Current State and Future Trends to Optimize the Care of Chronic Kidney Disease in African Americans

https://escholarship.org/uc/item/7xb1k6wd

AMERICAN JOURNAL OF NEPHROLOGY, 46(2)

0250-8095

Harding, K
Mersha, TB
Vassalotti, JA
et al.

2017

10.1159/000479481

Peer reviewed
Current State and Future Trends to Optimize the Care of Chronic Kidney Disease in African Americans

Kimberly Harding a Tesfaye B. Mersha b Joseph A. Vassalotti c, d Fern J. Webb e Susanne B. Nicholas f

a Monarch Innovation Partners, Inc., Rockville, MD, b Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, c National Kidney Foundation, and d Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, e Department of Community Health and Family Medicine University of Florida College of Medicine, Jacksonville, FL, f Divisions of Nephrology and Endocrinology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA

Keywords
Chronic kidney disease · African Americans · Chronic kidney disease interventions programs · Genetic determinants · Social determinants · Care coordination · Sustainable technology · Health disparities · Call to action

Abstract
Background: African Americans (AAs) suffer the widest gaps in chronic kidney disease (CKD) outcomes compared to Caucasian Americans (CAs) and this is because of the disparities that exist in both health and healthcare. In fact, the prevalence of CKD is 3.5 times higher in AAs compared to CAs. The disparities exist at all stages of CKD. Importantly, AAs are 10 times more likely to develop hypertension-related kidney failure and 3 times more likely to progress to kidney failure compared to CAs. Summary: Several factors contribute to these disparities including genetic and social determinants, late referrals, poor care coordination, medication adherence, and low recruitment in clinical trials. Key Messages: The development and implementation of CKD-related evidence-based approaches, such as clinical and social determinant assessment tools for medical interventions, more widespread outreach programs, strategies to improve medication adherence, safe and effective pharmacological treatments to control or eliminate CKD, as well as the use of health information technology, and patient-engagement programs for improved CKD outcomes may help to positively impact these disparities among AAs.

Introduction
The United States Renal Data System Annual Data Report estimated that the prevalence of chronic kidney disease (CKD) in adults, during the period 2011–2014 was 14.8% [1]. This represented an increase from 12 to 14% during the period from 1988–1994 to 1999–2004. Importantly, the prevalence of CKD among African Americans (AAs) is ~3.5 times higher compared to Caucasian Americans (CAs). In addition, Medicare spending for patients with CKD aged 65 years and above exceeded USD 50 billion in 2014, representing 20% of all Medicare spending in this age group. On the other hand, spending per year was 14.6% higher for AA beneficiaries.
with CKD than for CAs in 2014, representing an increase from the 12.9% gap that occurred in 2013 [1].

According to the American Society of Nephrology and the Center for Disease Control and Prevention (CDC), there has been a 30% increase in CKD over the past decade accounting for more than USD 45 billion in 2012 [2]. Indeed, the Federal government has published health and healthcare disparity reports showing that the widest gaps in CKD outcomes have remained within the AA community [3]. Significant racial and ethnic disparities exist at every stage of CKD with AAs being 10 times more likely to develop kidney failure related to hypertension, and 3 times more likely to progress to kidney failure than CAs [4]. This reflects both a health disparity, defined as a higher burden of illness, injury, disability, or mortality experienced by one population relative to another; and a healthcare disparity, defined by differences between population-specific groups in health insurance coverage, access to and use of care, clinical outcomes, and quality of care [5]. Based on both historic and recent published literature, AAs experience both, as it relates to CKD. The increased risk for CKD and subsequent end-stage renal disease in AAs are due to several factors including higher prevalence and severity of hypertension; inadequate healthcare access; greater predilection to intrinsic vascular disease; greater tendency for developing target organ damage at target blood pressure levels; increased use of illicit drugs; and lower use of less renoprotective medications [6]. According to the Robert Wood Johnson Foundation (RWJF) [7], the National Committee for Quality Assurance [8] and others, social, environmental, and behavioral factors can have a significant negative impact on health outcomes and disturb the economic stability of individuals and populations. These factors contribute up to 60% of deaths in the United States related to healthcare disparities alone yet only 3% of national health expenditures are spent on prevention [5]. A greater focus on factors contributing to CKD disparities in AAs may provide an opportunity to improve overall outcomes.

