Title
A High-Speed Multi-Channel Readout for SSPM Arrays

Permalink
https://escholarship.org/uc/item/7z0750np

Author
Walder, Jean-Pierre

Publication Date
2014-04-21

DOI
10.1109/TNS.2011.2176142

Peer reviewed
A High-Speed Multi-Channel Readout for
SSPM Arrays

Martin Janecek, Jean-Pierre Walder, Patrick J. McVittie, Bob Zheng, Henrik von der Lippe, Member,
IEEE, Mickel McClish, Purushottam Dokhale, Christopher J. Stapels, James F. Christian, Member,
IEEE, Kanai S. Shah, and William W. Moses, Fellow, IEEE

Abstract—Solid-state photomultiplier (SSPM) arrays are a
new technology that shows great promise to be used in PET
detector modules. To reduce the number of channels in a PET
scanner, it is attractive to use resistor dividers, which multiplex
the number of channels in each module down to four analog
output channels. It is also attractive to have SSPMs with large
pixels (3x3 or 4x4 mm²). However, large area SSPMs have
correspondingly large capacitances (up to 1 nF) and directly
coupling them to a resistive network will create a low-pass filter
with a high RC time constant. In order to overcome this, we have
developed an application specific integrated circuit (ASIC) that
“hides” the intrinsic capacitance of the SSPM array from a
resistive network with current buffers, significantly improving
the rise time of the SSPM signals when connected to the resistive
network. The ASIC is designed for a wide range of SSPM sizes,
up to 1 nF (equivalent to 4x4 mm²), and for input currents of 1 to
20 mA per channel. To accommodate various sizes of SSPM
pixels, the ASIC uses adjustable current sources (to keep the
feedback loop stable). A test ASIC has been fabricated that has
16 input channels, an internal resistor divider array that
produces four analog outputs, 16 buffers that isolate the SSPM
capacitance from the resistor array, and four output buffers that
can drive 100 Ω loads. Thus, detector modules based on
SSPMs and this ASIC should be compatible with the block
detector readout electronics found in many PET cameras. Tests of
this ASIC show that its rise time is <2 ns (and it will thus not
significantly degrade the ~7 ns rise time of the SSPM pixels) and
that the analog decoding circuitry functions properly.

Index Terms— MPPC, SSPM, SiPM, SPM, G-APD, MRS-
APD, ASIC, resistor network, Anger logic, readout time

I. INTRODUCTION

SOLID-STATE Photomultipliers (SSPMs) are a promising
technology to replace photomultiplier tubes (PMTs) in Positron Emission Tomograph (PET) detector modules. The
SSPM’s small size, its insensitivity to magnetic fields, and the
potential to be made inexpensively (when mass-produced) are
some of the traits that make these devices a very interesting
alternative to the current technology of PMTs in PET detector
modules [1-4]. These advantages possessed by SSPMs enable
the next generation of PET scanners to be made more compact
(and in turn, with higher sensitivity and higher resolution) and
to be used in conjunction with magnetic resonance imaging
(MRI). In addition, the SSPM can possess a high timing
resolution (<1 ns) [4-7], allowing the SSPM photodetector
technology to be implemented in time-of-flight PET [8].

A modern PET scanner contains a very high number of
detector channels, and there is therefore a need for a channel
reduction scheme. For instance, a PET scanner with 40-cm
diameter and 25-cm axial field-of-view, and with
1.5 x 1.5 mm² pixels has over 130,000 detector elements. To
reduce the number of electronics channels in a PET scanner, it
is attractive to use resistor dividers, which multiplex the
number of channels for each detector module to four analog
output channels [9]. These four channels contain spatial
information about where in the detector module an event took
place. To directly couple an SSPM to a resistive network is
problematic as the intrinsic capacitance of the SSPM and the
resistors will produce an RC-circuit, compromising the rise
time. This problem is especially problematic for larger SSPM
pixels, such as 3x3 or 4x4 mm², which can have quite a
significant intrinsic capacitance.

