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• Ovarian cancers have different gene expression signatures with different outcomes.
• New correlative studies will improve clinical utility of the classification.
• New platforms will facilitate accurate and cost-effective classification.
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Microarray-based gene expression studies demonstrate that ovarian cancer is both a clinically diverse andmolec-
ularly heterogeneous disease compromising subtypes with distinct gene expression patterns that are each asso-
ciated with statistically significant different clinical outcomes. The information provided by gene expression
based assays is promising and deserves incorporation into clinical decision-making. Further studies are needed
to determine which subtype signatures are most appropriate to select patients for a given therapy. This process
will require the development of standardized molecular diagnostic assays that can be used for retrospective cor-
relative studies and prospective validations of their clinical utility. Recent advances in assay development for
FFPE tissues will facilitate accurate and cost-effective classification of ovarian cancer and help move the evolving
molecular classification to clinic. The current review will summarize the development of gene expression based
assays in ovarian cancer and will describe how the results of studies to date have expanded our appreciation of
the heterogeneity of ovarian cancer. We discuss difficulties in the development and validation of molecular clas-
sifications in ovarian cancer andwe provide future directions howwemay be able to soon classify the disease in a
manner that might have greater clinical utility.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Ovarian cancer is the secondmost common gynecologic malignancy
in theUnited States [1]. Despite radical surgery and initial high response
s in ovarian cancer: Promise and challenges for patient stratification,
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rates to platinum- and taxane-based chemotherapy, most patients ex-
perience a relapse, with a median progression-free survival of only
18 months [2]. Therefore novel therapies are urgently needed to im-
prove outcomes. However, the success of new drug development in
ovarian cancer will strongly depend on biomarkers able to identify
women likely to benefit from a given new therapy. The development
of microarray-based gene expression profiling has raised high expecta-
tions for rapid advances in ovarian cancer classification, prognostication
and prediction. The ability to analyze thousands of transcripts in parallel
bymicroarray-based technologies has been perceived as away to objec-
tively classify tumors into molecular subgroups [3–5]. These subgroups
are thought to have distinct biological features that can translate into
different therapeutic implications. Indeed, several prognostic and pre-
dictive molecular classifications have emerged in the last 10 years in
ovarian cancer. However, their clinical impact is yet unclear and existing
studies have not yet yielded definitive answers tomany of the questions
critical for the successful clinical implementation of gene expression
profiling in ovarian cancer.

The current reviewwill summarize the development of gene expres-
sion based assays in ovarian cancer and will describe how the results of
studies to date have expanded our appreciation of the heterogeneity of
ovarian cancer. We discuss difficulties in the development and valida-
tion ofmolecular classifications in ovarian cancer andwe provide future
directions how wemay be able to soon classify the disease in a manner
that might have greater clinical utility.

2. Gene expression signatures with prognostic relevance

The future value of molecular characterization in ovarian cancer lies
in the potential that onemay be able to identify those patients that need
therapy (prognostic value) or those that are most likely to benefit from
a given therapy (predictive value). Here we conducted a systematic
Medline search of the literature to identify published gene expression
studies in ovarian cancer.Moreover, the reference lists ofmajor publica-
tions were further screened for additional trials. Studies focusing on re-
analyses of publically available data sets were included if they provided
clinically relevant new information. Many early generation ovarian can-
cer gene expression profiling studies focused primarily on the prognos-
tic value of gene expression signatures. Results of these early prognostic
gene expression studies [6–14] and those following [15–25] are
Table 1
Gene expression studies in ovarian cancer assessing the prognostic relevance of gene signature

N FIGO stage Gene expression assay Signature

68 III/IV Affymetrix array 115 genes associated with OS
65 I–IV Affymetrix array 26 genes associated with OS
45 I–IV cDNA array 85 genes associated with OS
79 III/IV cDNA array 14 genes associated with PFS
95 III/IV Affymetrix array 57 genes associated with OS
157 III/IV Neth. Cancer Institute

oligonucleotide array
86 genes associated with OS

80 I–IV Affymetrix array 300 genes associated with OS
53 III/IV Affymetrix array 166 genes associated with OS
43 I–IV Affymetrix array A 14 genes associated with OS
110 III/IV Agilent array 88 genes associated with PFS
70 I–IV Affymetrix array 60 genes (BRCA signature) associated
285 I–IV cDNA array C1–C6 subtype signatures
215 III/IV Affymetrix and Agilent arrays 193 genes (TCGA prognostic signatur
35 I–IV Affymetrix array 14 genes associated with OS
260 III/IV Agilent array 126 genes associated with OS
246b I–IV cDNA array 14 genes associated with OS
304a III/IV Affymetrix and Agilent arrays 14 DNA repair genes associated with
481a III/IV Affymetrix and Agilent arrays 100 genes (CLOVAR survival signatur
121 I–IV Agilent array 200 genes (POSTN/TGFBI signature) a
174 III/IV Agilent array TCGA subtype signatures

a Re-analyses of the TCGA data set [18].
b Re-analyses of the Tothill data [17].