In this review, we discuss the genetic and social determinants of CKD in AAs and the impact of late referrals from primary care physicians (PCPs) to Nephrologists on CKD outcomes. We describe some of the current approaches to alleviate CKD disparities among AAs, the role of care coordination between healthcare professionals and patients and the use of health information technology to enhance patient engagement. We also provide a call to action that delineates specific approaches to reduce CKD disparities for AAs.

Genetic Determinant Factors Related to AA and CKD

A number of molecular, environmental, and genetic factors contribute to the earlier onset and progression of CKD in AAs. These include increased salt sensitivity and reduced plasma renin in the face of upregulation of the intra-renal renin-angiotensin system (RAS) independent of systemic RAS [10, 11]. In addition, genetic variation in the apolipoprotein 1 gene-gene and gene environment interactions may account for as much as 70% of the differences in nondiabetic kidney failure in AAs compared to CAs [12]. This suggests that studies specifically targeting these mechanisms in AAs have the potential to uncover novel therapeutic agents to reduce CKD risk in this population [13]. Other factors that contribute to the disparities in AAs include biologic/genetic, consequences of social, economic, cultural environments and healthcare systems biases [14]. Although several studies have examined these relationships, precise quantification of the relative impact of disparity contributors requires further investigation.

The mechanisms by which environmental factors interact with genetic determinants to affect CKD susceptibility are still unknown. Previous studies have focused on the differences in CKD by self-reported race, making it difficult to delineate the importance of environmental compared with biologic factors [15–17]. Current tools used to estimate the genetic ancestral contributions may provide insight into the genetic etiology of racial disparities in CKD in admixed populations, including AAs [18–20]. For example, individuals of African and European populations intermixed during colonization of the New World and passed on indigenous genetic information to newly created AA admixed populations [21]. Thus, a mixed AA background resulted from admixture of African and European ancestral populations and carry unique patterns of genomic information from each accordingly. Also, strategies such as genetic variants informative of ancestry, known as Ancestry Informative Markers are used to calculate estimates that reflect the proportion of ancestry in individuals across the genome [22]. These approaches and correlations of genetic ancestry background with clinical or environmental factors may provide further insight into the racial genetic disparity that exists in CKD. For instance, the finding of an association between percentage African ancestry within admixed AAs could potentially support a genetic or environmental basis for the differential expression of CKD among racial groups. If there is greater global ancestry across the genome in CKD patients relative to controls,
Social Determinants Impact CKD Disparities

Social conditions, including social class, race, income, and education level have been called “fundamental causes of disease” because they entail unequal access to health-promoting and disease-preventing resources, thereby increasing disease risk in manifold ways [25]. Some of these relationships in general and in relation to CKD have been previously reviewed [14, 26]. In particular, Braveman and Gottlieber [14] reviewed the causes and mechanisms by which social and socioeconomic factors may impact health. Phelan emphasized that race itself is closely linked to social conditions and that it should also be considered a fundamental cause of health inequality [25]. In the United States, the level of education (less than high school, high school, some college and college graduate) has a gradient effect on life expectancy [14]. McGinnis et al. [27] estimated that only 10–15% of preventable death in the United States was attributed to overall medical care.

Other findings suggest an etiologic role for social conditions in kidney disease [28]. Socioeconomic status (SES) and social factors may influence risk factors for CKD and CKD progression through the effects of lack of health insurance, residential segregation, prejudice and discrimination on access to healthcare, access to quality care, reduced education/literacy, reduced employment and increased exposure to environmental toxins [26]. Furthermore, studies have investigated the effect of SES on specific CKD-related factors in the following manner. Reduced annual household income <USD 20,000 vs. >USD 75,000 is associated with 1.34 greater odds of microalbuminuria and 2.36 odd of macroalbuminuria [29]. Uninsured versus insured CKD individuals are 40% less likely to receive appropriate therapy for blood pressure control [30]. Finally, household income <125 vs. >125% of the Federal Poverty level was associated with 59% greater odds of CKD, after adjusting for demographics, insurance status, and comorbid conditions [31].