The aim of this work is to develop an Application Specific
Integrated Circuit (ASIC) that hides the SSPM’s intrinsic
capacitance from the resistive network with current buffers.
This will allow SSPM arrays to be read out without any
additional time degradation, while also reducing the number of
output channels to four. The ASIC needs to be general in the
sense that it needs to accommodate various capacitances up to
1 nF, which is equivalent to 4x4 mm² SSPM pixels. This
ASIC in combination with an SSPM array should be able to
replace the current setup of PMTs and resistive charge-
dividing networks used in today’s PET detectors, producing a
compact and magnetic insensitive photodetector that can be
read out at high speeds with a reduced number of output
channels. Although each of the building blocks in this ASIC
is well-known technology, the ASIC as a whole is a new
application that will enable SSPM arrays to replace PMTs in
PET detector modules.

We report in this paper on the design requirements of the
proposed ASIC and the selected architecture for the ASIC design. We then report on basic tests of the manufactured ASIC, both with an electronically “artificial” signal created by an emulator board as well as on basic tests with single SSPM pixels connected to one ASIC channel. Imaging studies with this ASIC are beyond the scope of this article.

II. BACKGROUND

To create a high-resolution PET detector, the detector module needs to accommodate a large number of SSPM pixels with little dead space in-between each SSPM pixel. This is most easily accomplished by using SSPM arrays instead of single SSPM pixels. Several detector manufacturers now offer SSPM arrays, including Hamamatsu [Japan], Philips [Netherlands], RMD [Watertown, MA], SensL [Ireland], and FBK [Italy]. To reduce the number of output channels on these arrays and to use them as position-sensitive devices, a decoding scheme is needed. Although a simple resistor network directly coupled to the outputs of the SSPM array would allow significant reduction in the number of readout channels, the inherently fast response of the SSPMs would be compromised by several orders of magnitude. Each SSPM pixel has a significant intrinsic capacitance (of hundreds of picofarads), and directly coupling that to a resistive network would create a significant RC circuit, with a degraded readout bandwidth. This is especially problematic for large area SSPMs (>1mm2), as the pixel capacitance is proportional to the area. To reduce the number of output channels on SSPM arrays, and to use them as position-sensitive devices, several groups are designing Application Specific Integrated Circuit (ASIC) readouts [10-12]. A few of these ASIC designs [10-12] process each signal and are not compatible with the general PET multiplex scheme. The other groups are working on readouts that are designed to work with small SSPM pixels, with capacitances of 50 to 100 pF [13], [14], or smaller. Our ASIC design achieves high performance with much larger devices that have significantly larger capacitance (by a factor of about ten or more), which is more realistic for PET detector modules.

III. METHODS

A. ASIC design

The design parameters for the ASIC were determined from SSPM arrays manufactured by RMD, Inc. The operating range of the ASIC is based on a detection of 50 to 1000 scintillating photons per gamma detection event. The number of scintillator photons was calculated by assuming 511 keV gammas impinging onto a LSO crystal (~28,000 photons/MeV), a 75% collection efficiency (emitted optical photons in the scintillator making it to the SSPM detector surface), and a 10% SSPM photodetection efficiency (PDE). The higher photon count occurs when the gamma interaction is a photoelectric effect while the lower number corresponds to the lower range of Compton scatter events. For an LSO crystal, the light pulse has a rise time of ~0.5ns [15] and a fall time of ~40ns [16]. To estimate the input signal to the ASIC, this optical pulse is convolved with the impulse response of the SSPM, which is manufacturer dependent. We have in this work tested the ASIC with an SSPM manufactured by RMD, but the ASIC design is designed to work with a range of SSPMs made by various SSPM manufacturers, and thus a range of rise times (of a few ns and slower) and capacitances (100 – 1000 pF per pixel). The RMD SSPM has a rise time of ~7 ns and a fall time of ~45 ns. The surface area of the SSPM pixels was selected to accommodate typical PET scintillator crystal dimensions that are 1x1 to 4x4 mm2.

