Title
Population health thinking with Bayesian networks

Permalink
https://escholarship.org/uc/item/8000r5m5

Author
Aragon, Tomas J.

Publication Date
2018-11-23

License
CC BY 4.0
Population health thinking with Bayesian networks
Tomás J. Aragón, MD, DrPH\(^1\text{-}^4,^*\)

\textit{DRAFT, Version November 23, 2018}

Contents

1 Introduction 2

2 Probabilistic reasoning (Bayesian networks) 4
 2.1 Example 1: HIV testing 5
 2.2 Example 2: Evaluating respiratory diseases 7

3 Causal inference (causal graphs, directed acyclic graphs) 10
 3.1 Directed acyclic graph (DAG) 10
 3.2 Program theory is for the DAGs 11
 3.3 Deconfounding (controlling for confounding) 14
 3.4 Backdoor criterion 16
 3.5 Frontdoor criterion 24
 3.6 Instrumental variable 24

4 Decision quality (decision networks, influence diagrams) 27
 4.1 Example 1: Decision to buy stock 28
 4.2 Example 2: Decision to buy Spiffycar 30

References 34

\(^1\) Health Officer, City and County of San Francisco
\(^2\) Director, Population Health Division, San Francisco Department of Public Health
\(^3\) Affiliate faculty, UC San Francisco, Department of Epidemiology and Biostatistics
\(^4\) Adjunct faculty, University of California, Berkeley School of Public Health

* Contact: tomas.aragon@sfdph.org (email)

November 23, 2018
Our comforting conviction that the world makes sense rests on a secure foundation: our almost unlimited ability to ignore our ignorance.

— Daniel Kahneman [1]

1 Introduction

Population health is a systems framework for studying and improving the health of populations through collective action and learning [2]. Population health data science (PHDS) is the art and science of transforming data into actionable knowledge to improve health [2]. Actionable knowledge is information that informs, influences or optimizes decisions. A decision is a choice between two or more alternatives that involves an irrevocable allocation of resources [3,4]. Every decision has an opportunity cost—the lost net benefit of the better option not chosen. Hence: “The roads we take are more important than the goals we announce. Decisions determine destiny.”

Decisions drive strategic, tactical and operational execution. Decisions are based on causal and probabilistic assumptions (“choosing and doing action A (over say, B) will achieve net effect Y with probability p.”). This “prior probability” is a prediction. Based on our evaluation, we adjust our causal and/or prediction assumptions—this is learning. Learning leads to new decisions and new actions (adaptation). Improvements are adaptations that make processes and/or results better. Continuous improvement is one of the foundational pillars of a learning organization. Population health improvement requires continuous decision improvement.

The human brain specializes in prediction (also called concepts, memory, schema, etc.) [6]. In 2002, psychologist Daniel Kahneman won the Nobel Prize in Economics for the pioneering studies that cataloged human cognitive biases and pitfalls that formed the foundation of the new field of behavioral economics [1]. It turns out that humans are not good at estimating probabilities (probabilistic reasoning), especially for novel circumstances. We also have nonconscious cognitive biases that affect our ability to draw valid causal inferences and to change course when we are wrong. We are prone to defensiveness to protect our ego and to avoid our fears. This journey will require intellectual humility to acknowledge our innate cognitive limitations and curiosity to experiment with a new way of computational and inferential thinking [7].

In epidemiology, analyses are generally classified as descriptive or analytic. In PHDS we extend this to five analytic domains (Table 1), all of which should produce actionable knowledge in service of a strategic, tactical or operational goal or objective.

<table>
<thead>
<tr>
<th>Level</th>
<th>Analysis</th>
<th>Population health purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Descriptive</td>
<td>measuring risk or protective factors, and outcomes</td>
</tr>
<tr>
<td>2.</td>
<td>Predictive</td>
<td>early detecting and targeting of interventions</td>
</tr>
<tr>
<td>3.</td>
<td>Causal</td>
<td>discovering and estimating causal or intervention effects</td>
</tr>
<tr>
<td>4.</td>
<td>Simulation</td>
<td>modeling for epidemiologic or decision insights</td>
</tr>
<tr>
<td>5.</td>
<td>Decision</td>
<td>informing, influencing or optimizing decision quality</td>
</tr>
</tbody>
</table>

1— Frederick Speakman
A learning organization requires other components. For details, see Aragón, et al. [5]
The PHDS Level 5 focuses on **decision quality** (DQ). DQ serves as a checklist for core **decision competence**, and as a road map for decision analysis and other decision methods. Table 2 lists the six DQ requirements. For important or high stakes decisions our decision making improves by just asking these six questions.

Table 2. Decision quality requirements: A decision is only as strong as its weakest link

<table>
<thead>
<tr>
<th>Name</th>
<th>Quality requirements</th>
<th>Key DQ questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame</td>
<td>Appropriate frame</td>
<td>What are we deciding and why?</td>
</tr>
<tr>
<td>Reasoning</td>
<td>Sound reasoning</td>
<td>Are we thinking straight?</td>
</tr>
<tr>
<td>Data</td>
<td>Actionable knowledge</td>
<td>What do we need to know?</td>
</tr>
<tr>
<td>Results</td>
<td>Clear values & trade-offs</td>
<td>What consequences do we care about?</td>
</tr>
<tr>
<td>Choices</td>
<td>Creative alternatives</td>
<td>What choices do we have?</td>
</tr>
<tr>
<td>Commitment</td>
<td>Commitment to action</td>
<td>Is there commitment to action?</td>
</tr>
</tbody>
</table>

Actionable knowledge is a requirement for DQ. Unfortunately, data is often incomplete and/or we face uncertainty. To tackle uncertainty we need probabilistic reasoning. While basic DQ can be mastered by anyone, probabilistic reasoning requires personal humility and computational support. Decision analysis (DA) tackles decision making in the face of uncertainty and trade-offs. We will review DA using Bayesian networks (BNs) which are intuitive and scalable to complex decisions.

Connected by BNs, **population health thinking** (PHT) is continuous improvement in the three conceptual and practice pillars of PHDS:

1. **probabilistic reasoning** (PR) with BNs,
2. **causal inference** (CI) with causal BNs (i.e., directed acyclic graphs), and
3. **decision quality** (DQ) with decision BNs (i.e., influence diagrams).

The purpose of this paper is to cover PHT from a conceptual and computational perspective. For PR we will dive into BNs which are probabilistic graphical models that can be drawn with pencil and paper. In fact, that is exactly what I do. When I attend problem-solving meetings I listen for, and inquire about, key concepts which I attempt to summarize as BNs. PHDS levels 2 to 5 rely on PR, hence it’s importance. PR requires personal humility in order to acknowledge cognitive limitations. For CI we dive into causal BNs. PHDS levels 3 to 5 rely on causality or causal inference. For DQ we will dive into DA using decision BNs. PHDS Level 5 relies on DQ. DQ is not only a quality checklist for core decision competence, DQ structures DA to take seemingly complex decisions and make them tractable with high quality.

Finally, to get the most out of PHT, master the BN concepts with pencil and paper. Second, explore deploying computational tools to work your intuition and build your confidence. In this article I illustrate the concepts using R—an open source language and environment for statistical computing and graphics [8]. Advanced PHT usually requires turning to computers or to colleagues for computational support.

