical control (CNC) machine from the high–level procedural
swept surface definition, rather than voluminous part programs comprising
short linear/circular G code segments. We defer details on the machining to
a future study, and consider here only some basic geometrical considerations
arising in the context of the swept surface constructions.

Spherical (ball–end) tools are typically preferred for machining free–form
surfaces, since they can cut any surface whose least concave principal radius
of curvature is not less than the tool radius. The machine drives the center of
the tool along a path displaced by the surface normal (11) at each point along
the contact curve with the surface R(u, v), i.e., the tool center executes a path
on the offset surface (12). The surface normal (11) is explicitly evaluated for
each of the rational swept surface forms described below.

For simplicity, we initially choose the isoparametric curves u = constant
or v = constant on the surface (10) as toolpaths. However, to ensure a given
speed (or feedrate) of the tool contact point with the surface, it is necessary
to compensate for the non–uniform nature of the parameterization. This is
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the function of the real–time interpolator algorithm [19, 31, 38]. The simplest
(first–order) real–time interpolators, which are quite accurate for moderate
feedrates and high sampling frequencies, need only the parametric speed (i.e.,
the rate of change of arc length with the curve parameter) along the toolpath.
Hence, for each of the swept surfaces described below, the parametric speed
along both sets of isoparametric curves will be evaluated.

3 Scaled–rotation sweep

To begin, we consider an example of the family of swept surfaces introduced
by Hinds and Kuan [24, 25]. For these surfaces R(u, v) is a bilinear expression
in the coordinate components of the profile curve p(u) and sweep curve s(v),
but does not depend on their differential or integral properties.

For a profile curve p(u) = x(u) i + z(u)k in the (x, z) plane and a sweep
curve s(v) = x(v) i + y(v) j in the (x, y) plane, consider the surface

R(u, v) = x(u) s(v) + z(u)k . (13)

Defining the polar coordinates ρ(v) and φ(v) of s(v) by

ρ(v) =
√

x2(v) + y2(v) , cos φ(v) =
x(v)

ρ(v)
, sin φ(v) =

y(v)

ρ(v)
, (14)

the surface (13) can also be expressed in the form

R(u, v) = x(u) ρ(v) [ cosφ(v) i + sin φ(v) j ] + z(u)k .

Comparing with the profile curve p(u) = x(u) i+z(u)k, the first term above
arises from replacing the vector i by cos φ(v) i + sin φ(v) j, and multiplying
by ρ(v), while the second term is unchanged. Instance v of the transformed
profile curve thus lies in the plane spanned by cosφ(v) i + sin φ(v) j and k,
instead of i and k, and is scaled parallel to the (x, y) plane by the factor ρ(v).
The family of these scaled/rotated instances of the profile curve, as v varies,
defines a scaled–rotation swept surface with homogeneous coordinates

W (u, v) = 1 ,

X(u, v) = x(v)x(u) ,

Y (u, v) = y(v)x(u) ,

Z(u, v) = z(u) .
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This is clearly a polynomial surface if p(u) and s(v) are polynomial curves,
and a rational surface if they are rational curves.

The u = constant isoparametric curves on the surface lie in planes parallel
to the (x, y) plane, at a height z(u) above it. The v = constant curves lie in
planes orthogonal to the (x, y) plane, spanned by the vectors k and s(v). To
compute the unit normal (11) to the surface defined by (13), we note that
its partial derivatives are

Ru(u, v) = x′(u) s(v) + z′(u)k , Rv(u, v) = x(u) s′(v) .

Substituting into (11) and simplifying, the surface normal can be written as

N(u, v) = sign(x(u))
[ x′(u)s(v) + z′(u)k ] × s′(v)

‖ [ x′(u)s(v) + z′(u)k ] × s′(v) ‖ . (15)

Note that the surface normal is singular when x(u) = 0, since then Rv = 0.
Also, since (15) is not in general a rational expression in u and v, the offset
(12) to the swept surface (13) is not ordinarily a rational surface. The angle
that the surface normal makes with the (x, y) plane

θ(u, v) = sign(x(u)) sin−1
x′(u) (s(v) × s′(v)) · k

‖ [ x′(u)s(v) + z′(u)k ] × s′(v) ‖ .