For a scintillator light detection of 50 to 1000 photons, that is, when 50 to 1000 micro-cells fire during one gamma interaction, the current from an SSPM pixel was estimated to be 1 to 20 mA. The maximum capacitance was estimated to be 900 pF, which is equivalent to a 4x4 mm2 SSPM pixel. The total number of input channels was 16, and the output of the ASIC was not allowed to significantly degrade the 7-ns rise time of the input SSPM signal. The ASIC design specifications are summarized in Table I.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Input Current Pulse</td>
<td>20 mA</td>
</tr>
<tr>
<td>Maximum Input Capacitance</td>
<td>900 pF</td>
</tr>
<tr>
<td>Total Output Noise</td>
<td>1.3% (50 photon det. signal)</td>
</tr>
<tr>
<td>Number of Channels</td>
<td>16</td>
</tr>
<tr>
<td>Power Consumption - per Channel</td>
<td>12 mW</td>
</tr>
<tr>
<td>Power consumption - Whole ASIC</td>
<td>313 mW</td>
</tr>
</tbody>
</table>

![Fig. 1. Microphotograph of 16-channel ASIC. The die dimensions are 2.5 x 2.5 mm2.](image)

With these design parameters, our IC design team chose a system design based on a design described by Herrero et al. [11], though the components in our design were chosen differently. The block diagram of the chip is shown in Fig. 2a, and the schematic of the current-current converter is shown in Fig. 2b.
The current conver source in order to keep the feedback loop stable. The current transconductance (G_{m}) of the amplifier, labeled HS (for high speed) in the figure, is adjustable through a starving current source in order to keep the feedback loop stable. The current-current converter provides a copy of the input current with a ratio of 10:1 (M2, M3) and drives the resistive ladder. The current mirror ratio of 10:1 was chosen to limit the current in the resistive ladder and hence the input voltage to the transimpedance amplifiers. The current attenuation avoids saturation at the output of the current-to-current converter and also helps reduce the power consumption of the four transimpedance amplifiers. This ratio increases the resistive ladder noise contribution referred to the input, which is still below our noise requirements.

The ASIC was designed in Cadence designer software [United Kingdom] and simulated using Eldo Simulator by Mentor Graphics [Wilsonville, OR]. The total output noise (i.e., the quadratic sum of the four corner signals) from these simulations was estimated to be 1.3\% rms at an input current of 1 mA (equivalent to a detection of 50 photons), which is equivalent to 0.65 photon rms. As previously mentioned, to accommodate the large variance in input capacitances that the ASIC was designed to work with (up to 4 x 4 mm² SSPM pixels), the design requires a starving current source, as shown in Fig. 2b. This design has the tradeoff of a fairly large power consumption of 12 mW per channel, which with 16 input channels and four output line-drivers, results in a total power consumption of 313 mW for the whole chip. The final design was sent to MOSIS (Metal Oxide Semiconductor Implementation Service) for fabrication using the AMS 0.35 μm TSMC CMOS high voltage process.

B. Basic testing of the ASIC

To test the ASIC with various input signals, several emulator boards were designed and manufactured. These boards mimic an SSPM pixel output signal and have the advantage that the signal can be shaped to our specifications, including pulse height, rise and fall times, pulse frequency, and pixel capacitance. The equivalent circuit of an SSPM pixel was mimicked by a capacitor (C_{cell}) in parallel with a switch and a discharge resistor (R_{cell}), all in series with a quenching resistor (R_{Q}), as illustrated in Fig. 3. When the pixel fires, the switch is closed and the charge stored in the cell capacitance discharges through the cell discharge resistor. When the current reaches a threshold, the switch opens, the discharge stops, and the capacitor is recharged through the quenching resistor. By changing the three components (C_{cell}, R_{cell}, R_{Q}), the pixel capacitance and the rise and fall times can be modified. A Digital-to-Analog Converter (DAC) controls the pulse height and the switch is controlled by an FPGA (Field Programmable Gated Array). For the experiments presented here, the components were chosen to mimic SSPM pixels with up to 900 pF capacitance, and to produce ~7 ns rise times and ~45 ns fall times.

For testing, the emulator board output signal was coupled through a 50-Ω resistor (R_{sense}) signal into channel 0 (unless otherwise specified) input of the ASIC, and channel A was used as the output channel (unless otherwise specified). The voltage across the 50-Ω-resistor was used to monitor the input signal. The 50-Ω resistor (in series with R_{S} and the input resistance of the ASIC, which is between 5 and 10Ω depending on I_{sense}) is in effect placed in parallel with R_{cell} (which is a smaller resistor of 10 Ω) when the switch is closed (i.e., when the signal “rises”). Hence, the impact of placing a 50-Ω resistance in between the emulator board and the ASIC.
will produce a degradation of the ASIC rise time by less than 8% (compared to not having it there) for any of the measurements reported on in this paper.