For those who only want the minimum core PHT, (a) commit to intellectual humility and curiosity, (b) use DQ as a checklist, and (c) study program theory on p. 11. Every public health intervention has a program theory (“theory of change”).
2 Probabilistic reasoning (Bayesian networks)

A Bayesian network (BN) is a graphical model for representing probabilistic, but not necessarily causal, relationships between variables called nodes [9,10]. The nodes are connected by lines called edges which, for our purposes, are always directed with an arrow. Consider this noncausal BN:

Smell smoke → Fire nearby

Smelling smoke increases the probability of a fire burning nearby, but obviously smoke alone does not cause a fire. In other words, does knowing X (smell smoke) change the credibility of Y (fire nearby)? In contrast, now consider this causal BN:

Fire → Smoke

This causal BN depicts fire causing smoke. Notice that both noncausal and causal BNs have probabilistic dependence which we will use for probabilistic reasoning. Noncausal BNs are commonly used in influence diagrams\(^5\) for decision analysis which we cover later.

A two-node causal BN which has two types of probabilistic reasoning (Table 3).

<table>
<thead>
<tr>
<th>Probabilistic reasoning</th>
<th>Conditional probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causal (predictive) reasoning</td>
<td>(P(\text{Effect} \mid \text{Cause}))</td>
</tr>
<tr>
<td>Evidential (diagnostic) reasoning</td>
<td>(P(\text{Cause} \mid \text{Effect}))</td>
</tr>
</tbody>
</table>

When a causal effect is not firmly established, the BN asserts this concept:

Hypothesis → Evidence

Table 4. Bayesian network involving a hypothesis and evidence

<table>
<thead>
<tr>
<th>Conditional probabilities</th>
<th>Probabilistic reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(\text{Evidence} \mid \text{Hypothesis}))</td>
<td>Causal reasoning</td>
</tr>
<tr>
<td>(P(\text{Hypothesis} \mid \text{Evidence}))</td>
<td>Evidential reasoning</td>
</tr>
</tbody>
</table>

Evidential reasoning require Bayes Theorem.

\[
P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}
\]

\(P(H)\) is the prior (old) belief, \(P(H \mid E)\) is the posterior (new) belief, and \(P(E \mid H)\) is called the likelihood. The likelihood is critical because it is usually measurable. The challenge is that we need Bayes Theorem for two reasons:

1. to use evidence and theory to update our belief from \(P(H)\) to \(P(H \mid E)\), and

\(^4\)also called a causal graph or a directed acyclic graph (DAG)

\(^5\)also called decision networks or relevance diagrams
2. to avoid the fallacy of the transposed conditional; i.e., confusing \(P(E \mid H) \) with \(P(H \mid E) \).

2.1 Example 1: HIV testing

For example, from Neapolitan (p. 491, [11]), suppose Sam takes a test (evidence) to determine whether he has HIV infection (hypothesis). Here is the BN:

\[
\text{HIV} \rightarrow \text{Test}
\]

In diagnostic testing we use Bayes Theorem to calculate the post-test probability from the test results, pre-test probability (prevalence of infection), and test characteristics (sensitivity, specificity). Table 5 displays the data we need for applying Bayes Theorem.

Table 5. Probabilities for using Bayes Theorem in diagnostic testing

<table>
<thead>
<tr>
<th>Name</th>
<th>Probabilities</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-test (prior) probability of HIV+</td>
<td>(P(\text{HIV}+))</td>
<td>0.00001</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>(P(\text{Test}+ \mid \text{HIV}+))</td>
<td>0.999</td>
</tr>
<tr>
<td>Specificity</td>
<td>(P(\text{Test}− \mid \text{HIV}−))</td>
<td>0.998</td>
</tr>
<tr>
<td>Post-test (posterior) probability</td>
<td>(P(\text{HIV} \mid \text{Test}))</td>
<td>TBD</td>
</tr>
</tbody>
</table>

For illustrative purposes, we calculate the “positive predictive value” (PPV).

\[
P(H+ \mid T+) = \frac{P(T+ \mid H+)P(H+)}{P(T+ \mid H+)P(H+) + P(T+ \mid H−)P(H−)}
\]

This is easy to calculate in R.

```r
prior <- 0.00001
sens <- 0.999
spec <- 0.998
(sens*prior)/(sens*prior+(1-spec)*(1-prior)) # PPV
## [1] 0.004970223
```

Calculating the PPV (or NPV) is evidential reasoning and it requires applying Bayes Theorem. Our brains are not capable of this calculation; we need computational tools. In other words, our brains are not able to “flip the arrow” from \(P(\text{Evidence} \mid \text{Hypothesis}) \) \(P(\text{Hypothesis} \mid \text{Evidence}) \) and make valid Bayesian calculations.

Since we need computational tools, why not just use BN tools that can scale to the complexity of any problem and always provide us with valid Bayesian calculations. Here is the same calculation using the `bnlearn` package in R [9].

```r
library(bnlearn)
dag <- empty.graph(nodes = c("H", "T"))  ## create nodes
dag <- set.arc(dag, from = "H", to = "T")  ## link nodes
graphviz.plot(dag, layout = "circo")
```

For example, because African Americans make up a high proportion in our criminal justice system, some people believe, mistakenly, that a high proportion African Americans are involved in crime. To understand this phenomenon we would need a full causal model.
H.Hl <= c("Pos", "Neg") ## create levels
T.Tl <= c("Pos", "Neg")

create conditional probability tables
H.H.prob <- array(c(prior, 1-prior), dim = 2, dimnames = list(H = H.Hl))
T.T.prob <- array(c(sens, 1-sens, 1-spec, spec), dim = c(2, 2),
 dimnames = list(T.Tl, H.Hl))
cpt <- list(H = H.H.prob, T = T.T.prob)
bn <- custom.fit(dag, cpt)

We have captured this BN as an “expert knowledge system” in the R object bn which we can now query.

\texttt{names(bn)}

[1] "H" "T"

\texttt{bn$T}

Parameters of node T (multinomial distribution)
Conditional probability table:
H
T Pos Neg
Pos 0.999 0.002
Neg 0.001 0.998

With BNs we can ask “What if?” questions. For example, we can ask what is the probability of HIV infection given a positive test? Again, \(P(H + | T +) \) is the positive predictive value. We have the choice between two R packages:

1. \texttt{gRain} for exact inference, or
2. \texttt{bnlearn} for approximate inference

2.1.1 Exact inference

\texttt{library(gRain) # for exact inference}

junction <- compile(as.grain(bn))

\texttt{jtest <- setEvidence(junction, nodes = "T", states = "Pos")}

\texttt{querygrain(jtest, nodes = "H"}$H # Positive Predictive Value (PPV)}

H
Pos Neg
0.004970223 0.995029777

2.1.2 Approximate inference (Monte Carlo simulation)

Approximate inference approach is necessary for very large BNs.
2.2 Example 2: Evaluating respiratory diseases

For example, Figure 1 is from Neapolitan (p. 491, [11]) and depicts a BN representing relationships among respiratory disease variables.