In general, this angle is non–constant along both sets of isoparametric curves.
The parametric speed along the u = constant and v = constant isoparametric
curves is defined by the magnitudes of the derivatives Rv(u, v) and Ru(u, v)
respectively, namely

‖Rv(u, v)‖ = |x(u)| σ(v) , ‖Ru(u, v)‖ =
√

ρ2(v)x′2(u) + z′2(u) .

If the sweep curve s(v) is an arc of the unit circle centered on the origin,
then ρ(v) ≡ 1, and the scaling of the profile curve p(u) parallel to the (x, y)
plane is suppressed. In this case we obtain a surface of revolution, generated
by rotating p(u) about the z–axis. However, for any other sweep curve, it is
not possible to “decouple” the rotation and scaling aspects of this category of
sweep operations. It is also not possible to construct a sweep operation that
involves orienting the profile curve using differential properties of the sweep
curve, such as the tangent or normal vector. To achieve this, it is necessary
to formulate sweeps in terms of not only the point coordinates of the sweep
curve, but also their derivatives, and to do so in a manner that ensures the
resulting swept surface has a rational parameterization.
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Example 1. For the profile curve, we take the 90◦ circular arc in the (x, z)
plane defined by

p(u) =
(1 − u2) i + 2uk

1 + u2
, (16)

and the sweep curve is a cubic in the (x, y) plane,

s(v) = p0(1 − v)3 + p13(1 − v)2v + p23(1 − v)v2 + p3v
3 ,

with the Bézier control points p0 = (1.0, 0.0), p1 = (1.0, 0.8), p2 = (0.8, 1.0),
p3 = (0.0, 1.0). Figure 1 illustrates the resulting scaled–rotation surface. The
initial and final instances of the profile curve are circle arcs, but intermediate
instances are ellipse arcs, since the scale factor ρ(v) = ‖s(v)‖ parallel to the
(x, y) plane is unity when v = 0 and v = 1, but exceeds unity at intermediate
v values — with a maximum of ρ(1

2
) ≈ 1.1844. The rational scaled–rotation

swept surface is specified by the homogeneous coordinates

W (u, v) = 1 + u2 ,

X(u, v) = (1 − u2) [ (1 − v)3 + 3(1 − v)2v + 2.4(1 − v)v2 ] ,

Y (u, v) = (1 − u2) [ 2.4(1 − v)2v + 3(1 − v)v2 + v3 ] ,

Z(u, v) = 2 u .

x y

z

x y

z

profile curve

sweep curve

swept surface

Figure 1: The scaled–rotation surface defined by a circular arc in the (x, z)
plane as the profile curve, and a cubic in the (x, y) plane as the sweep curve.
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4 Oriented–translation sweep

The swept surfaces introduced in [24, 25] may be generalized by considering
forms that are bilinear in the coordinates of the profile and sweep curves and

certain differential/integral properties. For brevity, we focus specifically on
the case of most practical interest, in which the dependence of R(u, v) upon
differential/intergal properties is limited to the sweep curve s(v), assumed to
be a PH curve (so as to ensure a rational swept surface).

For a profile curve p(u) = x(u) i + z(u)k in the (x, z) plane and a PH
sweep curve s(v) = x(v) i + y(v) j in the (x, y) plane, consider the surface

R(u, v) = s(v) + x(u)n(v) + z(u)k . (17)

Comparing this expression with the profile curve p(u) = x(u) i + z(u)k, we
see that the last two terms in (17) arise from replacing the fixed unit vector
i with the varying unit normal n(v) of the sweep curve s(v). Instance v of
the transformed profile curve thus lies in the plane spanned by k and n(v),
with normal t(v) = k × n(v), rather than in the plane spanned by k and
i, with normal j = k × i. The first term in (17) represents a translation of
this re–oriented copy of p(u) by the vector displacement s(v). As v varies,
the continuum of these oriented and translated instances of the profile curve
generate an oriented–translation swept surface.

Intuitively, the surface R(u, v) is generated by a translation of the profile
curve p(u) along the sweep curve s(v), coordinated with a rotation so as to
maintain coincidence of the plane containing p(u) with the normal plane to
s(v). To ensure that R(u, 0) = p(u), the sweep curve must satisfy

s(0) = 0 and
s′(0)

‖s′(0)‖ = j .