The following tests were performed to evaluate the ASIC: 1) signal output shape, including rise and fall times, 2) gain, 3) electronic noise, 4) input versus output linearity, 5) electronic cross-talk, 6) Anger decoding capability, 7) power consumption, 8) temperature of die, and 9) performance as a function of temperature.

The signal shapes, ASIC gain, and electronic noise were measured with a TDS7404B Tektronix oscilloscope [Beaverton, OR]. The linearity was measured for all four output channels by placing the input current on the closest corner-channel (that is, the current input was on channel 0 (3, 15, or 12) when the output voltage was monitored on channel A (B, C or D), respectively. The electronic cross-talk was measured on the top row of the ASIC, i.e., channels 0 through 3. The Anger decoding was performed by injecting various strength signals on one channel at a time and using equations 1a and 1b to calculate the X and Y for that channel.

\[
X = \frac{(B+C)-(A+D)}{A+B+C+D}, \quad Y = \frac{(A+B)-(C+D)}{A+B+C+D} \quad (1a \text{ & } 1b)
\]

The resulting XY positions were summarized in a XY plot, which was normalized to the corner channel positions. Each channel was tested with 450 pF and 900 pF emulator boards, as well as various signal strengths. The temperature of the ASIC package was measured using a Raytek Raynger® ST30 PRO infrared thermometer [Fluke Corporation, Everett, WA]. The performance of the ASIC as a function of temperature was performed at three temperatures: at start-up (room temperature), at steady-state (when the ASIC has reached a constant temperature), and at an elevated temperature. The elevated temperature was achieved by blowing hot air onto the ASIC with a heat gun.

C. Testing the ASIC with an SSPM array

The ASIC was also tested with a 6 x 6 pixel SSPM array, as shown in Fig. 4, manufactured by RMD, Inc. Each SSPM pixel measures 1.5x1.5 mm2, with each pixel containing 30x30 μm2 micro-cells at a fill factor of 49%, and with a capacitance of 150 pF per pixel. A 3 x 3 x 5 mm3 LSO crystal was placed on the top left corner of the SSPM array, covering channels 0, 1, 6, and 7, and the crystal was irradiated with 511 keV gamma rays from a 12 μCi 68Ge point source. The four illuminated channels on the SSPM were connected in parallel, and the resulting output current from the channels was connected through a 10 Ω resistor to the channel 0 ASIC input. The 10-Ω resistor was used (instead of a 50-Ω resistor) to further reduce the degradation of the rise time. The 10-Ω resistor, which enabled us to measure the current flowing from the SSPM to the ASIC, degraded the rise time of the SSPM and ASIC signals by less than 3%. By connecting four channels in parallel, we effectively created a single SSPM pixel with an intrinsic capacitance of 600 pF. An oscilloscope [DSO7054A, Agilent Technologies] was used to measure the voltages across the 10-Ω resistor and at output A on the ASIC. The setup is illustrated in Fig. 5.

IV. RESULTS

A. Basic testing of the ASIC

As shown in Fig. 6, the signals on the output of the ASIC followed the injected input signal from the emulator boards very well. There is a slight propagation delay (~3 ns) in the output signal compared to the input, and the degradation of the rise and fall times was estimated to be less than 2 ns. The <2 ns impulse response is equivalent to a bandwidth on the current-current converter of at least 175MHz. The unfiltered gain of the ASIC was measured to be ~25 V/A. The electronic noise measurement was below 1 mV (which was limited by our measurement setup), which for a 511 keV gamma-ray detected in a LSO crystal translates to a negligible <1% FWHM to be added (in quadrature) to the ~12% FWHM intrinsic energy resolution of the LSO crystal. As mentioned in Section II.A, the noise is expected to be 0.3 mV rms, which corresponds to 0.65 photons rms.