Figure 1. A Bayesian network representing relationships among respiratory disease variables

```r
cpquery(bn, event = (H == "Pos"), evidence = (T == "Pos"), n = 10^6)
## [1] 0.003593429
```

```r
dag2 <- empty.graph(nodes=c("H", "B", "L", "T", "M", "X", "CT", "MT"))
dag2 <- set.arc(dag2, from = "H", to = "B")
dag2 <- set.arc(dag2, from = "H", to = "L")
dag2 <- set.arc(dag2, from = "L", to = "M")
dag2 <- set.arc(dag2, from = "L", to = "X")
dag2 <- set.arc(dag2, from = "T", to = "X")
dag2 <- set.arc(dag2, from = "M", to = "CT")
dag2 <- set.arc(dag2, from = "M", to = "MT")
graphviz.plot(dag2)
```
create levels
yn <- c("Yes", "No"); pn <- c("Pos", "Neg")
H.lv <- yn; B.lv <- yn; L.lv <- yn; T.lv <- yn; M.lv <- yn
X.lv <- pn; CT.lv <- pn; MT.lv <- pn
create conditional probability tables
H.prob <- array(c(0.2, 1-0.2), dim = 2, dimnames = list(H = H.lv))
B.prob <- array(c(0.25, 1-0.25, 0.05, 1-0.05), dim=c(2,2),
 dimnames = list(B=B.lv, H=H.lv))
L.prob <- array(c(0.003, 1-0.003, 0.00005, 1-0.00005), dim=c(2,2),
 dimnames = list(L=L.lv, H=H.lv))
T.prob <- array(c(0.0001, 1-0.0001), dim=2, dimnames=list(T = T.lv))
M.prob <- array(c(0.46, 1-0.46, 0, 1-0), dim=c(2,2),
 dimnames = list(M=M.lv, L=L.lv))
X.prob <- array(c(0.8, 1-0.8, 0.6, 1-0.6, 0.5, 1-0.5, 0.02, 1-0.02),
 dim=c(2,2,2), dimnames = list(X=X.lv, T=T.lv, L=L.lv))
CT.prob <- array(c(0.82, 1-0.82, 0.19, 1-0.19), dim=c(2,2),
 dimnames = list(CT=CT.lv, M=M.lv))
MT.prob <- array(c(0.82, 1-0.82, 0.005, 1-0.005), dim=c(2,2),
 dimnames = list(MT=MT.lv, M=M.lv))
cpt <- list(H=H.prob, B=B.prob, L=L.prob, T=T.prob,
 M=M.prob, X=X.prob, CT=CT.prob, MT=MT.prob)
bn2 <- custom.fit(dag2, cpt)

Creating the conditional probability tables was straightforward. In the Neapolitan paper the authors ask: “if a patient has a smoking history (H = yes), a positive chest X-ray (X = pos), and a positive computer tomogram (CT = pos), we can determine the probability of the patient having lung cancer (L = yes).” That is, what is \(P(L = \text{Yes} \mid H = \text{Yes}, X = \text{Pos}, CT = \text{Pos}) \)?

2.2.1 Exact inference

junction2 <- compile(as.grain(bn2))
test P(M|L)
querygrain(junction2, nodes = c("M", "L"), type = "conditional")

M
| Yes | No |
|-----|----|
Yes | 0.46 | 0.54 |
```
## No 0.00 1.00
# Neapolitan, p. 492
jriskfactors <- setEvidence(junction2, nodes = c("H","X","CT"),
                      states = c("Yes","Pos","Pos"))
p <- querygrain(jriskfactors, nodes = "L")$L # Pos. Predictive Value
p

## L
## Yes No
## 0.1852825 0.8147175

The $P(L = \text{Yes} \mid H = \text{Yes}, X = \text{Pos}, CT = \text{Pos}) = 0.1852825$. The prior probability of lung cancer in this model is 0.0064. So, the evidence has increased the probability of lung cancer substantially.

For practice, how did we determine the prior probability of lung cancer? For this query I do not need to set evidence, only query the marginal probability of $L$ (lung cancer) from the fitted BN.

querygrain(junction2, nodes = c("L"), type = "marginal")$L

## L
## Yes No
## 0.00064 0.99936

2.2.2 Approximate inference (Monte Carlo simulation)

cpquery(bn2, event = (L == "Yes"), evidence = (H == "Yes") & (X="Pos") & (CT="Pos"), n = 10^6)

## [1] 0.1905299
```
3 Causal inference (causal graphs, directed acyclic graphs)

3.1 Directed acyclic graph (DAG)

Causal BNs are directed acyclic graphs (DAGs) (also called causal graphs) [12–14]. All of the probabilistic reasoning concepts we learned with BNs continue to apply. With BNs the causal links are

1. assumptions based on expert knowledge,
2. evidenced-based from scientific research, or
3. conjecture to gain insights of new assumptions.

Causal inference is drawing valid, unbiased conclusions about cause-effect relationships. In causal inference we set out to

1. discover new causal pathways or models,
2. test causal hypotheses,
3. estimate causal effects.

Consider two variables (nodes), X and Y. What can explain an association (correlation) between X and Y?

1. direct cause: $X \rightarrow Y$
2. reverse cause: $X \leftarrow Y$
3. pure coincidence: chance only
4. cyclic cause (causal loop): $X \Leftrightarrow Y$
5. common cause: $X \leftarrow Z \rightarrow Y$
6. collider bias: $X \rightarrow Z \leftarrow Y$ (when conditioning on Z or a descendent of Z)

By design DAGs are not causal loops. Causal loops have an important role in systems thinking and modeling but will not be discussed further. Statistical inference supports causal inference with quantitative methods for estimation, chance, and bias. A common cause involves three or more nodes and is discussed next.

Figure 2 displays the core DAG patterns of three nodes with two causal links. In a chain ($X \rightarrow Y \rightarrow Z$), also called a sequential cause, X and Z are unconditionally dependent. This means that X and Z are dependent without conditioning on any variable. Likewise, in a fork ($Y \leftarrow X \rightarrow Z$), also called a common cause, X and Z are unconditionally dependent. In epidemiology, forks are the principle cause of confounding.

![Figure 2. Core DAG patterns for three nodes and two edges: (a) chain (sequential cause), (b) fork (common cause), and (c) collider (common effect).](image_url)

Chains and forks make intuitive sense, colliders do not. In a collider ($X \rightarrow Z \leftarrow Y$), also called a common effect, X and Y are unconditionally independent. However, when we condition on Z (or any descendent of Z), X and Y become conditionally...
dependent. Epidemiologists specialize in “adjusting for potential confounders.” When we condition (“adjust”) on a collider we introduce a spurious association—and worse—might conclude that the association is causal—which is impossible because \(X \) and \(Y \) are unconditionally independent! In other words, we introduce confounding where none existed! This is considered epidemiologic malpractice!7

Here is the classic example of collider bias. We flip a fair coin twice \(\{0 = \text{tail}, 1 = \text{head}\} \). \(T_1 \) is the outcome of the first coin flip \(\{0, 1\} \); \(T_2 \) is the outcome of the second coin flip \(\{0, 1\} \); and \(S \) is sum of \(T_1 \) and \(T_2 \) \(\{0, 1, 2\} \). Knowing the value of \(T_1 \) tells us absolutely nothing about the value of \(T_2 \), and vice versa. They are completely independent (represented by no solid edge in the DAG).

However, if we are told the value of \(S \) (say, 1) (this is “conditioning”), then \(T_1 \) and \(T_2 \) are now dependent (Figure 3). If \(T_1 = 0 \), then we know the value of \(T_2 \) must be 1. If \(T_1 = 1 \), then we know the value of \(T_2 \) must be 0. The reverse is true: knowing \(T_2 \) informs us of the value of \(T_1 \). For an epidemiologic example see Cole [15].

![Figure 3. Collider bias when flipping two fair coins. Conditioning on collider \(S \) introduces a dependency (dashed edge) between \(T_1 \) and \(T_2 \).](image)

Our motivation for introducing DAGs is to emphasize that our causal and probabilistic reasoning is very vulnerable—even when we have ‘lots of data! Do your analysts understand colliders and their perils? If not, why not?

3.2 Program theory is for the DAGs

Every public health intervention has a program theory; however, many practitioners cannot describe the program theory supporting their primary programmatic activity or research. I too could not describe the program theories supporting my own work until I read Funnell Rogers’ book *Purposeful Program Theory* [16]. It turns out that program evaluators not only live and breathe program theory, but they call it by different names: logic model, program logic, theory of change, causal model, results chain, intervention logic, etc. Hence the confusion!