Please cite this article as: G.E. Konecny, et al., Gene-expression signature
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summarized in Table 1 (Table 1). Most of these studies have identified
a group of prognostically relevant genes in relatively small training
sets but did, to their credit, validate the prognostic relevance of the re-
spective gene signatures in independent cohorts. However, limitations
of many of these studies are the use of different gene expression plat-
forms, different methods for analysis, over fitting the data, restriction
to mostly high grade serous ovarian cancer histology and, most impor-
tantly, all studies to date were retrospective in nature. Most studies
which all intended to define an independent prognostic gene signature
were not able to define a common gene signature that would be ro-
bustly reproducible across different studies. Moreover, there was no or
minimal overlap in the genes identified to be of prognostic relevance
between studies, no matter whether they were early prognostic gene
expression studies or those performed more recently.

Waldron et al. undertook a systematic validation of gene expression-
based prognostic models for late-stage, high grade serous ovarian can-
cer published between 2007 and 2012 [26]. They identified 14 prognos-
tic models for late-stage ovarian cancer and validated these in 10
published datasets comprising 1251 primarily high-grade, late-stage se-
rous ovarian cancer patients. They assessed eachmodel for concordance
of risk scores with overall patient survival by determining a concor-
dance index (C-index). The C-index is interpretable as the probability
that a patient predicted to be at lower risk than another patientwill sur-
vive longer than that patient: its expected value is 0.5 for random pre-
dictions and 1 for a perfect risk model. How high of a C-index is
needed for a useful prognostic tool depends on the clinical context.
For example, the C-index of the Gleason score for prostate cancer has
been estimated at 0.74–0.76 and that of the American Joint Committee
on Cancer colorectal cancer staging system at 0.62. The ovarian cancer
analysis showed a wide range of accuracy of published prognostic
models and signatures. The top-ranked three models were those of
the TCGA consortium [18, 23], a signature by Yoshihara et al. [20] and
onebyBonomeet al. (optimally debulked patients) [10]. These achieved
summary C-indices between 0.57 and 0.60. Of the remaining 11models
only 9 predicted slightly better than chance, with summary C-indices
varying between 0.54 and 0.56 [26]. These results suggest that most
prognostic models published prior to 2012 require further improve-
ments to be of clinical value.

One of the main questions in this context is whether this disparity
can be attributed only too trivial reasons such as different technologies,
s.

Prognostic significance
P value

Ref. Year

Training set Validation set

0.004 0.01 Spentzos [6] 2004
NA 0.007 Berchuck [7] 2005
b0.001 NA Jazaeri [8] 2005
b0.001 b0.05 Hartmann [9] 2005
0.018 0.015 Bonome [10] 2008
0.015 0.007 Crjins [11] 2009

0.009 0.007 Denkert [12] 2009
0.003 NA Mok [13] 2009
b0.001 b0.001 Jochumsen [14] 2009
b0.001 b0.001 Yoshihara [15] 2010

with OS NA 0.006 Konstantinopoulos [16] 2010
b0.001 0.354 Tothill [17] 2008

e) associated with OS TCGA [18] 2011
0.003 b0.001 Sabatier [19] 2011
b0.001 0.003 Yoshihara [20] 2012
b0.001 0.031 Kernagis [21] 2012

OS b0.001 b0.05 Kang [22] 2012
e) associated with OS b0.001 0.004 Verhaak [23] 2013
ssociated with OS 0.009 0.001 Karlan [24] 2014