Since s(v) is a PH curve, it has a rational unit normal n(v). Then if p(u) is a
polynomial curve, the form (17) defines a rational surface, with homogeneous
coordinate components

W (u, v) = σ(v) ,

X(u, v) = σ(v)x(v) + y′(v)x(u) ,

Y (u, v) = σ(v)y(v) − x′(v)x(u) ,

Z(u, v) = σ(v) z(u) . (18)

12



The u = constant isoparametric curves on this surface lie in planes parallel
to the (x, y) plane, at height z(u) above it. The v = constant curves lie in
planes orthogonal to the (x, y) plane, spanned by the vectors k and n(v).

To determine the unit surface normal, we set s′(v) = σ(v) t(v) and use
the relations (4) to obtain

Ru(u, v) = x′(u)n(v) + z′(u)k , Rv(u, v) = σ(v) [ 1 + κ(v)x(u) ] t(v) .

Hence, the unit surface normal (11) is

N(u, v) = sign [ 1 + κ(v) x(u) ]
x′(u)k− z′(u)n(v)

σ(u)
. (19)

Note that N is singular when 1 + κ(v) x(u) = 0, since we then have Rv = 0.
When p(u) is also a PH curve, the normal (19) has a rational dependence on
u and v, and hence the offset (12) is a rational surface. The angle that the
surface normal makes with the (x, y) plane, defined by

θ(u, v) = sign [ 1 + κ(v) x(u) ] sin−1
x′(u)

σ(u)
,

is constant along the isoparametric curves u = constant if 1 + κ(v) x(u) 6= 0.
The parametric speed along the u = constant and v = constant isoparametric
curves is defined by

‖Rv(u, v)‖ = σ(v) | 1 + κ(v)x(u) | , ‖Ru(u, v)‖ = σ(u) .

Example 2. As the profile curve, we again take the 90◦ circle arc (16) in the
(x, z) plane. For the sweep curve, we choose the planar PH quintic Hermite
interpolant [17] to the (x, y)–plane data

s(0) = (0, 0) , s′(0) = (0, 4) and s(1) = (2, 2) , s′(1) = (4, 0) .

This curve is specified by integration of s′(v) = w2(v), where the complex
quadratic polynomial (9) must have the Bernstein coefficients

w0 =
√

2(1 + i) , w1 =

√

45
√

2 + 10 e iπ/8 − 3(1 + e iπ/4)

2
, w2 = 2

in order to satisfy the prescribed Hermite data. From w(v), the parametric
speed, arc length, tangent, normal, and curvature can all be determined.

13



Figure 2 illustrates the rational oriented–translation surface generated by
the chosen profile and sweep curves. In the present example, p(u) is a rational
quadratic curve, so x(u) and z(u) are both rational quadratic functions of
u. Noting that σ(v) is degree 4, and x(v), y(v) are of degree 5, by clearing
denominators one can verify that the homogeneous coordinates (18) defining
the rational swept surface are of degree (2, 4) in (u, v) for W (u, v) and Z(u, v),
and (2, 9) for X(u, v) and Y (u, v). The control points and weights defining
the rational Bézier representation can be easily constructed.

x

y

z

x

y

z

profile curve

sweep curve
swept surface

Figure 2: The oriented–translation surface generated by a circular arc profile
curve in the (x, z) plane, and a PH quintic sweep curve in the (x, y) plane.

The generation of this swept surface through a continuous translation of
the profile curve along the curve, coordinated with a continuous rotation so
as to keep it within the sweep curve normal plane, is a geometrically intuitive
design procedure with diverse practical applications. The ability to represent
the outcome exactly as a rational swept surface eliminates the inaccuracy and
data volume explosion incurred by prevailing approximation methods.
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5 Offset–translation sweep

The offset (8) to a given plane curve is the locus defined by displacing each
curve point by distance d in the local normal direction. Offseting is a shape
transformation that has important applications in specifying tool paths and
tolerance zones about a nominal profile. We propose here a sweep operation
that combines simultaneous offseting of a planar PH curve with translation
orthogonal to its plane, based on a user–specified relation between the offset
distance and translational displacement. This provides an intuitive approach
to smoothly “rounding” the sharp corners of a solid model.

