Floodplain inundation response to climate, valley form, and flow regulation on a gravel-bed river in a Mediterranean-climate region

Permalink
https://escholarship.org/uc/item/80w8551x

Authors
Cienciala, Piotr
Pasternack, G.B. B

Publication Date
2017-04-01

DOI
10.1016/j.geomorph.2017.01.006

Data Availability
The data associated with this publication are available upon request.

Peer reviewed
Floodplain inundation response to climate, valley form, and flow regulation on a gravel-bed river in a Mediterranean-climate region

P. Cienciala1* and G.B. Pasternack2

1University of Illinois at Urbana-Champaign, 605 East Springfield Avenue, MC 150, Champaign, Illinois 61820, USA

2University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

* Corresponding author. Tel.: +1 (217) 333-1880; E-mail: piotrc@illinois.edu

Abstract

Floodplain inundation regime defines hydrological connectivity between river channel and floodplain and thus strongly controls structure and function of these highly diverse and productive ecosystems. We combined an extensive LiDAR data set on topography and vegetation, long-term hydrological records, as well as the outputs of hydrological and two-dimensional hydraulic models to examine how floodplain inundation regimes in a dynamic, regulated, gravel-cobble river in a Mediterranean-climate region are controlled by reach-scale valley morphology, hydroclimatic conditions, and flow regulation. Estimated relative differences in the extent, duration, and cumulative duration of inundation events were often as large as an order of magnitude and generally greatest for large and long duration events. The relative impact of flow regulation was greatest under dry hydroclimatic conditions. Although the effects of hydroclimate and flow impairment are larger than that of valley floor topography, the latter controls sensitivity of floodplain hydroperiod to flow regime changes and should not be ignored. These quantitative estimates of the relative importance of factors that control floodplain processes in Mediterranean, semiarid rivers contributes to better understanding of hydrology and geomorphology of this important class of channels. We also discuss implications of our findings for processes that shape floodplain habitat for riparian vegetation and salmonid fish, especially in the context of ecological restoration.

Keywords: floodplain inundation; valley morphology; climate variability; flow regulation; Mediterranean rivers; riparian habitat
1. Introduction

The extent, frequency, duration, and timing of overbank flows define hydrological connectivity of the river channel-floodplain system associated with water-mediated exchanges of energy, matter, and organisms (Junk et al., 1989; Bayley, 1995; Poff et al., 1997; Tockner et al., 2000). By regulating these exchanges, inundation regime strongly influences structure and function of the highly diverse and productive riverine-floodplain ecosystem (Naiman and Decamps, 1997; Tockner and Stanford, 2002; Ward et al., 2002; Tockner et al., 2008). For example, supply of water, sediment, plant propagules, and nutrients during overbank flows facilitate the development of soils and riparian vegetation (Osterkamp and Hupp, 2010; Corenblit et al., 2007, 2011; Gurnell et al., 2012; Osterkamp et al., 2012), which may be subsequently disturbed during flood events of extreme magnitude (Friedman and Auble, 1999; Bornette et al., 2008; Tockner et al., 2010; Džubáková et al., 2015). The characteristics of floodplain sediment, soils, and vegetation interact with the inundation regime to heavily influence nutrient storage, fluxes, and cycling (Baldwin and Mitchell, 2000; Pinay et al., 2000; Adair et al., 2004; Mengliano, 2005; Noe and Hupp, 2005; Zehetner et al., 2009; Vidon et al., 2010; Appling et al., 2014; Sutfin et al., 2016). Taken together, this complex interplay between abiotic and biotic processes within the floodplain ecosystem creates important habitats supporting rich wildlife and seasonally utilized by fish as spawning and rearing habitat (Junk et al., 1989; Bayley, 1991; Balcombe et al., 2007; Górski et al., 2010, 2011).
Floodplain inundation regime — also referred to as hydroperiod — is a function of streamflow regime, which in turn depends on climatic variability and change (e.g., Capon et al., 2013). Moreover, streamflow regime is commonly regulated by humans through construction of impoundment dams; in fact, a majority of the world's large rivers have been regulated (Nilsson and Berggren, 2000; Nilsson et al., 2005; Poff and Zimmerman, 2010; Belmar et al., 2013). Floodplain topography is a third important factor controlling inundation regime (Mitsch and Gosselink, 1993; Naiman and Decamps, 1997; Karim et al., 2015). The morphology of river valley floor changes in a semisystematic manner across drainage basins (Howard, 1996; Buffington et al., 2003).

Typically, confined headwater reaches have absent or limited floodplains restricted by valley walls (e.g., Grant and Swanson, 1995). Downstream reaches in progressively open, unconfined valleys have more extensive floodplains (e.g., Howard, 1996), unless the channel is incised or bound by flood control levees.