0.004 0.04 Konecny [25] 2014

s in ovarian cancer: Promise and challenges for patient stratification,
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different patient populations anddifferent types of analysis. The biostat-
isticians Ein-Dor et al. provide a compelling answer to this question [27,
28]. They show that many equally predictive gene lists can be produced
from the same analysis simply because very many genes (often N1500)
can be correlated with survival and the rank order of the top candidate
genes is influenced by the subset of patients used in the training set. The
large statistical fluctuations in gene rank indicate that small gene lists
from early publications are not robust and cannot be reproduced in in-
dependent experiments. However, this also implies that reproduction of
the exact same specific gene list is less important and that it appears to
be of greater relevance to develop a consensus between investigators
which set of genes should be used for future validation studies. To im-
prove reproducibility of prognostic gene signatures in ovarian cancer
perhaps one has to identify the much sought after master genes that
control the metastatic potential and include these master genes in the
gene list. However, suchmaster geneswill not necessarily be top ranked
with respect to correlationwith survival. Nevertheless, the construction
of prognostic or predictive tools on the basis of a short gene listmay still
be possible but will require a consensus which genes should be used in
retrospective and prospective validation studies.

In this respect breast cancer microarray-based gene expression pro-
filing assays set an example for a strategy in ovarian cancer. The
MammaPrint is a microarray-based gene expression profiling assay
based on the Agilent chip and analyzed data from 78 patients with
node negative breast cancer [5]. The 70 genes that compromise the
MammaPrint assay are proliferation genes and genes associated with
invasion and angiogenesis. Since 2002 this signature has been validated
on numerous cohorts of node negative breast cancer patients [29, 30]
and has been shown to provide independent prognostic information be-
yond standard clinic-pathological variables. MammaPrint was also the
first gene expression based assay to receive clearance by the FDA to be
sold in theU.S. as a prognostic test forwomenwith nodenegative breast
cancer.

3. Gene expression signatures for molecular classification of ovarian
cancer

In 2003 a Stanford group was the first to publish specific gene ex-
pression patterns that distinguish ovarian cancer subgroups using an
unsupervised hierarchical clustering approach [31]. This early study
was limited by its sample size (n = 42) and mixed histologies (serous
grade I–III, clear cell). Nevertheless, it was the first study to identify dis-
tinct gene expression profiles using an unsupervised classification ap-
proach. The authors described an immunoreactive ovarian cancer
subgroup (“Lymphocyte Cluster”) enriched with genes characteristic
of immune cell infiltrates. Moreover, they also identified a cluster with
very high expression of cytokeratins (“Epithelial Cluster”) and one
with high expression of genes characteristic of extracellular matrix for-
mation (“Extra cellular matrix/stromal cluster”). In addition, a clear cell
subtype of ovarian cancer displayed a distinct signature of genes that
were differentially expressed when compared to the other histological
types of ovarian cancer. Despite of the studies size limitation this was
the first report to suggest that ovarian cancer tumors may be classified
into molecular subgroups with distinct biological features that could
translate into different therapeutic implications [31]. In 2004 an Italian
Group performed gene expression assays and used an unsupervised
class discovery approach in 59 tumor specimens from patients with
ovarian cancer [32]. They identified distinct molecular signature related
to epithelial-mesenchymal plasticity. Notably 40% of the genes associ-
ated with this mesenchymal signature overlap with the genes up-
regulated in the extracellular matrix/stromal cluster previously pub-
lished by the Stanford group. The authors emphasize that the observed
mesenchymal signature was unlikely to be caused by stromal cell infil-
trates since all of the samples analyzed had a tumor cell content of N70%.
These early classification studies and those that followed are summa-
rized in Table 2 (Table 2). Many of the earlier classification studies in
Please cite this article as: G.E. Konecny, et al., Gene-expression signature
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ovarian cancer focused on defining gene signatures of known traditional
histologic ovarian cancer subtypes including the rare histologic types
such as clear cell, mucinous or endometrioid ovarian cancer. These anal-
yses show that clear cell and mucinous ovarian cancers can be readily
distinguished from serous ovarian cancers based on their gene expres-
sion profiles, regardless of tumor stage and grade [33–36]. One of
these studies also confirms that low-grade endometrioid cancers are
distinctly separated from the other groups of ovarian tumors [37]. In
contrast, high grade endometrioid adenocarcinomas show significant
overlap with the other molecular high grade serous subtypes [17]. Wu
et al. identified two distinctive subgroups of endometrioid ovarian can-
cer, based on their global gene expression patterns [38]. One of these
subgroups was highly similar to serous cancer and tended to be of
higher tumor grade [38]. Genetic annotation of the dataset also revealed
that p53 mutations were common among those endometrioid cancers
with a serous-like gene expression profile. Moreover, deregulated β-
catenin signaling and defects in the PI3K–PTEN pathway were shown
to be typical among those endometrioid cancers that did not share
gene expression homology to serous cancer and which also tended to
be low-grade [38]. In a further analysis of the same dataset, WT1 gene
expression was demonstrably associated to those endometrioid carci-
nomas with a serous-like gene expression profile [37]. Earlier studies
also demonstrate that the gene expression profile of low grade serous
ovarian cancers is very distinct from the expression profiles of high
grade serous ovarian cancers [39]. Moreover, low grade serous ovarian
cancers have activatingmutations in KRAS, BRAF, and HER2, suggesting
MAP kinase activation which is reflected by increase expression of
genes characteristic for that signaling pathway [40].