Consider a planar PH profile curve p(u) = x(u) i+y(u) j with unit normal
n(u). Instead of a sweep curve s(v), the present approach employs a scalar
offset distance function d(v). An offset–translation swept surface is defined
in terms of p(u) and d(v) by the expression

R(u, v) = p(u) + d(v)n(u) + v k . (20)

For each v, the offset curve p(u)+d(v)n(u) at distance d(v) from the profile
curve p(u) is translated by distance v in the z–direction, and the continuum
of these offset/translated instances of p(u) generates the surface (20).

Since p(u) is a PH curve, its normal n(u) has a rational dependence on u,
and if d(v) is a polynomial (or rational) function, the expression (20) defines
a rational surface, specified by the homogeneous coordinate components

W (u, v) = σ(u) ,

X(u, v) = σ(u)x(u) + d(v)y′(u) ,

Y (u, v) = σ(u)y(u)− d(v)x′(u) ,

Z(u, v) = σ(u) v . (21)

The v = constant isoparametric curves on the surface (20) are parallel to the
(x, y) plane, at a height v above it — they are simply the offsets at distance
d(v) to p(u), displaced vertically by distance v. The u = constant curves lie
in planes orthogonal to the (x, y) plane, spanned by the vectors k and n(u)
— these curves have the same shape, determined by the function d(v). The
case d(v) = constant defines the linear extrusion of a single fixed–distance
offset to p(u), orthogonal to its plane, while a linear function d(v) defines a
simple proportionality between the offset and translation distances.

The surface (20) has the partial derivatives

Ru(u, v) = p′(u) + d(v)n′(u) , Rv(u, v) = d′(v)n(u) + k .
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Setting p′(u) = σ(u) t(u) and using the relations (4), the surface normal (11)
can be expressed as

N(u, v) = sign [ 1 + κ(u) d(v) ]
n(u) − d′(v)k
√

1 + d′2(v)
. (22)

The angle that the surface normal makes with the (x, y) plane is defined by

θ(u, v) = sign [ 1 + κ(u) d(v) ] sin−1
− d′(v)

√

1 + d′2(v)
.

Clearly, N coincides with the profile curve normal n (i.e., θ = 0) if and only if
d(v) = constant, corresponding to a translational sweep of a unique offset to
p(u). Otherwise, N has a non–zero but constant inclination with the (x, y)
plane along each of the isoparametric curves v = constant on the surface (20).
To guarantee a smooth surface patch, with a well–defined normal (22) at each
point, the range of the offset distance function d(v) should be restricted2 so
that 1 + κ(u) d(v) 6= 0 over the parameter domain of the profile curve p(u).

If d(v) is linear in v, the surface normal (22) has a rational dependence on
u and v, and hence the offset (12) is a rational surface. However, if d(v) has
a quadratic or higher–order dependence on v, the offset (12) is not a rational
surface, because of the denominator

√

1 + d′2(v) in (22). The parametric
speed along the u = constant and v = constant isoparametric curves is

‖Rv(u, v)‖ =
√

1 + d′2(v) , ‖Ru(u, v)‖ = σ(u) | 1 + κ(u)d(v) | .

Example 3. As the profile curve p(u), we choose the PH quintic Hermite
interpolant to the (x, y)–plane data

p(0) = (0, 0) , p′(0) = (0, 4) and p(1) = (2, 2) , p′(1) = (4, 0) .

This is identical to the PH quintic used in Section 4 as the sweep curve, but
in the present context it is regarded as a profile curve. Figure 3 illustrates
the rational offset–translation surface (20) defined by this profile curve and
the offset distance function d(v) = v. As noted above, in this case the offset
surfaces (12) at each distance r are also rational. The surface shape can be
altered by choosing alternative offset distance functions d(v). For example,
Figure 4 shows the surfaces obtained with the choices d(v) = v2 and −v2.