The rich floodplain ecosystem, maintained by hydrological connectivity with the channel, and the proximity to abundant water resources have for a long time attracted humans as convenient sites for settlement, transportation corridors, fertile lands for agriculture, etc. (Tockner et al., 2008). As a result of river regulation and morphological alteration, floodplain ecosystems are among the most threatened (Nilsson and Berggren, 2000; Tockner et al., 2008), as many riparian species are adapted to specific inundation regimes (Rood et al., 2003; Lytle and Merritt, 2004; Lytle and Poff, 2004; Braatne et al., 2007; Merritt et al., 2010). Widespread habitat degradation and resulting
impairment of ecosystem function has led to a surge in efforts to conserve and restore riparian zones as well as flows necessary to sustain them (Marks et al., 2014).

This study uses Yuba River in California as a valuable setting for understanding the basic science of floodplain inundation that bears on management challenges symptomatic of many river-floodplain systems in developed, Mediterranean regions in a changing climate. For example, streamflow in California is strongly dependent on snow storage (e.g., Vicuna and Dracup, 2007; Vicunia et al., 2007), and analyses of historical data has indicated changes in spring snowmelt regime during the last few decades; these changes have been attributed to climate variability (e.g., Cayan et al., 1999) or climate change (Stewart et al., 2005; Hidalgo et al., 2009). Further hydrological changes are expected within the region because of future climate warming (Miller et al., 2003; Dettinger et al., 2004; Maurer and Duffy, 2005; Mote et al., 2005; Cayan et al., 2008; Dettinger, 2011). River regulation by dams is also more common in Mediterranean-climate rivers (Med-rivers) in comparison to their counterparts in a temperate climate, and the effects of dams on streamflow regime are stronger because of less total water availability, higher demand for water resources, and desynchronized water demand and availability (Kondolf and Batalla, 2005). As a result, the altered inundation regime in Med-rivers has contributed to substantial changes in floodplain ecosystems and some of the fastest rates of freshwater biodiversity loss (Hermoso and Clavero, 2011; Moyle et al., 2011). In many regions, efforts are undertaken to reverse these changes by
restoring hydrological connectivity (Kondolf et al., 1996, 2012; Stromberg, 2001; Stella et al., 2013a).

In accord with this widespread trend, the Yuba River’s streamflow regime has also exhibited changes that likely reflect a combination of climatic factors and dam operations (Freeman, 2002; Kondolf and Batalla, 2005; Singer, 2007). These changes have likely contributed to declines in populations of ecologically, culturally, and economically important fish species, such as spring-run Chinook salmon (Oncorhynchus tshawytscha), steelhead (Oncorhynchus mykiss), and green sturgeon (Acipenser medirostris), all listed as threatened under the Endangered Species Act (USACE, 2014). A restricted vegetated floodplain available for rearing salmonids is believed to be an important part of habitat degradation (USACE, 2014). As a result, efforts are currently under way to restore fish populations and degraded riparian habitat in a number of Yuba River reaches (SYRCL, 2013a, 2013b; USACE, 2014) and a better understanding of the inundation regime is necessary to inform and guide future restoration activities (e.g., SYRCL, 2013a).

2. Study objectives and design

The overall goal of this research was to examine the relative importance of primary controls on floodplain inundation regimes and their cumulative effects and to consider implications for the floodplain ecosystem. To this end, we integrated a rich body of data — including field and remote sensing data as well as model outputs — to study the
lower Yuba River (LYR) as a model system. Specifically, we focused on three important controls:

(i) Geomorphic factors: we investigated the influence that valley floor morphology and the superimposed alluvial deposits, which codefine floodplain topography, have on inundation regime by comparing relationships between discharge and inundation in three distinct Yuba River reaches.

(ii) Hydroclimatic factors: we assessed the influence of climate on floodplain inundation by linking the relationships described in (i) with discharge records, stratified so as to compare inundation regime metrics under three distinct hydroclimatic year classes (dry / normal / wet).

(iii) Flow regulation: we evaluated the effects of flow regulation on inundation regime by applying the protocol described in (i) and (ii) to previously established unregulated flows and then comparing with that based on historical, regulated flows.

In the following sections, we provide background on LYR field sites, introduce data sets, and provide more detail regarding the employed methods. More information is available in the supplementary materials.

3. Study setting

The 37.1-km lower Yuba River drains 3480 km² of hot summer Mediterranean mountains and flows east to west from the Sierra Nevada foothills downstream of
Englebright Dam to its confluence with the Feather River (Fig. 1). The river segment is a single-thread channel (~ 20 emergent bars/islands at bankfull) with low sinuosity, high width-to-depth ratio, and slight to no entrenchment (Wyrick and Pasternack, 2012). The river corridor is confined in a steep-walled bedrock canyon for the upper 3.1 river kilometers (RKM), then transitions first into a wider bedrock valley with some meandering through Timbuctoo Bend (RKM 28.3-34.0), then into a wide, alluvial valley downstream to the mouth. Hydraulic mining sediment was used to train the active river corridor in the wide lowlands to isolate it from the ~ 4000-ha Yuba Goldfields. The river segment has a mean bed slope of 0.185% and a mean surface substrate diameter of 97 mm (i.e., small cobble). In the bedrock canyon just below Englebright Dam, the mean bankfull wetted width is 51.4 m; but thereafter it is wider with a bankfull wetted width of ~100 m. The geomorphically determined bankfull discharge was estimated as 141.6 m3s$^{-1}$, which has ~ 82% annual exceedence probability. As a comparison to other rivers, the LYR is classified as a C3 channel by the Stream Type classification method when applied at the segment scale (Rosgen, 1996) and as transitional between straight and meandering by the flow instability method (Parker, 1976).