From BetterEvaluation.org:8 “A program theory explains how an intervention (a project, a program, a policy, a strategy) is understood to contribute to a chain of results that produce the intended or actual impacts.”9

In public health, the logic model is very popular. For me, a logic model is a good high-level summary for non-technical purposes (summary, communication, etc.); however, I do not like them (or variants) as a place to start. For me, program theory is for the DAGs—directed acyclic graphs—and must include the theories of causation, change, and action.

7 Or statistical malpractice if you are a statistician.
Program theory has three components and answers why? what? and how?:
- theory of causation (Why? primary roots causes before an intervention),
- theory of change (What? key strategies to affect the root causes), and
- theory of action (How? key specific interventions to activate theory of change).

In public health we have two common DAG archetypes [17]: a risk (adverse) event and a benefit (opportunity) event (Figure 4). For both, a trigger is an exposure, condition, activity, or incident that increases the probability of a risk or benefit event. A trigger can be a cumulative process. Before an intervention, these DAGs represent the theory of causation component of program theory.

Figure 4. Causal taxonomy for risk event (left) vs. benefit event (right)

Figure 5 depicts the program theory for a public health intervention to reduce automobile crash injuries (a risk event). The theory of change has three strategies (prevention, control, and mitigation), and the theory of action has three interventions (speed bumps, automatic breaking, and seat belts).

Figure 5. Risk-reduction program theory: theory of causation, theory of change (strategy), and theory of action (intervention)

In a risk-event outcome (consequence), the 5 whys of root-cause analysis move backwards: Why was there an injury? Because of a crash. Why was there a crash? Because of fast driving? Why was there fast driving? We cannot answer this question (yet).

The program theory is not complete. We must also understand why people drive fast. We have not included the theory of causation from drivers’ perspectives.
Suppose, for instructional purposes, Figure 6 represents the most common DAG that explains why drivers speed. Therefore, why was he or she driving fast? To make a meeting. Why was this meeting important? To win a contract? Why was this contract important? (unemployment?)

![Diagram of Figure 6. Benefit-event model from the driver’s perspective](image)

We can now really appreciate the importance of evaluating multiple perspectives (other causal drivers—not to be confused with vehicle driver in the example). For example, the motivation to drive fast might cancel out the effect of any traditional public health intervention (Figure 5). We must be able to integrate multiple causal pathways reflecting multiple perspectives.

Figure 7 depicts the unified DAG that integrates driver motivation into a holistic, improved public health program theory. We cannot emphasize enough the importance of building causal graphs from multiple perspectives that include risks and benefits, and different strategy levels. This DAG is a big improvement.

![Diagram of Figure 7. Unified causal model that includes driver’s perspective (benefit-seeking) and program theory (risk-reduction)](image)

However, when you review it with subject matter experts they suggest adding “gender” and “age” nodes because both are causally associated with driving fast and wearing seat belts (Figure 8). This will enable you to evaluate the effectiveness of
the public health intervention while controlling for the confounding effects of gender and age. For example, if drivers are predominately young males (who drive fast and do not wear seat belts) then the seat belt intervention may appear falsely ineffective. These DAGs encode expert and community knowledge and wisdom, and are used for causal, evidential, and decision reasoning.

Figure 8. Expanded unified causal model with age and gender

Here is a summary of program theory:
1. Every intervention has a program theory (whether expressed or not)
2. Program theory includes theories of causation, change, and action
3. DAGs have archetypes: risk (adverse) event and benefit (opportunity) event
4. Always include multiple causal perspectives (other causal drivers)
5. Don’t forget to consider confounders (forks), etc.
6. Use DAGs for root cause analyses and program theory design

3.3 Deconfounding (controlling for confounding)

Remember, while causal arrows are unidirectional, probabilistic dependence propagates in both directions. By conditioning on a variable we block this propagation unless it is a collider. In an observation study \(A\) is either a treatment or exposure, and \(Y\) is the outcome or effect. If we are interested in measuring the causal effect of \(A\) on \(Y\) we want to block all pathways that have arrows pointing into \(A\) (backdoor) and that have arrows pointing into \(Y\), but that are not descendents of \(A\) (frontdoor).

Figure 9 depicts four DAGs and the possible combinations of nodes that can be chosen to block the backdoor pathway. The backdoor pathways are pathways that point into \(X\) and connect to \(Y\) and do not have a collider. Colliders block propagation unless we condition on them. If you condition on a collider you must also condition on another variable to block the new pathway the conditioned collider just opened.

In Figure 9(b), conditioning on \(M\) (a collider) opens the path from \(A\) to \(Y\) by creating a dependency between \(V\) and \(W\). Figure 10 illustrates this new path which
Figure 9. In an observational study, \(A \) is either a treatment or exposure, and \(Y \) is the outcome or effect. To measure the causal effect of \(A \) on \(Y \) we must block backdoor pathways from \(A \) to \(Y \) by conditioning on a set of correct variables. We do not want to condition on descedents of \(A \), including intermediate nodes between \(A \) and \(Y \). We do not want to condition on colliders alone otherwise we introduce spurious associations. For (a) we can condition on \(\{ V \} \), \(\{ W \} \), or \(\{ V, W \} \). For (b) we can condition on \(\{} \), \(\{ V \} \), \(\{ W \} \), \(\{ M, W \} \), \(\{ M, V \} \), \(\{ M, V, W \} \), but not on \(\{ M \} \) (collider bias). For (c) we can condition on \(\{ V \} \), \(\{ V, Z \} \), \(\{ Z, W \} \), \(\{ V, Z, W \} \), but not on \(\{ Z \} \) alone (collider bias), and not on \(\{ W \} \) (leaves other path open). Finally for (d) we can condition on \(\{ W, Z \} \), \(\{ W, V \} \), \(\{ M, Z \} \), \(\{ M, V \} \), \(\{ W, Z, V \} \), \(\{ M, Z, V \} \), \(\{ W, M, Z \} \), \(\{ W, M, V \} \), or \(\{ W, M, Z, V \} \).

is called M-bias. To the untrained analyst \(M \) behaves like a confounder because \(V \) and \(W \) are common causes (forks) that create an association between \(M \) and \(A \), and between \(M \) and \(Y \). Without DAGs to guide us, controlling for confounders is like flying blind: you are bound to get into trouble (i.e., introduce bias).

Figure 10. Conditioning on \(M \), a collider, introduces M-bias.

By deconfounding we mean estimating a specific causal effect while controlling for confounding, and without introducing bias (e.g., collider bias). In general, we have three methodologic approaches:

1. Backdoor criterion
2. Frontdoor criterion
3. Instrumental variable (commonly used in economics)

For all of these we need to have a full DAG for the process we are studying. This requires reviewing the scientific literature and collaborating with subject matter experts (SMEs). Having a complete DAGs does not mean we have data on every variable. We may not need it depending on which variables we select for adjustment. Hence, DAGs are also important for study and analysis design.
3.4 Backdoor criterion

DAGs are great because they are valid for whatever functional forms that connect the variables (e.g., linear vs. nonlinear). So far, we have selected a set of variables that will block the backdoor path. This approach is called the backdoor criterion:

1. block all spurious paths between \(A \) and \(Y \),
2. leave all directed paths from \(A \) to \(Y \) unperturbed, and
3. create no new spurious paths.

Now we need a calculation formula. Pearl developed do-calculus as a method to derive this formula. The thinking goes like this: if I disconnect all backdoor arrows into \(A \) (“graph surgery”) and set \(X = x \) for everyone in the population, then I get the modified DAG in Figure 11(b). This \(do(A = a) \) is a hypothetical intervention. The magic of do-calculus is to derive a formula that only has variable terms representing the observation data from Figure 11(a).