The first comprehensive molecular classification study using gene
expression analysis of high-grade serous and endometrioid ovarian can-
cers was conducted by the Australian Ovarian Cancer Study Group [17].
In this study 285 ovarian cancer specimens of serous (n = 246),
endometrioid (n = 20), low malignant potential (n = 18), and adeno-
carcinoma (n = 1) histology were examined. Using an unsupervised
clustering approach the authors identified distinct molecular subtypes
that have been designated with neutral descriptors (C1, C2, C3, C4, C5
and C6). Clustering of subtype C1was driven primarily by enhanced ex-
pression of a stromal gene cluster. The C2 groupwas characterized by an
immune signature. C5was defined by genes expressed inmesenchymal
development and samples assigned to the C4 group were simply dis-
tinct from the aforementioned signatures. A small number of low
grade endometrioid ovarian cancers formed a cluster C6 and cluster
C3 was defined by ovarian tumors of low malignant potential and se-
rous ovarian cancers of low grade [17].

The main four high grade molecular subtypes (C1, C2, C4 and C5)
were validated in a cancer genome atlas research TCGA Network
study [18]. Analysis of data from 489 high-grade serious ovarian cancers
identified 1500 intrinsically variable genes that were used for unsuper-
vised clustering using consensus non-negative matrix factorization
(NMF) clustering. In this study high-grade serious ovarian cancers
were classified into four distinct molecular subtypes which were
termed immunoreactive (=C2), differentiated (=C4), proliferative
(=C5) and mesenchymal (=C1) on the basis of gene expression in
the clusters. T cell chemokine ligands characterized the immunoreactive
subtype. The differentiated subtype was associated with high expres-
sion of MUC16 (CA125) and MUC1 as well as other genes suggesting a
moremature stage of development. The proliferative subtypewas char-
acterized by high expression of transcription factors and proliferation
markers but low expression of differentiated ovarian tumor markers
(MUC16, MUC1). The mesenchymal subtype was characterized by in-
creased expression of genes suggestive of increased stromal compo-
nents such as fibroblasts and vascular pericytes [18]. Surprisingly,
however, survival time did not differ statistically significantly for the
TCGA subtypes in the 489 tumor samples studied [18]. This result was
unexpected, because considerable variation in outcome can be observed
in high-grade serous ovarian cancer patients matched for stage and the
s in ovarian cancer: Promise and challenges for patient stratification,
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Table 2
Gene expression studies classifying ovarian cancer into distinct molecular subgroups potentially to be used to stratify patient groups.

N FIGO stage Gene expression assay Morphologya Signature Tissue source Ref. Year

42 I–IV cDNA array HGS, CC, Endo, Lymphocyte, epithelial, extracellular matrix/stromal and
proliferation clusters

Fresh frozen Schaner [31] 2003

59 I–IV cDNA array HGS, CC, Endo, Mesenchymal-like versus epithelial-like Fresh frozen De Cecco [32] 2004
113 I–IV Affymetrix array HGS, CC Muc Clear cell, mucinous and serous gene signatures Fresh frozen Schwartz [33] 2002
50 I–IV Affymetrix array HGS, CC, Endo, Muc Clear cell, mucinous, endometrioid and serous gene

signatures
Fresh frozen Marquez [34] 2005

44 II/IV NCI cDNA array HGS, CC, Endo, Clear cell, endometrioid and serous gene signatures Fresh frozen Zorn [35] 2005
31 I–IV cDNA array CC Clear cell signature Fresh frozen Anglesio [36] 2011
74 I–IV Affymetrix array HGS, Endo Endometrioid signature Fresh frozen Madore [37] 2010
285 I–IV cDNA array HGS, LGS, LMP, Endo C1–C6 subtype signatures: C1, stromal (TCGA =

mesenchymal) signature; C2, immune signature; C3, LMP,
LGS; C4, differentiated signature; C5, mesenchymal (TCGA
proliferative) signature; C6, early stage Endo signature