The measured linearity of the ASIC is shown in Fig. 7, where the output signals’ peak-to-peak amplitudes are plotted as a function of input signal peak-to-peak amplitude. There is a slight non-linear effect for large input signals, where the maximum deviation from the linear fit is less than 4% for all channels. This non-linearity for the output signals is small compared to the non-linearity of the SSPM. The number of fired microcells (\(N_{\text{fired}}\)) in an SSPM is a statistical process based on the probability of detecting randomly distributed photons in a limited number of photosensitive detector elements on a detection surface. This probability can be expressed with the following equation [17]:

\[
N_{\text{fired}} = N_{\text{cells}}(1 - e^{-PDE \times \frac{N_{\text{photons}}}{N_{\text{cells}}}}), \quad (2)
\]

where \(N_{\text{photons}}\) is the number of incident optical photons, \(N_{\text{cells}}\) is the number of microcells on the SSPM, and PDE is the photodetection efficiency of the SSPM. The linearity of an
Fig. 6. Oscilloscope image of ASIC output pulse (black curve) versus 450 pF emulator input pulse (gray curve). The emulator board was in this experiment simulating a rise time of ~5 ns. The emulator board signal shows signs of switching noise, which is visible at the start of the rise of the input signal as well as at the signal peak, and is also visible in the output pulse. The switching noise is emulator board related and did not affect our measurements.

The electronic crosstalk of the ASIC is summarized in Table II, and is <6%. The crosstalk was measured to be symmetric, that is, the crosstalk measured on channel y when a signal is input on channel x is similar to what is observed if the signals were reversed. The crosstalk in these measurements is most likely dominated by the traces on the printed circuit board.

The Anger decoding map is shown in Fig. 8. As can be seen, all channels are consistently falling in their respective location in the XY map, and only a few of the weakest signals are slightly shifted from their nominal location. This minor shift is due to measurement errors of our oscilloscope, as the noise in the oscilloscope probe is no longer negligible at the weaker signal levels. There is also a very minor pin cushion effect, which is endemic to a resistor network readout.

The power consumption of the whole ASIC chip, which includes four test structures, was measured to be approximately 360 mW, which is consistent with the simulated results of 313 mW without the test structures. The operational temperature for the ASIC package was measured to be 6°C above room temperature at steady-state. The ASIC increased its gain by 0.4% per ºC in the temperature range of 25°C to 45°C.

B. Testing the ASIC with an SSPM array

Tests with a single SSPM pixel coupled to the ASIC showed similar results to the emulator board tests; the output signal follows the input signal very well and the XY plot showed consistent locations for each channel and good separation between channels. Coupling several pixels in parallel, that is, mimicking larger pixels by increasing the detector surface as well as the capacitance, also produced similar results. In Fig. 9, the input-versus-output signals are shown at 33.7 V bias voltage for a 600 pF SSPM pixel.
V. DISCUSSION

The ASIC was designed to be tunable over a range of SSPM sizes, up to 4x4 mm². In addition, the speed of the ASIC was designed to not reduce the SSPM readout bandwidth by more than a few percent. These three requirements – large area, flexibility in area, and high timing resolution – resulted in a design that has a fairly high power consumption. The ASIC power consumption in future designs should be compatible with the block detector readout electronics. With the same electronics found in many PET cameras, the ASIC should make this ASIC usable in conventional PET systems. Our tests of this ASIC show that its rise time is <2 ns, indicating that it will not significantly degrade the ~7 ns rise time of the SSPM pixels. The <2ns rise time degradation should make this ASIC usable in conventional PET systems, where the timing resolution is in the order of a few ns.

VI. CONCLUSIONS

An ASIC to read out SSPM pixel array signals has been designed, manufactured, and tested. The ASIC reduces the number of output signals from 16 SSPM pixels down to four, while the SSPMs’ intrinsic high timing resolution is maintained. The ASIC uses a charge-division resistive network to decode the channels (i.e., Anger logic), and hides the SSPM capacitance from the resistive network with individual current-current converter between each SSPM and the resistive network. The ASIC allows a wide range of SSPM pixel capacitances (up to 1 nF) to be read out, allowing this ASIC to be used with a wide range of SSPM pixel sizes, up to ~4x4 mm². Detector modules based on SSPMs and this ASIC should be compatible with the block detector readout electronics found in many PET cameras.

Our nextgoal is to develop a 64-channel version of this ASIC. The expected power consumption, with the same architecture, would be 770mW (without line drivers) or 910 mW (with line drivers).

ACKNOWLEDGMENT

This work was supported by the Director, Office of Science, Office of Biological and Environmental Research, Biological Systems Science Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.