![Figure 11. Backdoor criterion: (a) unmodified causal graph where \(A \) affects \(Y \), and \(X \) represents the covariate set of variables selected for adjustment; (b) modified causal graph where for everyone in the population \(X \) is set to \(x \). This is do-calculus, and is used to derive an adjustment formula.](image)

Using do-calculus Pearl derived this backdoor adjustment formula [13]:

\[
P(y \mid do(x)) = \sum_x P(Y = y \mid A = a, X = x)P(X = x) \\
= \sum_x \frac{P(Y = y, A = a, X = x)}{P(A = a \mid X = x)}
\]

In this formula, the joint probability, \(P(y, a, x) \) is weighted by the term \(1/P(a \mid X) \), also called inverse probability weighting. When the denominator term is used to calculate the probability of treatment \((A = 1) \) given covariate set \(X \) it is called the propensity score or \(P(A = 1 \mid X) \).

Now we can calculate the average causal effect (ACE) or causal effect difference:

\[
P(Y = 1 \mid do(A = 1)) - P(Y = 1 \mid do(A = 0))
\]

Our goal is to measure the causal effect of \(A \) on \(Y \). Our DAG guided the selection of a set of variables \((X)\) that will block the backdoor path. From the backdoor adjustment formula we have some options.

1. Match on covariates set \(X \) of selected confounders
2. Match on propensity score \(P(A = 1 \mid X) \)
3. Inverse probability weighting (IPW) (uses full data)
Until this section is completed, I highly recommend viewing or taking the Coursera course by Dr. Jason Roy, Professor of Biostatistics, University of Pennsylvania [18].

3.4.1 Matching on covariate set of confounders

In this section I briefly review some of the analyses from Professor Jason Roy’s Coursera course [18]. This is an outstanding course and I highly recommend that everyone view or take it. My review is no substitute for his course. Here are the general steps:

1. Prepare data
2. Match on covariate set X (using Mahalanobis distance)
3. Check for balanced covariate means (using standardized mean difference)
4. Estimate average causal effect (as if randomized controlled trial)
5. Sensitivity analysis for hidden bias (not shown; instead see [18])

We will be pairwise matching control subjects (A = 0) to treated subjects (A = 1). Remember that “treated” is a general term for being exposed and “control” for not being exposed.\(^{10}\) By matching on an appropriate set of confounders we are actually

- simulating a randomized controlled study, and
- measuring the causal effect of treatment on the treated.

<table>
<thead>
<tr>
<th>Method or task</th>
<th>tableone</th>
<th>Matching</th>
<th>rcbalance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahalanobis distance</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Robust M-distance</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Greedy matching</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Optimal matching</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Assessing balance</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Mahalanobis distance is a multi-dimensional measure of mean distance between two vectors of covariates comparing treated to control. The smaller the M-distance the better the match. Because mean values can be influenced by outliers, an alternative is the robust M-distance that uses a rank statistic.

Greedy (nearest neighbor) matching is computationally fast but not globally optimized. Optimal matching finds the best global match but is computationally demanding. We will use greedy matching.

We will analyze data from a health care observational study on right health catheterization (treatment) and death (outcome). We will match on a set of confounders, including age, sex, and mean blood pressure.

```r
#load packages
library(tableone)
library(Matching)

#read in data
load(url("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/rhc.sav"))
```

\(^{10}\)In a case-control study this would be matching controls (non-disease) to cases (disease).
create smaller data set and binary (0, 1) X variables

```r
ARF <- as.numeric(rhc$cat1=='ARF')
CHF <- as.numeric(rhc$cat1=='CHF')
Cirr <- as.numeric(rhc$cat1=='Cirrhosis')
colcan <- as.numeric(rhc$cat1=='Colon Cancer')
Coma <- as.numeric(rhc$cat1=='Coma')
COPD <- as.numeric(rhc$cat1=='COPD')
lungcan <- as.numeric(rhc$cat1=='Lung Cancer')
MOSF <- as.numeric(rhc$cat1=='MOSF w/Malignancy')
sepsis <- as.numeric(rhc$cat1=='MOSF w/Sepsis')
female <- as.numeric(rhc$sex=='Female')
died <- as.numeric(rhc$death=='Yes')
age <- rhc$age
treatment <- as.numeric(rhc$swang1=='RHC')
meanbp1 <- rhc$meanbp1
```

new dataset

```r
mydata <- cbind(ARF,CHF,Cirr,colcan,Coma,lungcan,MOSF,sepsis,
age,female,meanbp1,treatment,died)
mydata <- data.frame(mydata)
```

covariate set

```r
xvars <- c("ARF","CHF","Cirr","colcan","Coma","lungcan","MOSF","sepsis",
"age","female","meanbp1")
```

look at a table 1

```r
table1 <- CreateTableOne(vars=xvars,strata="treatment", data=mydata,
test=FALSE)
print(table1, smd = TRUE)
```

```r
## Stratified by treatment
##
##        0        1    SMD
## n 3551.000  2184.000
## ARF (mean (sd))  0.4500 (0.5000)  0.4200 (0.4900)  0.059
## CHF (mean (sd))  0.0700 (0.2500)  0.1000 (0.2900)  0.095
## Cirr (mean (sd))  0.0500 (0.2200)  0.0200 (0.1500)  0.145
## colcan (mean (sd))  0.0000 (0.0400)  0.0000 (0.0200)  0.038
## Coma (mean (sd))  0.1000 (0.2900)  0.0400 (0.2000)  0.207
## lungcan (mean (sd))  0.0100 (0.1000)  0.0000 (0.0500)  0.095
## MOSF (mean (sd))  0.0700 (0.2500)  0.0700 (0.2600)  0.018
## sepsis (mean (sd))  0.1500 (0.3600)  0.3200 (0.4700)  0.415
## age (mean (sd))  61.7600 (17.2900)  60.7500 (15.6300)  0.061
## female (mean (sd))  0.4600 (0.5000)  0.4100 (0.4900)  0.093
## meanbp1 (mean (sd))  84.8700 (38.8700)  68.2000 (34.2400)  0.455
```

In the table we want the standardized mean difference (SMD) to be less than 0.1. We see that several variables are not balanced (cirrhosis, coma, sepsis, and mean

San Francisco Department of Public Health

November 23, 2018
BP). Now let’s perform the greedy match.

```r
greedymatch <- Match(Tr=treatment, M=1, X=mydata[xvars], replace=FALSE)
matched <- mydata[unlist(greedymatch[c("index.treated","index.control")]), ]
```

get table 1 for matched data with standardized differences

```r
matchedtab1 <- CreateTableOne(vars=xvars, strata ="treatment",
data=matched, test = FALSE)
print(matchedtab1, smd = TRUE)
```