2A point with curvature κ = −1/d on a plane curve generates a cusp on its offset at
distance d — i.e., a sudden tangent reversal [16]. This is obviously undesirable in practice.
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Figure 3: The offset–translation swept surface (20) generated by a PH quintic
profile curve p(u) in the (x, y) plane and offset distance function d(v) = v.
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Figure 4: The offset–translation surface generated by the same PH quintic as
in Figure 3, using distance functions d(v) = v2 (left) and d(v) = − v2 (right).
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When d(v) is a polynomial of degree m in v, the homogeneous coordinates
(21) of the rational offset–translation swept surface are degree (4, 0) in (u, v)
for W (u, v); (9, m) for X(u, v) and Y (u, v); and (4, 1) for Z(u, v). This type
of rational swept surface can be further generalized by choosing a distance
function d(u, v) dependent on both surface parameters.

Remark 1. Although the offset–translation sweep (20) seems conceptually
distinct from the oriented–translation sweep (17), it can actually be regarded
as a special case of the latter. To see this, consider the modified formulation

R(u, v) = s(v) + d(u)n(v) + uk , (23)

of the former, defining a surface generated by the offsets at distance d(u) to
a planar sweep curve s(v) = x(v) i + y(v) j, displaced by distance u in the z
direction. Comparing (17) and (23), they are seen to coincide with the choice
p(u) = x(u) i + z(u)k = d(u) i + uk for the profile curve in the former.

6 Oriented–involute sweep

A distinctive feature of a PH curve is that the cumulative arc length can be
exactly computed by simply evaluating a polynomial. This is a consequence
of the fact that the parametric speed is a polynomial, and hence its integral
(6) is also a polynomial. The cumulative arc length of a curve is important in
constructing the involutes of that curve, i.e., loci whose centers of curvature
lie on the given curve. Involutes play a key role in defining gear tooth profiles
that ensure conjugate action (i.e., an exactly constant angular velocity ratio)
of meshing gears. Using a PH curve for the sweep curve s(v) facilitates the
construction of rational swept surfaces based on its involute.

Consider a profile curve p(u) = x(u) i + z(u)k in the (x, z) plane, and a
PH sweep curve s(v) = x(v) i+ y(v) j in the (x, y) plane with the polynomial
arc length function

s(v) =

∫ v

0

‖s′(ξ)‖ dξ .

The involute to s(v) is the locus defined by

c(v) = s(v) − s(v) t(v) , (24)

i.e., c(v) is generated by making a displacement, from each point of s(v), a
distance s(v) in a direction opposite to the curve tangent t(v) at that point.
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There are actually infinitely–many involutes to a plane curve, since one may
associate any curve point with the parameter value v = 0, from which the arc
length is measured. Assuming s(v) is defined on the interval v ∈ [ 0, 1 ] we
consider the particular involute defined by (24). Also, to ensure that c(v) is
non–singular, we assume s(v) has positive curvature for v ∈ [ 0, 1 ]. From (24)
one can then verify that, at corresponding points, the tangent and normal to
c(v) are the normal and negated tangent to s(v), respectively.

For the profile curve p(u) = x(u) i+z(u)k and involute (24) to the sweep
curve s(v) = x(v) i + y(v) j, consider the swept surface defined by

R(u, v) = c(v) − x(u) t(v) + z(u)k . (25)

Comparing the last two terms above with p(u) = x(u) i+ z(u)k, we see that
i has been replaced by − t(v) in the first term, while the second term remains
unchanged. Since − t(v) is the normal to the involute c(v), these two terms
amount to a re–orientation of the profile curve so it lies in the normal plane
to c(v) for each v. The first term in (25) defines a displacement of the profile
curve by c(v) for each v. Hence, the surface (25) may be considered as arising
from a continuous translation of the profile curve along the involute to the
sweep curve, while re–orienting it so it always lies in the normal plane to the
involute. This is called an oriented–involute swept surface. To ensure that
R(u, 0) = p(u), the sweep curve must satisfy

s(0) = 0 and
s′(0)

‖s′(0)‖ = − i .

The homogeneous coordinates for this surface are specified by

W (u, v) = σ(v) ,

X(u, v) = σ(v)x(v) − x′(v) [ s(v) + x(u) ] ,

Y (u, v) = σ(v)y(v)− y′(v) [ s(v) + x(u) ] ,

Z(u, v) = σ(v) z(u) . (26)

Now σ(v) and s(v) are polynomials if s(v) is a PH curve, and these expressions
define a rational surface when p(u) is a polynomial curve. The u = constant
isoparametric curves on this surface lie in planes parallel to the (x, y) plane,
at height z(u) above it. The v = constant isoparametric curves lie in planes
orthogonal to the (x, y) plane, spanned by the vectors k and − t(v).
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Noting from (24) that c′(v) = s(v) σ(v) κ(v)n(v), and that s′(v) = σ(v),
the derivatives of the surface (25) can be expressed as

Ru(u, v) = z′(u)k− x′(u) t(v) , Rv(u, v) = [ x(u) + s(v) ] σ(v) κ(v)n(v) .