Minority patients with CKD also struggle against bias, prejudice, and discrimination within the healthcare system [32]. Some physicians, according to evidence from patients with different diseases, “perceive minorities more negatively than their majority counterparts” in aspects likely to influence CKD treatment, such as patients’ likelihood of risky behavior and adherence to medical advice [33]. Multiple factors outside of the healthcare system also influence health disparities related to CKD. An RWJF report on health disparities denotes that the observed associations between CKD and cumulative exposure to working class status were stronger among AAs who bear a greater burden of kidney disease [7]. The RWJF report also suggested that inter-generational and low SES are associated with CKD, and by no fault of theirs, AAs may be susceptible to CKD based on social origins. The RWJF authors concluded that addressing socioeconomic inequalities, such as social justice and disease prevention, would contribute to decreasing CKD disparities among AAs. Further, the National Library of Medicine showed that low SES, when stratified by race, was significantly associated with CKD in AAs (OR 1.91; 95% CI 1.54–2.38), but not in CAs (OR 0.95; 95% CI 0.58–1.55), confirming an interaction or effect modification between poverty and AA status on the prevalence of CKD [34]. Similarly, Bruce et al. [35] found affluent AAs in the Jackson Heart Study had a 41% lower prevalence of CKD than their less affluent counterparts. The World Health Organization acknowledges the inequities in social determinants of health and supports the potential of adaptive policies on general health aimed at improving education and reducing poverty [36].

Impact of Late Referrals on CKD Outcomes in AA

The definition in the literature of early versus late referral is the time from nephrology consultation to dialysis initiation, with some heterogeneity across studies. Appropriate early intervention by a nephrologist can slow down CKD progression, improve treatment of CKD complications, facilitate creation and maturation of native arteriovenous fistula; and increase access to home dialysis and preemptive kidney transplantation [33]. Clinical Practice Guidelines for referring patients were published in the Kidney Disease Outcomes Quality Initiative by the National Kidney Foundation (NKF) [37, 38]. The low implementation of these guidelines is reflected in the globally high prevalence of late referrals, which is 30–40% [39]. The percent of AAs (44.8%) receiving late referrals is significantly higher than the percent of CAs (24.5%) [40]. Other patient-related factors that may contribute to late referrals include patient-denial, level of understanding of their disease, cultural differences, low perceived
level of urgency, negative perceptions of renal replacement therapy, lack of or inadequate health insurance, poor compliance, inadequate knowledge or education regarding options and language differences [39, 41, 42]. In a 4-year retrospective analysis, Obialo et al. [43] showed that poor SES is a major contributor to late referrals in AAs. Further, “ultralate referral” (<1 month between contact with a nephrologist and dialysis initiation) in AA patients was associated with lower hematocrit, lower albumin, lower kidney function, higher use of hemodialysis catheters, and increased morbidity and mortality [43]. Notably, even in the absence of late referral, a 10-year follow-up of AAs with hypertensive CKD enrolled in the African American Study of Kidney Disease and Hypertension (AASK) trial showed that AAs with low health-related quality of life are at higher risk of adverse outcomes, including cardiovascular events and cardiovascular death [44]. Thus, AAs are a highly susceptible group in which early referrals could potentially minimize already disproportionate risks for CKD-related morbidity and mortality. In addition, clear benefits of early referral lead to increased use of renin-angiotensin-aldosterone system blockers, and optimal management of other comorbidities such as mineral bone disorders [38]. Therefore, early nephrology referral of all CKD patients is highly recommended.

Current Approaches to Alleviate Health Disparities for CKD in AA

PCP-Specialist Care Coordination of CKD Patients
Careful, directed collaboration between the PCP and the nephrologist, endocrinologist, cardiologist, and other practitioners has the potential to improve care, clinical outcomes, and mortality rates for all CKD patients. The American Diabetes Association has created a highly effective model for co-management of diabetic kidney disease by the PCP, nephrologist, and the endocrinologist with a goal to achieve current therapeutic clinical guidelines and improve patient outcomes particularly related to glycemic control [45]. In addition, the National Institute of Diabetes and Digestive and Kidney Disease has set annual CKD screening targets as a Healthy People 2020 goal of 37% of diabetic Medicare beneficiaries [46].