Fresh frozen Tothill [17] 2011

489 III/IV Affymetrix and Agilent
arrays

HGS TCGA subtype signatures: Immunoreactive, differentiated,
proliferative and mesenchymal signatures

Fresh frozen TCGA [18] 2012

129 II–IV DASL on Illumina
BeadChip arrays

HGS 100 genes: 4 subtypes, angiogenic and non-angiogenic FFPEa Bentink [51] 2013

489 III/IV Affymetrix and Agilent
arrays

HGS CLOVAR subtype signatures: Immunoreactive,
differentiated, proliferative and mesenchymal signatures

Fresh frozen Verhaak [23] 2014

121 I–IV Agilent array HGS, LMP, Endo, CC,
MMMT, benign

POSTN/TGFBI and estrogen receptor/WT1 signatures Fresh frozen Karlan [24] 2014

174 III/IV Agilent array HGS TCGA subtype signatures: Immunoreactive, differentiated,
proliferative and mesenchymal signatures

Fresh frozen Konecny [25] 2013

114 III/IV Affymetrix and Agilent
arrays

HGS Nuclear factor kappa B (NFkB) transcription and
extracellular signal-regulated kinase (ERK) signaling
networks

Fresh frozen Barlin [43] 2013

106 I–IV DASL on Illumina
BeadChip arrays

HGS, LGS, Endo, CC,
Muc

C1–C6 subtype signatures: C1 (TCGA = mesenchymal)
signature, C2 immune signature, C3 LMP, LGS signatures, C4
differentiated signature, C5 (proliferative) signature, C6
early stage Endo signature

FFPEa Sfakianos [52] 2015

111 I–IV TaqMan, Fluidigm,
Illumina, Nanostring

HGS, Endo C1 (mesenchymal), C2 (immunoreactive), C4
(differentiated) and C5 (proliferative)

FFPEa Leong [54]

a HGS, high grade serous; LGS, low grade serous; CC, clear cell; Endo, endometrioid, Muc, mucinous; FFPE, formalin fixed paraffin embedded.
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amount of residual tumor following primary debulking surgery, sug-
gesting that molecular determinants of survival may nonetheless be
very important. Thus the TCGA Network recently modified their molec-
ular classification of high grade serous ovarian cancer by reducing and
integrating the original TCGA subtype gene signatures (~1500 genes)
with pure prognostic gene signatures, thus creating a combined classi-
fier named “Classification of Ovarian Cancer” (CLOVAR) with a smaller
number of genes (~100 genes) that may allow a more robust survival
classification and enrichment strategy for new treatment approaches
[23].

To confirm the presence of four high-grade serous ovarian cancer ex-
pression subtypes we performed an independent study and applied the
pre-specified TCGA Network gene signatures to a cohort of 174well an-
notated high grade serous ovarian cancers fromMayo Clinic with long-
term clinical follow up available for each case. Unsupervised clustering
confirmed stable clustering of high grade serous ovarian cancer into
fourmolecular subgroups.Moreover,wewere able to show that the dis-
tinct gene expression patterns were each associated with statistically
significantly different clinical outcomes where patients whose tumors
expressed the immunoreactive signature had the best and those pa-
tients whose tumors expressed the mesenchymal signature had the
worst overall survival [25]. In our study using the Mayo Clinic samples
the unsupervised clustering by consensus NMF also demonstrated sta-
ble clustering of high grade serous ovarian cancers into three or two
subgroups. However, unlike clustering based on four subgroups, neither
classification into three or two subgroups had prognostic relevance [25].
A comparison of group assignments by cross tabulation suggested that
the expressionmatrix of the immunoreactive andmesenchymal groups
were merged when three clusters were depicted [20]. Moreover, the
differentiated and proliferative subtypes appeared to merge into one
subgroup when only two NMF clusters were depicted. These findings
may indicate some commonality in the biological underpinnings be-
tween the immunoreactive and mesenchymal and between the
Please cite this article as: G.E. Konecny, et al., Gene-expression signature
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differentiated andproliferative subgroups. A similar observationwas re-
cently made by the TCGA which provides updated information on their
ovarian cancer research projects through a web portal [41]. In the most
recent updated consensus NMF clustering of 569 ovarian cancer sam-
ples the TCGA also identified three clusters as a robust classification so-
lution [41]. However, data on the prognostic relevance of these three
expression subtypes or comparison of group assignments by cross tab-
ulation has not been presented yet.