Hence, under the assumption that the curvature of s(v) is positive, the unit
normal (11) is given by

N(u, v) = sign[ x(u) + s(v) ]
x′(u)k + z′(u) t(v)

σ(u)
. (27)

Note that N is singular when x(u) + s(v) = 0, since then Rv = 0. If p(u) is
also a PH curve, the surface normal (27) has a rational dependence on (u, v)
and the offsets (12) at each distance r are therefore rational surfaces. The
parametric speed along the u = constant and v = constant isoparametric
curves is

‖Rv(u, v)‖ = | (x(u) + s(v))κ(v) | σ(v) , ‖Ru(u, v)‖ = σ(u) .

Example 4. As the profile curve, we again take the 90◦ circle arc (16) in the
(x, z) plane. For the sweep curve, we choose the planar PH quintic Hermite
interpolant to the (x, y)–plane data

s(0) = (0, 0) , s′(0) = (−2, 0) and s(1) = (0, 1) , s′(1) = (2, 0) .

For this curve, the Bernstein coefficients of the polynomial (9) are

w0 =
√

2 i , w1 =

√
35 − 3

2
√

2
(1 + i) , w2 =

√
2 .

Figure 5 shows the profile curve, the sweep curve and its involute, and the
resulting oriented–involute swept surface. The homogeneous coordinates (26)
of this surface are of degree (2, 4) in (u, v) for W (u, v) and Z(u, v), and degree
(2, 9) for X(u, v) and Y (u, v).

The involute (24) has the sweep curve s(v) as its evolute — i.e., its locus
of centers of curvature. One may also construct rational swept surfaces based
on the evolutes of PH sweep curves. The evolute e(v) to a given plane curve
s(v) is defined3 by

e(v) = s(v) − ρ(v)n(v) , (28)

3The minus sign in (28) arises from the convention adopted in Section 2, namely, that
the normal n(v) points away from the center of curvature.
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Figure 5: Left: a circle arc in the (x, z) as the profile curve, and a PH quintic
sweep curve in the (x, y) plane, together with its involute (the dotted curve).
Right: the oriented–involute swept surface generated by these two curves.

where n(v) is the unit normal to s(v), and ρ(v) = 1/κ(v) is its (signed) radius
of curvature. The expression (28) defines a rational curve when s(v) is a PH
curve, since then κ(v) and n(v) depend rationally on v. However, the sweep
curve must be carefully chosen to ensure a finite smooth swept surface, since
an inflection on s(v) (where κ(v) = 0) incurs a point at infinity on e(v), and
a vertex on s(v) (where κ′(v) = 0 6= κ′′(v)) incurs a cusp on e(v).

7 Generalized conical sweep

The oriented–translation sweep (see Section 4) was defined by continuously
translating the profile curve p(u) = x(u) i+z(u)k along the PH sweep curve
s(v) = x(v) i+ y(v) j, while orienting it so as to reside in the normal plane of
the sweep curve at each point. A generalized conical sweep surface is defined
by further imposing a uniform scaling of the profile curve, linearly dependent
on the sweep curve arc length s(v). Assuming s(v) is defined on v ∈ [ 0, 1 ]
with total arc length S = s(1), we introduce the scaling function

c(v) =
c0(S − s(v)) + c1s(v)

S
, (29)
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where c0 and c1 are prescribed initial and final scale factors, chosen such that
c(v) > 0 for v ∈ [ 0, 1 ]. The generalized conical sweep is then defined by

R(u, v) = s(v) + c(v) [ x(u)n(v) + z(u)k ] . (30)

For each v, the translated/oriented instance of the profile curve p(u) is scaled
by the factor c(v). To ensure that R(u, 0) = p(u), we must have

s(0) = 0 ,
s′(0)

‖s′(0)‖ = j , c0 = 1 .