Best Practices for CKD Care Coordination for AA
Effective coordinated care for CKD patients should include clear definitions of specific roles and responsibilities of each professional to prevent overlap and effort duplication. An example of focus areas for CKD stages 3–5 for each practitioner might include clinical focus of the PCP on areas related to health maintenance, hypertension, and lipid management. Diabetes management, diet, and lifestyle modification may be co-managed by the PCP and the endocrinologist, while CKD complications such as mineral and bone disorder may be co-managed with the nephrologist. As CKD progresses from stage 3–5, alterations in diet and lifestyle recommendations typically become the focus of the nephrologist with a renal nutritionist and the PCP playing a supportive role to reinforce these strategies [45].

The Renal Physician Association performed a longitudinal quality improvement study of a tool-based intervention in several nephrology practices and their referring PCP practices [47]. Implementation of specially tailored audits that focused on CKD identification, communication, and patient education were highly effective in augmenting awareness and identification of CKD among PCPs, as well as increasing communication between clinical practices, and better co-management and cooperation between the PCP and the nephrologist [47]. In addition, continuous quality improvement, evaluation, and review cycles, such as the Plan-Do-Study-Act cycles proposed by the Agency for Healthcare Research and Quality should be an intrinsic part of this, or any collaborative effort in the care of chronic diseases [48]. An important component should include multidisciplinary teams consisting of a dietitian/nutritionist, social worker, nurse practitioner, physician assistant, and specially trained nursing staff and a clinical pharmacist [49, 50] as defined in the Patient-Centered Medical Home model [51].

Impact of Medication Adherence on Health Disparities in AA and Patient Safety
Muntner et al. [52] demonstrated that being AA and having low education and low income were associated with worse medication adherence scale scores. In addition, low medication adherence may contribute to risk factors for CKD and CKD disparities in AAs [53]. Specifically, self-reported medication adherence in a prospective cohort of CKD patients demonstrated that lower adherence was associated with adverse safety events including hypoglycemia, medication-related falls, hypotension, and hyperkalemia (prevalence ratio 2.11; 95% CI 1.08–2.69) [53]. A study by Rifkin et al. [54], which enrolled 30% AAs, determined that polypharmacy leads to complex medication choices and adherence challenges in CKD. The effect of poor medication adherence on clinical outcomes in AAs with poor
prove patient safety and clinical outcomes. Mason effective approach to enhance medication adherence to im-
medication reconciliation and management can be an ef-
ulated issues in patients with CKD.

Clinical Trial and Drug Discovery Techniques
Randomized clinical trials of interventions should be
designed to advance standards, and develop new thera-
pies for AAs with CKD. In 1994, the National Institutes
of Health (NIH) provided guidelines for the inclusion of
minorities and women in clinical trials [58]. However,
there remains a dearth of CKD-related clinical trials that
enroll, or even target, AAs. Of the more than 3,000 CKD-
related clinical trials registered in clinicaltrials.gov (ac-
cessed January 3, 2016), only 34, or about 1% were di-
rected toward AAs, whereas AAs comprise 13.2% of the
US population [59]. Arguably, the disparities in CKD jus-
tify additional investigation in the AA population than
would be expected by the percentage of the population.

Until the implementation of the AASK trial, there were
only few studies (including studies in cancer and AIDS)
that exclusively enrolled AAs by design [60]. Moreover,
the few studies that enrolled more than 10% AAs have
made an important impact to transform CKD care of AAs
[13]. Notably, the AASK trial (100% AA) showed that car-
dio-renal outcomes in AAs are improved with the use of
angiotensin converting enzyme inhibitors in compari-
ton to beta-blockers or calcium channel blockers with di-
uretics and other agents, as necessary [61]. This changed
the clinical practice that AAs with hypertension were not
offered angiotensin converting enzyme inhibitors, as it
was previously thought that this population generally re-
sponded poorly to RAS blockers. The AASK trial also
demonstrated that AAs with hypertensive kidney disease
achieve and sustain appropriate blood pressure control
over a long period. Additionally, 3 randomized clinical
trials that enrolled a high proportion of AAs with hyper-
tensive nephropathy effectively supported a blood pres-
sure target of <140/90 mm Hg to slow CKD progression
[62].