Further research will be necessary to better understand which clas-
sification model will be most useful for clinical practice. Ultimately the
predictive value of each transcriptional subtype will need to be vali-
dated in future correlative studies preferably using medium-
throughput expression profiling platforms useful for expression profil-
ing on formalin fixed paraffin embedded tissue specimens.

A recent overview analysis combined publicly available gene expres-
sion array data from 1538 ovarian cancers from 16 data sets [42]. The
cohort included predominantly serous histologies, but also included
27 mucinous, 25 clear cell, 96 endometrioid and 55 other histological
subtypes and included high grade as well as low grade tumors. Using
an unsupervised clustering approach the authors identified six groups,
confirming the presence of a differentiated (Epi-A), immunoreactive
(Epi-B), mesenchymal (Mes), and proliferative subtype. The authors
subdivided the proliferative group into a stem-like A (Stem-A/Prolifera-
tive) and stem-like B (Stem-B) group as both expressedmarkers typical
for stem cells. Using this approach 95 cases remained unclassified
(Other). A comparison of this grouping scheme with the results of the
previously published studies mentioned above (TCGA, Australian ovar-
ian cancer group) demonstrated that the Stem-B subtype had been de-
scribed earlier in the multi-histologic subtype ovarian study from
Australia and that it resembles the C6 subtype (predominantly low
grade early stage endometrioid tumors). The stem-like B (Stem-B)
group was not seen by the TCGA which was, however, limited to high-
grade serous ovarian cancers.
s in ovarian cancer: Promise and challenges for patient stratification,

http://dx.doi.org/10.1016/j.ygyno.2016.01.026


5G.E. Konecny et al. / Gynecologic Oncology xxx (2016) xxx–xxx
In contrast to using an unsupervised computational biology ap-
proach described in the preceding studies other groups elected to char-
acterize and cluster gene expression patterns through a supervised
approach based on pathways that are thought to be biologically relevant
in ovarian cancer development and progression. A recent study by
Karlan et al. yielded two distinct molecular subgroups of high-grade se-
rous ovarian cancer: a subgroup that expressed TGF-β-correlated genes
and a subgroup that expressed ESR1/WT1-correlated genes, which each
demonstrated distinct prognostic relevance [24]. Similarly, Barlin and
colleagues recently performed a supervised class comparison of gene
expression signatures between ovarian cancer patients that recurred
before or after five years [43]. Pathway analysis identified networks in-
dicative of nuclear factor of kappa B (NFkB) and extra cellular signal re-
lated kinase (ERK) signaling [43].

In the landmark paper of the TCGA an integrated data analysis was
performed on 316 fully analyzed cases (DNA sequencing, DNA methyl-
ation, DNA copy number and gene expression analysis) [18]. This anal-
ysis identified novel cancer associated pathways commonly
deregulated in high-grade serous ovarian cancer. The RB1 (cell cycle)
pathway and PI3K/KRAS pathways were deregulated in 67% and 45%
of the cases, respectively. Moreover the NOTCH signaling pathway was
altered in 22% of high-grade serous ovarian cancer. Approximately
50% of high-grade serious ovarian cancer cases exhibit defects in homol-
ogous recombination pathway components, causing chromosomal in-
stability [18]. This subgroup of patients has been shown to be more
responsive to platinum-based chemotherapy and PARP inhibitors
when compared to patients with high-grade serous ovarian cancer
with an intact homologous recombination pathway [18, 44, 45]. In the
remaining 50% of cases CCNE1 (cyclin E1) has been suggested to be a
possible driver of cell cycle progression. Interestingly CCNE1 amplifica-
tions are mutually exclusive with the BRCA1/2 mutations suggesting
that their respective impacts on genomic stability are either redundant
or synthetically lethal [46]. All of the aforementioned pathways which
are each deregulated in specific subgroups of ovarian cancer provide
novel enrichment strategies for targeted therapies for ovarian cancer.
Nevertheless, future studies and more in depth analysis of available
data bases are needed to better define the overlap of these deregulated
pathways with the evolving transcription based classification.