<table>
<thead>
<tr>
<th>Stratified by treatment</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ARF (mean (sd))</td>
<td>0.42 (0.49)</td>
<td>0.42 (0.49)</td>
<td>0.006</td>
</tr>
<tr>
<td>CHF (mean (sd))</td>
<td>0.10 (0.29)</td>
<td>0.10 (0.29)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cirr (mean (sd))</td>
<td>0.02 (0.15)</td>
<td>0.02 (0.15)</td>
<td><0.001</td>
</tr>
<tr>
<td>colcan (mean (sd))</td>
<td>0.00 (0.02)</td>
<td>0.00 (0.02)</td>
<td><0.001</td>
</tr>
<tr>
<td>Coma (mean (sd))</td>
<td>0.04 (0.20)</td>
<td>0.04 (0.20)</td>
<td><0.001</td>
</tr>
<tr>
<td>lungcan (mean (sd))</td>
<td>0.00 (0.05)</td>
<td>0.00 (0.05)</td>
<td><0.001</td>
</tr>
<tr>
<td>MOSF (mean (sd))</td>
<td>0.07 (0.26)</td>
<td>0.07 (0.26)</td>
<td><0.001</td>
</tr>
<tr>
<td>sepsis (mean (sd))</td>
<td>0.24 (0.43)</td>
<td>0.32 (0.47)</td>
<td>0.177</td>
</tr>
<tr>
<td>age (mean (sd))</td>
<td>61.53 (16.15)</td>
<td>60.75 (15.63)</td>
<td>0.049</td>
</tr>
<tr>
<td>female (mean (sd))</td>
<td>0.44 (0.50)</td>
<td>0.41 (0.49)</td>
<td>0.042</td>
</tr>
<tr>
<td>meanbp1 (mean (sd))</td>
<td>73.12 (34.28)</td>
<td>68.20 (34.24)</td>
<td>0.144</td>
</tr>
</tbody>
</table>

Once we have matched we can proceed with the analysis as if we had data from a randomized controlled trial.

```r
#outcome analysis
y_trt <- matched$died[matched$treatment == 1]
y_con <- matched$died[matched$treatment == 0]

#pairwise difference
diffy <- y_trt - y_con

#paired t-test
t.test(diffy)
```

One Sample t-test

```
data:  diffy
t = 3.9289, df = 2183, p-value = 8.799e-05
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 0.02706131 0.08099730
sample estimates:
mean of x
0.0540293
```
#McNemar test is an alternative

(mctab <- table(y_trt, y_con))

y_con
y_trt 0 1
0 303 395
1 513 973

mcnemar.test(mctab)

McNemar's Chi-squared test with continuity correction
data: mctab
McNemar's chi-squared = 15.076, df = 1, p-value = 0.0001033

3.4.2 Matching on propensity score

A propensity score (PS), \(P(A = 1 \mid X) \) is the probability of treatment given the selected covariate set \(X \). The PS is a balancing score, meaning that if we match controls to treated using PS, we also balance the distribution of covariates between treated and controls. That's really cool!\(^{11}\)

We will use logistic regression to calculate the PS. Once we have successfully matched the analysis proceeds as before.

psmodel <- glm(treatment ~ ARF + CHF + Cirr + colcan + Coma + lungcan + MOSF + sepsis + age + female + meanbp1 + aps, family = binomial(), data = mydata)

summary(psmodel)

create propensity score
pscore <- psmodel$fitted.values
do greedy matching on logit(PS) using Match with a caliper
logit <- function(p) {log(p) - log(1 - p)}
psmatch <- Match(Tr = mydata$treatment, M = 1, X = logit(pscore),
replace = FALSE, caliper = .2)
matched <- mydata[unlist(psmatch[c("index.treated", "index.control")]),]
xvars <- c("ARF", "CHF", "Cirr", "colcan", "Coma", "lungcan", "MOSF", "sepsis",
"age", "female", "meanbp1")
get standardized differences
matchedtab1 <- CreateTableOne(vars = xvars, strata = "treatment",
data = matched, test = FALSE)
print(matchedtab1, smd = TRUE)
outcome analysis
y_trt <- matched$died[matched$treatment == 1]
y_con <- matched$died[matched$treatment == 0]
pairwise difference
diffy <- y_trt - y_con
paired t-test
t.test(diffy)

\(^{11}\)To understand the theory see [18].
3.4.3 Inverse probability weighting (IPW)

In this example,

```r
## Sample R code for IPTW
## https://www.coursera.org/learn/crash-course-in-causality/resources/DTosM

#########################
#RHC Example

#install packages (if needed)
install.packages("tableone")
install.packages("ipw")
install.packages("sandwich")
install.packages("survey")

#load packages
library(tableone)
library(ipw)
library(sandwich) #for robust variance estimation
library(survey)

expit <- function(x) {1/(1+exp(-x)) }
logit <- function(p) {log(p)-log(1-p)}

#read in data
load(url("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/rhc.sav"))
#view data
View(rhc)

#treatment variables is swang1
#x variables that we will use
#cat1: primary disease category
#age
#sex
#meanbp1: mean blood pressure

#create a data set with just these variables, for simplicity
ARF<-as.numeric(rhc$cat1=='ARF')
CHF<-as.numeric(rhc$cat1=='CHF')
Cirr<-as.numeric(rhc$cat1=='Cirrhosis')
Colc<-as.numeric(rhc$cat1=='Colon Cancer')
Coma<-as.numeric(rhc$cat1=='Coma')
COPD<-as.numeric(rhc$cat1=='COPD')
Lungc<-as.numeric(rhc$cat1=='Lung Cancer')
MOSF<-as.numeric(rhc$cat1=='MOSF w/Malignancy')
```
sepsis <- as.numeric(rhc$cat1 == 'MOSF w/Sepsis')
female <- as.numeric(rhc$sex == 'Female')
died <- as.integer(rhc$death == 'Yes')
age <- rhc$age
treatment <- as.numeric(rhc$swang1 == 'RHC')
meanbp1 <- rhc$meanbp1

new dataset
mydata <- cbind(ARF, CHF, Cirr, colcan, Coma, lungcan, MOSF, sepsis, age, female, meanbp1, treatment, died)
mydata <- data.frame(mydata)

covariates we will use (shorter list than you would use in practice)

look at a table 1
table1 <- CreateTableOne(vars = xvars, strata = "treatment", data = mydata, test = FALSE)
print(table1, smd = TRUE)

propensity score model
psmodel <- glm(treatment ~ age + female + meanbp1 + ARF + CHF + Cirr + colcan + Coma + lungcan + MOSF + sepsis,
 family = binomial(link = "logit"))

value of propensity score for each subject
ps <- predict(psmodel, type = "response")

create weights
weight <- ifelse(treatment == 1, 1 / (ps), 1 / (1 - ps))

apply weights to data
weighteddata <- svydesign(ids = ~ 1, data = mydata, weights = ~ weight)

weighted table 1
weightedtable <- svyCreateTableOne(vars = xvars, strata = "treatment",
 data = weighteddata, test = FALSE)
print(weightedtable, smd = TRUE)

to get a weighted mean for a single covariate directly:
mean(1) <- mean(weight[treatment == 1] * age[treatment == 1]) / (mean(weight[treatment == 1]))

get causal risk difference
glm.obj <- glm(died ~ treatment, weights = weight, family = quasibinomial(link = "identity"))
#summary(glm.obj)
betaiptw<-coef(glm.obj)
SE<-sqrt(diag(vcovHC(glm.obj, type="HC0")))

causalrd<-(betaiptw[2])
lcl<-(betaiptw[2]-1.96*SE[2])
ucl<-(betaiptw[2]+1.96*SE[2])
c(lcl,causalrd,ucl)

#get causal relative risk. Weighted GLM
glm.obj< glm(died~treatment,weights=weight,family=quasibinomial(link=log))
#summary(glm.obj)
betaiptw<-coef(glm.obj)
#to properly account for weighting, use asymptotic (sandwich) variance
SE<-sqrt(diag(vcovHC(glm.obj, type="HC0")))

#get point estimate and CI for relative risk (need to exponentiate)
causalrr<exp(betaiptw[2])
lcl<exp(betaiptw[2]-1.96*SE[2])
ucl<exp(betaiptw[2]+1.96*SE[2])
c(lcl,causalrr,ucl)

#truncate weights at 10
truncweight<-replace(weight,weight>10,10)