Deterrents to AA Participation in Clinical Trials and
the Need for Expanded Research
Both patient-related and physician-related barriers
for AA participation in large clinical trials should be
overcome. Traditional communication methods (i.e.,
posting flyers in clinics and hospitals) about the exis-
tence of clinical trials and recruitment efforts are typi-
cally less effective when seeking to engage underrepre-
sentated populations [63]. There are differing perceptions
regarding recruiting AAs in urban versus rural commu-
nities that contribute to their low participation in
clinical trials. A study by Bergeron examined rural
South Carolina residents and concluded that some of
the barriers to participation were accessibility to trial
sites, poverty, and lack of awareness of available clin-
ical trials. Better communication of investigators and
communication strategies are needed to increase par-
ticipation of rural AAs [64]. In addition to the typical
risk factors that alter CKD progression, factors that may
be more pertinent to AAs include urban stressors, reli-
giosity/church attendance, access to care, cultural val-
ues, and health literacy. It is also essential to engage AAs
in venues where they frequently congregate and feel
most comfortable [65]. These factors should be includ-
ed in the recruitment strategy of clinical trials to en-
shance participation of AAs. Recruitment strategies
should also include attention to reasons that AAs are
lost to follow-up in clinical studies, since 1.9 times (95%
CI 1.1–3.6) higher rates of attrition were observed in
participants identified as Afrocentric compared to those
not identified as Afrocentric [66]. Several reasons for
the higher attrition rates include cultural mistrust, lim-
ited minority research investigators, and staff, as well as
access to care and difficulties related to transportation
[66].

There are no known drug discovery studies specifi-
cally targeting CKD progression in AAs, and thus, the
potential to explore this area is enormous. For example,
in the development of novel pharmacologic therapies,
one may consider differences in renal drug transporters
in normal kidneys that may be related to ethnic as well
as age and gender differences. Joseph et al. [67] exam-
ined the gene expression of various drug transporters in
normal kidney tissues of age-matched individuals (n = 95)
and found that gender-age and gender-ethnicity in-
teractions were important contributors in the expres-
sion of several drug transporters. In particular, expres-
sion of ATP7B and KCNJ16 were significantly higher in
AA females compared to European American females.
Data suggest that similar analysis could potentially im-
prove drug usage and dosage toward achieving personalized medicine as well as susceptibility to adverse drug reactions in patients with CKD.

The Role of Health Information Technology and Patient Engagement and CKD Clinical Innovation for AA

Effective Patient Engagement through Health Information Technology

The use of electronic health (eHealth) records, eHealth, mobile Health (mHealth), and telehealth may improve communication and coordinated care between PCPs and subspecialists for high-risk AAs with CKD. In addition, self-management of patients with CKD by integrating smartphones into usual care is feasible and may be clinically useful [68].

AAs rely heavily on smartphones for health information and make up 67% compared to 57% CAs of mHealth users [69]. These statistics support the potential for technology to target and advance AA patient engagement in CKD management through the potential to reduce inequalities and empower ethnic minority groups [70]. The increased use of eHealth is linked to having a college education, a family member with a chronic condition, health insurance, and active social media users in AAs [70]. In fact, significant reductions in systolic and diastolic blood pressures were observed in AAs with uncontrolled hypertension in the Smartphone Medication Adherence Stops Hypertension program compared to standard care \((p < 0.0001)\) based on generalized linear mixed modeling [71]. Focus groups show that AAs perceive telemedicine as a useful mechanism for timely access to medical opinions [72]. The incorporation of experts in information technology into a patient navigator program for CKD management [73] can have an enormous impact to improved clinical outcomes in AA CKD patients.

Virtual Provider-to-Provider Collaboration for Care Coordination

The use of a virtual provider-to-provider platform technology has the potential to revolutionize CKD care for AAs by incorporating a social network and open-source tools that would effectively support clinical decision-making and the coordination of care of this high-risk cohort. In 2007, a roadmap for national action on clinical decision support was proposed by the American Medical Informatics Association to ensure optimal, usable and effective clinical decision support is widely available to providers and to patients where and when it is needed to facilitate healthcare decisions [74]. This approach has been implemented in several institutions to systematically improve safe drug prescribing by decreasing adverse drug events in patients with low estimated glomerular filtration rate as a result of reduced ability to excrete the parent drugs and/or potentially harmful metabolites [75, 76]. The CKD health community must advocate for sustainable health-information technology solutions that enable remote, virtual, and in-person patient engagement models and clinical innovation environments across CKD care teams, Clinical Research Organizations, payers, health networks and their patients, for progressive research discovery worldwide.