Since s(v) is a PH curve, it has a polynomial parametric speed σ(v) and arc
length s(v), and a rational unit normal n(v). Then if p(u) is a polynomial
curve, the form (30) defines a rational surface, with homogeneous coordinates

W (u, v) = Sσ(v) ,

X(u, v) = Sσ(v)x(v) + [ c0S + (c1 − c0)s(v) ] y′(v)x(u) ,

Y (u, v) = Sσ(v)y(v) − [ c0S + (c1 − c0)s(v) ] x′(v)x(u) ,

Z(u, v) = [ c0S + (c1 − c0) s(v) ] σ(v)z(u) . (31)

Because of the scale factor c(v), the u = constant isoparametric curves on this
surface are, in general, non–planar. The v = constant curves are instances
of the profile curve p(u) displaced by the amount s(v), oriented in the sweep
curve normal plane at that point, and scaled by the factor c(v).

The surface (30) has the partial derivatives

Ru(u, v) = c(v) [ x′(u)n(v) + z′(u)k ] ,

Rv(u, v) = σ(v) [ 1 + c(v)κ(v)x(u) ] t(v) + c′(v) [ x(u)n(v) + z(u)k ] ,

with the cross product

Ru(u, v) × Rv(u, v) = σ(v)c(v)c′(v) [ x(u)z′(u) − x′(u)z(u) ] t(v)

+ σ(v)c(v) [ 1 + c(v)κ(v)x(u) ] [ x′(u)k− z′(u)n(v) ] .

Hence, assuming that c(v) 6= 0 and setting

f(u, v) = c′(v) [ x(u)z′(u) − x′(u)z(u) ] , g(u, v) = 1 + c(v)κ(v)x(u) ,

the surface normal can be expressed as

N(u, v) =
f(u, v) t(v) + g(u, v) [ x′(u)k− z′(u)n(v) ]

√

f 2(u, v) + σ2(u) g2(u, v)
. (32)
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This is clearly not, in general, a rational expression in u and v, so the offset
(12) is not a rational surface. Setting ρ(u) =

√

x2(u) + z2(u), the parametric
speed along the u = constant and v = constant isoparametric curves is

‖Rv(u, v)‖ =
√

σ2(v) [ 1 + c(v)κ(v)x(u) ]2 + c′2(v)ρ2(u) ,

‖Ru(u, v)‖ = c(v) σ(u) .

Example 5. As an example of the generalized conical sweep surface, we use
the same profile and sweep curves as in Section 4, together with scale factors
c0 = 1 and c1 = 1

2
in (29). The resulting rational swept surface is illustrated

in Figure 6. The v = constant isoparametric curves on this surface are all
circle arcs, displaced to position s(v) along the sweep curve, oriented in the
normal plane at that point, and scaled linearly with respect to arc length
s(v) by the factor (29). In the present case x(u), z(u) are quadratic rational
functions, while σ(v) and x(v), y(v), s(v) are polynomials of degree 4 and 5,
respectively. Consequently, the homogeneous coordinates (31) that describe
the rational swept surface are of degree (2, 4) in (u, v) for W (u, v); (2, 9) for
X(u, v) and Y (u, v); and (2, 5) for Z(u, v). The control points and weights
defining the rational Bézier form can be easily computed.

This type of swept surface may be generalized by invoking a quadratic or
higher–order dependence of the scaling factor c(v) on the arc length s(v) of
the sweep curve, in lieu of the simple linear form (29). For example

c(v) =
c0(S − s(v))2 + c12(S − s(v))s(v) + c2s

2(v)

S2
(33)

specifies a quadratic dependence with initial/final values c(0) = c0, c(1) = c2

while the coefficient c1 controls the intermediate variation. Figure 7 shows
examples of the surface shapes obtained with the scaling function (33), using
the same profile and sweep curves as in Figure 6.