4. Clinical impact of gene expression profiling in ovarian cancer

The TCGA paper on the genomic analysis of high grade serous ovar-
ian carcinoma was published in 2011. Unexpectedly this wealth of in-
formation on the molecular heterogeneity of high-grade serous
ovarian cancer has had very little impact on clinical practice or clinical
trial design to date. The lack of an apparent overlap between reported
signatures, the shortage of independent validations and the absence of
prospective studies may have contributed to the low adoption of the
evolving classification in clinical practice. Moreover, the predictive
value of these evolving signatures, e.g. showing an improved treatment
response to a targeted therapy, has yet only been studied in very select
instances [47, 48].

A further point of confusionmay be the fact that in contrast to breast
cancerwhere publishedmolecular subtypes (HER2-enriched, luminal A,
luminal B, basal-like) show a very high degree of mutual exclusivity, it's
been proposed that individual ovarian tumors may express multiple
subtype signatures at once. For the TCGA data set gene set activation
scores for each individual sample were calculated and 82% of the 489
tumor samples could be assigned to at least two subtypes and 44% to
at least three subtypes when dichotomous cut offs were used for the
gene set activation scores. In our own independent studies using the
same method of single sample gene set enrichment analysis (ssGSEA)
40% of high grade serous ovarian cancers samples could be assigned to
two subtypes and 2% to three subtypes [25]. Although most gene ex-
pression studies have been performed on the samples with high
tumor content, present host cells such as immune cells, fibroblasts,
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endothelial cells or vascular pericytes may nevertheless contribute to
the TCGA signatures such as those seen in the immunoreactive andmes-
enchymal (stromal) subgroups and thus be a reason that individual
samples can harbor gene expression profiles that would allow an as-
signment to two different subgroups at the same time. Importantly,
this level of gene expression that is primarily derived from host cell in-
filtrates (immunoreactive and stromal) may be distinct from a tumor
cell related epithelial-mesenchymal plasticity (differentiated and prolif-
erative/mesenchymal) [49, 50]. Future studies are needed to better un-
derstand what contributions of gene expression signatures in ovarian
cancer can be attributed to host cells. However, the development of
treatments that target the stromal cells of ovarian cancers including im-
mune cells (anti-CTLA mAbs, anti-PD1/PDL1 mAbs) or tumor vascula-
ture (anti-VEGF mAbs) underscores the notion not to interpret
contributions of stromal cells to ovarian cancer gene expression signa-
tures as “contamination” but rather appropriate image of the actual
tumor biology which may help clinicians to better guide patients to
the best and most appropriate treatment option.

5. Overcoming limitations

It is clear that before the evolving molecular classification of ovarian
cancer can be converted to clinical use, further validation of the prog-
nostic and predictive importance is required and associations between
subtype signatures and treatment responses will need to be assessed,
preferably using samples from controlled randomized clinical trials.
An obstacle to the rapid clinical implementation of microarray-based
prognostic or predictive assays is that fresh frozen tissue samples are
often required. This hinders access to large series of archived specimens
for validation and also poses challenges for prospective testing. Studies
on the associations between subtype signatures and treatment re-
sponses will preferably be possible when using assays that can be per-
formed on available formalin-fixed paraffin-embedded (FFPE) tissues.
Importantly, several other RNA quantification methods (real-time re-
verse transcription PCR [qRT-PCR], cDNA-mediated Annealing, Selec-
tion, Extension, and Ligation [DASL] and NanoString) can be applied to
archival FFPE tissue samples. Therefore, the later analytical platforms
are more readily amenable to large-scale validation for future use in
clinical practice. Use of these assays will also help develop a standard-
ized molecular diagnostic assay that can be prospectively assessed for
clinical utility. A recent study was able to confirm the presence of four
molecular subtypes usingDASL gene expression profiling in FFPE tissues
of 129patients diagnosedwith advanced high grade serous ovarian can-
cer [51]. Another more recent study confirmed that the TCGA and
Australian Ovarian Cancer Group signatures could be reliably detected
in archival FFPE tissues using the DASL assay, which was chosen as it
was the most widely used approach for whole genome profiling in
FFPE tissue at the time of analysis [52]. Concordance of gene expression
at the individual gene level was assessed by comparing array data from
the same cancers (matched pairs of fresh frozen and FFPE of 30 pa-
tients). The authors found that although individual probes of genes
wereweekly correlated between FFPE and frozen samples the combina-
tion of larger sets of probes had robust ability to predict survival and the
molecular subtypes among 106 patients with advanced stage high-
grade serous ovarian cancer [52]. We were recently able to perform
DASL gene expression arrays in ovarian cancer tissue samples from
380 patients that were treated in the ICON7 study which evaluated
the addition of the bevacizumab to carboplatin and paclitaxel in front-
line therapy ovarian cancer [47]. In this retrospective study we were
able to confirm that molecular classification of ovarian cancer based
on gene expression signatures was feasible using FFPE tissue.Moreover,
these study results suggest that themesenchymal and proliferative sub-
types preferentially benefited from the addition of bevacizumab when
compared to the differentiated and immunoreactive subtypes [47].
Newer studies report the successful development of RNA-Seq methods
suitable for biomarker discovery in fixed clinical tissue [53] and may
s in ovarian cancer: Promise and challenges for patient stratification,
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have led to the discontinuation of the first generation whole tran-
scriptome profiling assays using the DASL platform.
6. Moving into the future