Overcoming Gaps in Sustainable Technology Solutions for Clinical Innovation in CKD for AA

Efforts to develop sustainable health information technology to reduce CKD among all populations are gaining traction across providers, patient navigators, patient advocacy groups, and payers [77]. However, technology solutions that support the clinical intelligence needed for research related to AAs with CKD appears fragmented. This is due in part to the lack of cohesive technology standards that effectively integrate eHealth records, public health registries for socioeconomic data values, laboratory systems, and medical device information into an integrated data set for most Clinical Research Organizations. As a result, some CKD researchers may not transition effectively from manual data entry methods that would facilitate more robust national and multinational CKD clinical trials and public health innovation efforts [78]. This deficit can directly impede their ability to contribute to the improvement of CKD outcomes in AAs. Figure 1 shows many of the members of the multidisciplinary team involved in the care of AA with CKD.

Evidence-Based Approaches for Addressing Health Disparities in the AA Community

The development of integrated clinical and social determinant assessment tools related to CKD is gaining greater acceptance. Some of the pivotal programs, such as the NKF Kidney Early Evaluation Program, which successfully conducted an outreach program to over 185,000 individuals, including 33.4% AAs, at increased risk for
kidney disease [79] have laid the groundwork for the current generation of national CKD screening and medical intervention programs for high-risk groups. The design used a community-based approach to reach AAs in community centers and churches engaging individuals who may mistrust the health system or have poor access to care. Recent data from Kidney Early Evaluation Program showed that uninsured adults at high risk for developing kidney disease were more likely to progress to kidney failure or death than those with private health insurance coverage [80]. Another example is the NKF CKD intercept program [81], which seeks to facilitate positive changes in large-sized healthcare organizations. The CKD Health Evaluation and Risk Information Sharing (CHERISH) sponsored by the CDC and NKF [82] is a large-scale CKD-screening program that targeted individuals at high risk for CKD, including AAs. The direct impacts of these programs on clinical outcomes in AAs are still being assessed.

Current efforts, both in the federal and private sectors are beginning to address the significant demand for these publically available outreach programs that aim to increase awareness and improve outcomes. For example, the CDC and Research Triangle Institute collaborated to develop a simulation model to assess costs and benefits of various CKD care and prevention interventions [82]. The NIH/National Institute of Diabetes and Digestive and Kidney Disease leads information sharing and funding efforts for CKD prevention and awareness [83]. In addition, one of the Food and Drug Administration missions is to advance the development of safe and effective pharmacological treatments for the control and elimination of CKD [84]. Table 1 lists some of the current national programs and longitudinal clinical studies that target high-risk patient populations. Systematic low resource interventions to target AA outreach in urban centers and safety-net institutions include clinical decision support and mHealth. In addition, clinical trial design should incorporate this vulnerable population for enrollment.

Call to Action Adapted from the CDC Healthypeople.gov Cancer Outreach Program

The following patient-engagement practices are recommended by the CDC Healthypeople.gov initiative for healthcare organizations to improve healthcare disparities related to prevention and screening outcomes for chronic diseases such as cancer [85], which, if adapted effectively, may have a notable impact to reduce health disparities for AAs with CKD:
- Improve early detection of CKD through more widespread routine screenings
- Implement evidence-based community interventions to increase screening and modify risk behaviors
- Develop research projects that encourage minority groups to participate in clinical trials for CKD and end-stage renal disease prevention
- Conduct formative research about interventions to reduce CKD disparities and improve health. There is a growing need for interventions that are available to people regardless of SES or lifestyle behaviors that also addresses the social environment
- Use a variety of media to market CKD information to diverse populations in a variety of settings
- Expand access to quality CKD care and clinical trials to ensure that minority groups receive equal care and access to the state-of-the-art technology that other patients receive
- Target barriers to CKD screening and other preventive services, such as fear of CKD, perceived cost, and lack of physician referral.

