Adaptive Management of Irrigation with Feedback Control to Avoid Groundwater pollution by Nitrate

Yeonjeong Park¹ (yp32@ucla.edu), John Ewart² (jewart@ucmerced.edu) and Thomas C. Harmon² (harmon@ucmerced.edu)
¹Department of Civil and Environmental Engineering, Box 159310, UCLA, Los Angeles, CA 90095 ²School of Engineering, Box 2039, UC Merced, Merced, CA 95344

1. Reclaimed Water is Reused for Irrigation

The Secondary Effluent is Irrigated with Center-pivot Sprinkler System

2. But, the problem is ...

Nitrate in the reclaimed water has the potential to pollute underlying groundwater

3. Solutions are ...
 • Observations to identify our system
 - Embedded Networked Sensing (ENS)
 [Drawing by Jason Fisher](http://www.cens.ucla.edu)
 • Prediction models to forecast nitrate transport in subsurface system – Simulation models
 • Adaptive Control methodology to prevent from nitrate pollution by adjusting the irrigation rate based on current observations and simulation models
 - Receding Horizon Feedback Control

4. Embedded Networked Sensing System in Palmdale, CA

[Drawing by Jason Fisher](http://www.cens.ucla.edu)

5. Adaptive Control
 - Receding Horizon Feedback Control (RHFC)

6. Results of Adaptive Control

7. Conclusions

Adaptive control using sensor networks and Receding Horizon Feedback Control is efficient and promising to identify a system, to control irrigation process, and eventually to prevent groundwater pollution while realizing the benefits of reclaimed water.

Acknowledgement
UCLA’s Center for Embedded Networked Sensing (CENS) under cooperative agreement #CER-020079 with the National Science Foundation is gratefully acknowledged.