The Australian Ovarian Cancer Study Group recently developed a
minimal signature for classification, including 39 differentially
expressed genes and nine control genes. Threemethodswere compared
for their ability to correctly classify fresh and FFPE samples: 1) PCR-
based assays (low density arrays and Fluidigm), 2) the fluorescent oli-
gonucleotide array NanoString and 3) a targeted RNA sequencing
assay (Illumina) [54]. In this study the Illumina targeted RNA sequenc-
ing assay and the NanoString assay were superior to the PCR-based as-
says [54]. This is actually the first non-microarray-based molecular
classification study of high-grade serous ovarian cancer. The 48 gene
based assay correctly classified 100% and 80% of fresh frozen and FFPE
high-grade serous ovarian cancer samples, respectively. Based on the
authors assessment the NanoString assay may be able to provide the
most accurate and cost-effective classification of ovarian cancer when
using FFPE tissues. The utility of the Nanostring platform is currently
being validated in a larger study including tissue specimens from
more than 3000 ovarian cancer cases that were collected through the
Ovarian Tumor Tissue Analysis (OTTA) consortium [55].

Very recently the first whole genome sequence analysis of 92 high-
grade serous ovarian cancers has been published which included tran-
scriptome sequencing (RNAseq) to support thewhole genome sequenc-
ing data (56). First and foremost this study confirmed previous reports
that p53mutations are prevalent in high grade serous papillary ovarian
cancers and that inactivating mutations in genes associated with ho-
mologous recombination are seen collectively in half of all primary tu-
mors. However, using a next generation sequencing approach
provided novel insights in many areas. For example although NF1 and
RB were inactivated by truncating point mutations in only 6% of the
samples, inclusion of gene breakage raised the frequency of inactivating
mutations to 20% for NF1 and 17.5% for RB which was supported by ex-
pression levels obtained by transcriptome sequencing data (56). More-
over transcriptional profiling showed an enrichment of the
immunoreactive subtype in patients with BRCA1 mutations [56]. Of
note, in 23 of the presented 92 cases a second tissue/ascites sample
was available for comparison with the primary tumor specimen
allowing the authors to study drug resistancemechanisms. In the recur-
rent tumors reversions of BRCA1/2 mutations were found in five cases
and mutations in the gene encoding the multidrug-resistant protein
MDR1 (ABCB1) with increased MDR1 expression were found in two
cases [56]. This study highlights the importance of obtaining serial sam-
ples to gain a better understanding of the changes that occur in the de-
velopment of tumor progression and drug resistance. This study also
provided preliminary but provoking information regarding the question
whether intra-patient tumor heterogeneity may limit the data gener-
ated form a single tissue biopsy in patients diagnosed with advanced
ovarian cancer. Contrary to earlier findings in other tumor types this
study showed that ovarian cancer tumor samples had a dominant signa-
ture that was stable across multiple tumor deposits that were obtained
from different locations with the exception of one ovarian cancer mo-
lecular subtype [56]. The consistency of subtypes in most patients sug-
gests that evaluation of one or at most two samples per patient may
be sufficient to robustly stratify patients for subtype-specific therapeu-
tic approaches.

In summary, these newer studies highlight the feasibility and poten-
tial of new assay platforms such as Nanostring or next generation RNA
sequencing for transcriptome analysis. The advances in assay develop-
ment paired with their use in retrospective and prospective clinical cor-
relative studieswill facilitate accurate and cost-effective classification of
ovarian cancer and hopefully helpmove the evolvingmolecular classifi-
cation of ovarian cancer into clinic rather sooner than later.
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