8 Rotation–minimizing spatial sweep

To facilitate ease of interpretation, the swept surface constructions described
above were restricted to planar profile and sweep curves. As previously noted,
this restriction is not essential, but the generalization to space curves requires
greater care in specifying the sweep process, and entails difficulties that are
absent in the planar case. For example, to specify a spatial PH sweep curve,
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Figure 6: The generalized conical swept surface (30) generated by a circular
profile curve p(u) in the (x, z) plane and a PH quintic sweep curve s(v) in
the (x, y) plane, with factors c0 = 1 and c1 = 1

2
in the scaling function (29).
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Figure 7: Generalized conical swept surfaces generated by a circular profile
curve p(u) in the (x, z) plane and a PH quintic sweep curve s(v) in the (x, y)
plane, using the quadratic scaling function (33) with coefficients (c0, c1, c2) =
(1.0, 0.0, 1.0) on the left, and (c0, c1, c2) = (1.25, 0.75, 0.50) on the right.
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the quaternion representation [4, 14] must be invoked in place of the complex
form for planar PH curves discussed in Section 2.

A thorough treatment of swept surfaces based on spatial PH sweep curves
is beyond the scope of the present paper. Instead, the noteworthy case of a
rational rotation–minimizing motion of a planar profile curve along a spatial
sweep curve is used to briefly illustrate some of the issues encountered in this
context. In Section 4, the oriented–translation swept surface was defined by
translating a planar profile curve p(u) along a planar sweep curve s(v), while
orienting it so as to always lie in the sweep curve normal plane, spanned by
n(v) and k. During this motion, the profile curve exhibits no instantaneous
rotation within the normal plane, i.e., about the sweep curve tangent t(v).

If a spatial sweep curve s(v) is employed, the normal plane is spanned by
the binormal and principal normal vectors, defined [23] by

b(v) =
s′(v) × s′′(v)

‖ s′(v) × s′′(v) ‖ and n(v) = b(v) × t(v) ,

t(v) = s′(v)/‖s′(v)‖ being the tangent. The vectors (t(v),n(v),b(v)) define
the orthonormal Frenet frame along s(v), but this frame is not suitable for
defining the orientation of a profile curve in the normal plane in attempting to
generalize the oriented–translation swept surface, since n(v) and b(v) are not
rational in v and have, in general, a non–zero angular velocity about t(v). To
remedy these problems, we need to identify curves that admit orthonormal
frames (t(v), f(v), g(v)) in which the normal–plane vectors f(v) and g(v) are
rational in v and have no instantaneous rotation about t(v).

The polynomial curves that have this property are a subset of the spatial
PH curves, called rational rotation–minimizing frame (RRMF) curves. The
simplest non–trivial instances are the RRMF quintics, and are identified by
a simple algebraic constraint on the coefficients of the quadratic quaternion
polynomials that generate them [11]. The RRMF quintics have been used
in the design of rational rotation–minimizing spatial motions, interpolating
prescribed initial/final locations and orientations of a rigid body [13].

Figure 8 shows how the normal–plane orientation of a profile curve that is
swept along a space curve can strongly influence the resulting surface shape.
In this case, the profile curve is an ellipse and the sweep curve is an RRMF
quintic. If the Frenet frame is used to specify the normal–plane orientation
of the sweep curve, the result has an undesirable “twisted” shape and is not
a rational surface. However, using the rational rotation–minimizing frame of
the RRMF quintic yields a rational swept surface with a very natural shape
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(the variation of the profile curve orientation is the least possible, consistent
with the constraint that it must always lie in the sweep curve normal plane).

Figure 8: The tubular surface generated by sweeping an ellipse profile curve
along an RRMF quintic sweep curve (left). The profile curve lies in the sweep
curve normal plane at each point, and within this plane it is oriented using
either the Frenet frame (center) or the rotation–minimizing frame (right).

9 Closure

The use of Pythagorean–hodograph sweep curves opens up a rich spectrum of
rational swept surface constructions, arising from families of transformations
of a profile curve that depend explicitly on differential and integral properties
of the sweep curve. A number of representative examples have been presented
herein, to illustrate the diversity of surface geometries that can be intuitively
generated in a manner exactly compatible with the prevailing representation
schemes of modern CAD systems. Preliminary considerations regarding the
automated CNC machining of such surfaces, based only on their high–level
procedural definitions, have also been presented (the technical aspects of this
topic will be more fully addressed in a forthcoming study). The versatility of
these generalized rational swept surfaces makes their complete categorization
a non–trivial task, that is worthy of further investigation.
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