#get causal risk difference
glm.obj< glm(died~treatment,weights=truncweight,family=quasibinomial(link="identity"))
#summary(glm.obj)
betaiptw<-coef(glm.obj)
SE<-sqrt(diag(vcovHC(glm.obj, type="HC0")))

causalrd<-(betaiptw[2])
lcl<-(betaiptw[2]-1.96*SE[2])
ucl<-(betaiptw[2]+1.96*SE[2])
c(lcl,causalrd,ucl)

#alternative: use ipw package

#first fit propensity score model to get weights
weightmodel< ipwpoint(exposure= treatment, family = "binomial", link ="logit",
 denominator= ~ age + female + meanbp1+ARF+CHF+Cirr+colcan+
 Coma+lungcan+MOSF+sepsis, data=mydata)

#numeric summary of weights
summary(weightmodel$ipw.weights)
#plot of weights
ipwplot(weights = weightmodel$ipw.weights, logscale = FALSE,
 main = "weights", xlim = c(0, 22))
mydata$wt<-weightmodel$ipw.weights

#fit a marginal structural model (risk difference)
msm <- (svyglm(died ~ treatment, design = svydesign(~ 1, weights = ~wt,
 data =mydata)))
coef(msm)
confint(msm)

weightmodel<-ipwpoint(exposure= treatment, family = "binomial", link ="logit",
 denominator=~ age + female + meanbp1+ARF+CHF+Cirr+colcan+Coma+lungcan+MOSF+sepsis, data=mydata,trunc=.01)

#numeric summary of weights
summary(weightmodel$weights.trun)

#plot of weights
ipwplot(weights = weightmodel$weights.trun, logscale = FALSE,
 main = "weights", xlim = c(0, 22))
mydata$wt<-weightmodel$weights.trun

#fit a marginal structural model (risk difference)
msm <- (svyglm(died ~ treatment, design = svydesign(~ 1, weights = ~wt,
 data =mydata)))
coef(msm)
confint(msm)

3.5 Frontdoor criterion

![Frontdoor criteria diagram](image)

3.6 Instrumental variable

Sample R code for IV analysis
https://www.coursera.org/learn/crash-course-in-causality/resources/3jjoc

#instrumental variables example
Figure 13. Instrumental variable

#install package
#install.packages("ivpack")
#load package
library(ivpack)

#read dataset
data(card.data)

#IV is nearc4 (near 4 year college)
#outcome is lwage (log of wage)
#'treatment' is educ (number of years of education)

#summary stats
mean(card.data$nearc4)
par(mfrow=c(1,2))
hist(card.data$lwage)
hist(card.data$educ)

#is the IV associated with the treatment? strengh of IV
mean(card.data$educ[card.data$nearc4==1])
mean(card.data$educ[card.data$nearc4==0])

#make education binary
educ12<-card.data$educ>12
#estimate proportion of 'compliers'
propcomp<-mean(educ12[card.data$nearc4==1])-mean(educ12[card.data$nearc4==0])
propcomp

#intention to treat effect
itt<-mean(card.data$lwage[card.data$nearc4==1])-mean(card.data$lwage[card.data$nearc4==0])
itt

#complier average causal effect
itt/propcomp
two stage least squares

stage 1: regress A on Z

```r
s1 <- lm(educ12 ~ card.data$nearc4)
```

get predicted value of A given Z for each subject

```r
predtx <- predict(s1, type = "response")
```

table(predtx)

stage 2: regress Y on predicted value of A

```r
lm(card.data$lwage ~ predtx)
```

2SLS using ivpack

```r
ivmodel = ivreg(lwage ~ educ12, ~ nearc4, x=TRUE, data=card.data)
```

```r
robust.se(ivmodel)
```

```r
ivmodel = ivreg(lwage ~ educ12 + exper + reg661 + reg662 +
    reg663 + reg664 + reg665 + reg666 + reg667 + reg668,
    ~ nearc4 + exper +
    reg661 + reg662 + reg663 + reg664 + reg665 + reg666 +
    reg667 + reg668, x=TRUE, data=card.data)
```
4 Decision quality (decision networks, influence diagrams)

Public health practice is replete with claims of “data-driven decision-making.” This usually means reading scientific articles, looking at local data and information, and implementing evidence-based strategies. With few exceptions, there is generally no formal, deliberative, structured process for translating data into actionable knowledge, and for knowledge integration—the management, synthesis, and translation of knowledge into decision support systems to improve policy, practice, and—ultimately—population health.

Because we make intuitive decisions daily, most of us are not formally trained in decision making. Decisions are often based on power, politics, advocacy, organizational history and culture, and personal interests. Yet, decisions determine how we spend our time and allocate scarce resources, so they should be driven by strategic goals, stakeholder needs, evidence, and decision quality (DQ).

DQ (Table 2, p. 3) is a checklist for continuous decision improvement (decision competence), and a road map for advanced methods such as decision analysis (DA). DA is a formal method for tackling decisions in the face of uncertainty and trade-offs. DA is usually conducted with decision trees (Figure 14) where squares represent decision nodes and ellipses represent uncertainty (chance) nodes. On the right side of the decision tree are the utilities (weighted outcomes [usually weighted by preference]). The general approach is to calculate the expected utility (value) for each decision option, and to choose the option that maximizes this utility.

An alternative way to structure a decision is with a decision Bayesian network (BN) (also called an influence diagram). An influence diagram is a BN that includes decision, uncertainty (chance), calculation (deterministic), and value (utility) nodes (Figure 15).

Figure 16 (p. 28) is the influence diagram version of Figure 14 (p. 27). Compared to decision trees, influence diagrams can more efficiently represent complex decision
problems. Figure 16 has some key features:

1. Decision nodes always connect to the final utility (value) node.
2. A node connecting into a decision node (e.g., “Test”) represents information that is available to “influence” the decision node.
3. The disease node has a causal effect on the diagnostic test results.
4. The disease node has a causal effect on the final outcome (utility node).

Notice that this influence diagram is able to integrate disease prevalence (prior probability), diagnostic testing, test characteristics (sensitivity, specificity), and outcomes.

![Figure 15. Node definitions for influence diagrams](image)

Figure 16. A Bayesian decision network (influence diagram) for decision analysis

4.1 Example 1: Decision to buy stock

A basic decision that involves uncertainty is to choose between (a) an option with an uncertain outcome and payout, or (b) continue with the status quo. Figure 17 from Neapolitan (p. 492, [11]) is the decision tree that represents the decision (“d1”) to invest $1000 and buy stock X with a 0.6 chance to grow in value to $1100 and 0.4 chance to shrink in value to $900, or the decision (“d2”) to do nothing and keep the $1000.

![Figure 17. Simple decision tree for decision whether to buy stock X.](image)

Figure 18 (p. 29) from Neapolitan (p. 492, [11]) is the influence diagram version of the Figure 17 decision tree. Now, here are the expected value calculations for each decision option:
Using R, we create the decision BN. Actually, it is a regular BN with minor tweaks. For the decision node, we set the probabilities for each decision option (d1, d2) to 0.5. To get the expected value (EV) we set the decision node evidence to “d1” and calculate EV, and then to “d2” and calculate EV again.