Fig. 1. Conceptual model of a multidisciplinary team involved in care of African Americans (AAs) with chronic kidney disease (CKD). The figure shows members of the multidisciplinary team involved in the care of AAs with CKD.
Table 1. National CKD assessment and medical intervention programs

<table>
<thead>
<tr>
<th>CKD patient assessment and medical intervention programs</th>
<th>Sponsors of program</th>
<th>Targeted group</th>
<th>Overview of programs</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>The CKD Health Evaluation and Risk Information Sharing (CHERISH)</td>
<td>CDC and the National Kidney Foundation</td>
<td>High risk patients for CKD and those diagnosed with CKD and their caregivers</td>
<td>The CHERISH was designed to identify individuals at high risk for CKD, determine participant’s access to follow-up care, and examine the CKD disease course. CDC is using national datasets like National Health and Nutrition Examination Survey (NHANES) and the United States Renal Data System to investigate the epidemiology of CKD in general and special populations. In addition, the CDC collaborates with the Veterans Administration to examine the natural history and health outcomes of CKD.</td>
<td>http://www.cdc.gov/diabetes/projects/pdfs/ckd_summary.pdf</td>
</tr>
<tr>
<td>CKD health economic study</td>
<td>CDC and RTI</td>
<td>Public health analysts, epidemiologists, providers, patient advocates, clinical quality standards organizations</td>
<td>CDC and RTI international are conducting cost-effectiveness studies using a longitudinal (lifetime) simulation model to assess the costs and benefits of various CKD care and prevention interventions. The model predicts the development, progression, and complications of CKD, and test the effectiveness of various public health interventions. CDC has concluded that CKD screening should target people aged 50 or older with diabetes or high blood pressure, and it is not cost effective to screen people who are not at high risk for CKD.</td>
<td>http://www.cdc.gov/diabetes/projects/pdfs/ckd_summary.pdf</td>
</tr>
<tr>
<td>National Kidney Disease Education Program (NKDEP)</td>
<td>NIH NIDDK</td>
<td>Patients, providers, pharmacists, researchers, general public, medical societies/associations</td>
<td>NKDEP is one of the leading knowledge sharing hubs for CKD prevention and awareness programs. The overall program focus is to engage the CKD care team, researchers, and the patient advocacy community in improving healthcare outcomes for those at risk for CKD, with a strategic focus on minority groups.</td>
<td>http://www.niddk.nih.gov/HEALTH-INFORMATION/HEALTH-COMMUNICATION-PROGRAMS/NKDEP/Pages/default.aspx</td>
</tr>
<tr>
<td>The kidney health initiative</td>
<td>FDA (Food and Drug Administration), NIH, and private and public healthcare, pharmaceutical, medical device nonprofit and for-profit organizations and medical societies</td>
<td>Government agencies, public health analysts, epidemiologists, providers, patient advocates, clinical quality standards organizations, medical societies/associations</td>
<td>Their mission statement: To advance scientific understanding of the kidney health and patient safety implications of new and existing medical products and to foster development of therapies for diseases that affect the kidney by creating a collaborative environment to optimize evaluation of drugs, devices, biologics, and food products.</td>
<td>http://www.asn-online.org/khi/</td>
</tr>
</tbody>
</table>
Conclusion

This review has described some of the persistent problems that contribute to CKD health disparities among AAs with CKD. AAs are already at higher risk for poor access to care and reduced quality of care that ultimately result in worse health outcomes than any other racial group in the United States. Other contributing factors include the biological/genetic predisposition to CKD, and socioeconomic health determinants that are exacerbated by a lack of effective prioritization in the federal, public, and private healthcare sectors. Adoption of the transformational initiatives at the national level in Table 1 could reverse the trend in poor outcomes for this population. In addition, the CDC Healthypeople.gov 2020 initiative designed to bridge both health and healthcare disparities at the national level, should be embraced by the CKD healthcare community in order to meaningfully change experiences of AAs with CKD. The long-term effect will improve the quality of care for AAs at risk for, or with CKD and ultimately, contribute to the development of a reusable framework for other high-risk groups with similar health disparities in the United States and internationally.

Acknowledgment

The authors thank Liane Hannah, Research Associate at the University of Florida Department of Community Health and Family Medicine for assisting with literature searches, and Elizabeth Montgomery, Senior Project Director of the Primary Care Initiative at the NKF for her contribution to the preparation of this manuscript; and also Rebecca Roberts for her contribution. This work was supported by NIH grant R01HL132344 to TBM; and NIH grants 1DP3 DK094311 and UL1TR000124 to SBN.

Disclosure Statement

The authors claim no conflict of interest. The content is solely the responsibility of the authors and the authors declare that they have no relevant financial interests.

References