For the utility (value) node we set the possible dollar outcome levels as 900, 1100, and 1000. After setting decision node evidence to “d1”, we derive the new distribution of dollar outcomes, and we calculate the EV. We repeat this for “d2”. See the R code below with the details.

```r
## reload R packages if necessary
## library(bnlearn)
## library(gRain)

dag3 <- empty.graph(nodes=c("D", "U", "X"))
dag3 <- set.arc(dag3, from = "X", to = "U")
dag3 <- set.arc(dag3, from = "D", to = "U")

## graphviz.plot(dag3)

#### create levels
X.lv <- c("9", "11")
D.lv <- c("d1", "d2")
U.lv <- c("900", "1100", "1000")  # possible dollars outcomes

#### create conditional probability tables
X.prob <- array(c(0.4,1-0.4), dim = 2, dimnames = list(X = X.lv))
D.prob <- array(c(0.5,0.5), dim = 2, dimnames = list(D = D.lv))
U.prob <- array(c(1,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1), dim = c(3,2,2),
               dimnames = list(U = U.lv, X=X.lv, D=D.lv))
cpt3 <- list(X=X.prob, D=D.prob, U=U.prob)

bn3 <- custom.fit(dag3, cpt3)
```

Figure 18. Simple influence diagram for decision whether to buy stock X.
junction3 <- compile(as.grain.bn3))
querygrain(junction3) ## display BN

$D
d1 d2
0.5 0.5
##
$U
U
900 1100 1000
0.2 0.3 0.5
##
$X
X
9 11
0.4 0.6

Expected value for D = "d1" (buy stock X)

jbuy <- setEvidence(junction3, nodes = "D", states = "d1")
U.buy <- querygrain(jbuy, nodes = "U")$U
(EV.buy <- sum(U.buy*as.numeric(names(U.buy))))

[1] 1020

Expected value for D = "d2" (do nothing)

jdont <- setEvidence(junction3, nodes = "D", states = "d2")
U.dont <- querygrain(jdont, nodes = "U")$U
(EV.dont <- sum(U.dont*as.numeric(names(U.dont))))

[1] 1000

4.2 Example 2: Decision to buy Spiffycar

From Neapolitan (p. 492, [11]) we now tackle a decision problem that includes a
diagnostic test (Figure 19, p. 31):

“... Suppose Sam has the opportunity to buy a 1996 Spiffycar automobile
for $10,000, and he had a prospect that would be willing to pay $11,000
for the auto if it were in excellent mechanical shape. Suppose further
that if the transmission is bad, Sam will have to spend $3000 to repair
it before he could sell the vehicle. So he would end up with only $8,000
if he bought the vehicle and its transmission was bad. Finally, suppose
Sam has a friend who could run a test on the transmission, and we have
the following:

\[
P(\text{Test} = \text{positive} \mid \text{Tran} = \text{good}) = 0.3
\]
\[
P(\text{Test} = \text{positive} \mid \text{Tran} = \text{bad}) = 0.9
\]
\[
P(\text{Tran} = \text{good}) = 0.8
\]
The Bayesian network (Figure 19) “in this influence diagram contains 2 nodes, Tran and Test. There is an edge from Tran to Test because the value of the test is probabilistically dependent on the state of the transmission. There is an edge from Test to D because the outcome of the test will be known at the time the decision is made. That is, D follows Test in sequence. Finally, the utility U depends only on the value of Tran and the decision D. It does not depend on the outcome of the Test. So there are arrows from Tran and D to U. If Sam makes decision d1 and Tran is good, the utility of the outcome will be $11,000. On the other hand, if Sam makes decision d1 and Tran is bad, the utility of the outcome will be $8,000. However, if Sam makes decision d2, the utility of the outcome is $10,000 regardless of whether Tran is good or bad because he has decided not to buy the car.”

Figure 19. Influence diagram representing decision to buy Spiffycar.

Using R, we create the “decision BN.” Actually, it is a regular BN with minor tweaks. For the decision node, we set the probabilities for each decision option (d1, d2) to 0.5. To get the expected utility (EU) we set the decision node evidence to “d1” and calculate EU, and then to “d2” and calculate EU again.

For the utility (value) node we set the possible dollar outcome levels as 8000, 10000, and 11000. After setting decision node evidence to “d1”, we derive the new distribution of dollar outcomes, and we calculate the EU. We repeat this for “d2”. See the R code below with the details.

```r
dag4 <- empty.graph(nodes=c("Test", "Tran", "D", "U"))
dag4 <- set.arc(dag4, from = "Tran", to = "Test")
dag4 <- set.arc(dag4, from = "Tran", to = "U")
dag4 <- set.arc(dag4, from = "Test", to = "D")
dag4 <- set.arc(dag4, from = "D", to = "U")
### create levels
Tran.lv <- c("Good", "Bad")
Test.lv <- c("Pos", "Neg")
```
D.lv <- c("d1", "d2") ## d1 = buy spiffycar; d2 = do not buy
U.lv <- c("11000", "8000", "10000")

create conditional probability tables

Tran.prob <- array(c(0.8, 1 - 0.8), dim = 2, dimnames = list(Tran = Tran.lv))
Test.prob <- array(c(0.3, 1 - 0.3, 0.9, 1 - 0.9), dim = c(2, 2),
 dimnames = list(Test = Test.lv, Tran = Tran.lv))
D.prob <- array(c(0.5, 0.5), dim = c(2, 2),
 dimnames = list(D = D.lv, Test = Test.lv))
U.prob <- array(c(1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1), dim = c(3, 2, 2),
 dimnames = list(U = U.lv, Tran=Tran.lv, D=D.lv))
cpt4 <- list(Tran=Tran.prob, Test=Test.prob, D=D.prob, U=U.prob)
bn4 <- custom.fit(dag4, cpt4)
junction4 <- compile(as.grain(bn4))
querygrain(junction4) ## display BN

$Test
Test
Pos Neg
0.42 0.58
##
$Tran
Tran
Good Bad
0.8 0.2
##
$D
D
d1 d2
0.5 0.5
##
$U
U
11000 8000 10000
0.4 0.1 0.5

What is the EU of choosing “d1” even if the transmision test is positive? That is, what is $EU(D = d1, Test = positive)$?

jTest.pos_D.d1 <- setEvidence(junction4, nodes = c("Test", "D"),
 states = c("Pos", "d1"))
U_T.p_D.d1 <- querygrain(jTest.pos_D.d1, nodes = "U")$U
(EU_T.p_D.d1 <- sum(U_T.p_D.d1 * as.numeric(names(U_T.p_D.d1))))

[1] 9714.286

What is the EU of choosing “d1” even if the transmision test is negative? That is, what is $EU(D = d1, Test = negative)$?
What is EU(D = d1, Test = negative)?

```r
jTest.neg_D.d1 <- setEvidence(junction4, nodes = c("Test", "D"),
                               states = c("Neg", "d1"))
U_T.n_D.d1 <- querygrain(jTest.neg_D.d1, nodes = "U")$U
(EU_T.n_D.d1 <- sum(U_T.n_D.d1 * as.numeric(names(U_T.n_D.d1))))
```

[1] 10896.55

What is the EU of choosing “d2” regardless of transmission test results? That is, what is $EU(D = d2)$?

What is EU(D = d2)?

```r
jD.d2 <- setEvidence(junction4, nodes = "D", states = "d2")
U_D.d2 <- querygrain(jD.d2, nodes = "U")$U
(EU_D.d2 <- sum(U_D.d2 * as.numeric(names(U_D.d2))))
```

[1] 10000
References

2. Aragón TJ, García BA. We will be the best at getting better: An introduction to population health lean [Internet]. San Francisco Department of Public Health; UC Berkeley School of Public Health; 2017. Available from: http://www.escholarship.org/uc/item/825430qn

5. Aragón TJ. PDSA problem-solving: With a gentle introduction to double-loop learning, program theory, and causal graphs [Internet]. University of California Berkeley, School of Public Health; San Francisco Department of Public Health; 2017. Available from: http://www.escholarship.org/uc/item/8wp451vd