3.1. Dams

Flow entering the LYR primarily comes from the North, Middle, and South Yuba River tributaries that join upstream of Englebright Dam and secondarily from the small regulated tributary Deer Creek (Fig. 1). Although the North Yuba tributary has a large
reservoir (New Bullards Bar) close to its confluence with the Middle Yuba that heavily regulates its outflow year-round, the absence of large reservoirs on the Middle and South Yuba tributaries translates to a broad range of discharges for the lower Yuba River with flows overtopping Englebright Dam during large winter storms and spring snowmelt. The river segment has two major structures that affect flows, hydraulics, and sediment flux. Englebright Dam marks the start of the river segment. It was constructed as a sediment barrier in 1941 to protect the lower Yuba River from further impact associated with the hundreds of millions of tons of sediment blasted off hillsides throughout the watershed during hydraulic gold mining (Gilbert, 1917). While the dam has resulted in downstream incision throughout the valley corridor of ~ 10 m over 65 years (Carley et al., 2012), the lower Yuba River remains a wandering gravel-bed river owing to the immense transport and storage of sediment. Downstream at RKM 17.8, Daguerre Point Dam is an 8-m-high irrigation diversion structure that creates a slope break and marks the reach-scale transition from net incision upstream to net deposition downstream. Deer Creek is the largest tributary to the LYR and the only one relevant for this study. Because of its limited catchment elevations, the hydrograph is dominated by rainfall, with just a few snowmelt or rain-on-snow events annually. The flow in the creek is impaired by three regulated dams and several small water diversion dams. Because reservoir storage is small, the hydrograph is most impaired early in the water year and
relatively natural otherwise. Further details about Deer Creek’s hydrology are available in FDC et al. (2011).

3.2. Study reaches

Key characteristics of three study reaches are summarized in Table 1. Timbuctoo Bend reach begins at the onset of the alluvial valley after the Narrows canyon and ends at the bedrock constriction where the Highway 20 bridge is located. This reach is followed by Parks Bar reach, in which increasing valley width enables a wider floodplain, sedimentary bars, islands, and terraces. The third reach, Daguerre Point Dam reach, begins at the Daguerre Point Dam and ends at a slope break with the downstream Hallwood reach. This is the widest reach in the lower Yuba River. The channel is bounded by a training berm to the north and mining tailings on the southern side, and the parallel overflow channel north of the training berm (termed Daguerre Alley) conveys flow upon full inundation between 283 and 425 m3s$^{-1}$.

4. Data

Field data collection efforts were explicitly intended to characterize hydrologic, geomorphic, vegetative, and hydraulic attributes of the LYR at roughly meter-scale resolution. Observational data included topography and bathymetry (Pasternack, 2009; White et al., 2010; Carley et al., 2012) as well as hydraulic data: water surface elevation, depth, velocity magnitude, and velocity direction (Barker, 2011; Pasternack...
and Wyrick, 2014). Details about spatial coverage, resolution, and accuracy for the
digital elevation model (DEM) used in this study have been previously reported and
peer reviewed but are briefly summarized herein, with more details provided in the
supplementary materials.

4.1. Flow records

Hydrological records for the lower Yuba River are available at two USGS gages
(Fig.1), with one located at Smartsville near Englebright Dam (#11418000) and the
other at Marysville near the mouth (#11421000). In addition, a USGS gage is located on
the small, regulated tributary Deer Creek (#11418500) that flows into the river a short
distance downstream of the Smartsville gage. This study used the sum of the daily flows
for the Smartsville and Deer Creek gages as the hydrologic input.

In addition to the observed flows, this study made use of calculated natural (i.e.,
unimpaired) daily flows at Smartsville on the Yuba River determined for relicensing of
the Yuba River Development Project (YCWA, 2012). Unimpaired flows represent
catchment hydrology without any human intervention. Flow impairment is a result of four
major water development projects in the watershed: the Yuba-Bear Project, Drum-
Spaulding Project, South Fork Feather River Project, and Yuba River Development
Project. These projects are operated to hold or release water for flood control, water
supply, recreation, instream flows, and hydropower generation. Computation of
unimpaired flows was feasible because several USGS gaging stations are located...
throughout the Yuba watershed and the cost of such analysis is borne by the licensee.

A full explanation of the heavily reviewed computational steps is beyond the scope herein and is publicly available (YCWA, 2012). Unimpaired flow record is not available for Deer Creek (FDC, 2011), but the effect of its impairment would be extremely small on the flows that generate floodplain inundation on the LYR.

4.2. Mapping

River corridor topography and bathymetry were collected for the high-resolution digital elevation model (DEM) using a combination of ground-based, boat-based, and airborne LiDAR methods. Each method involved its own internal performance tests, and comparisons were carried out among the methods in areas of overlapping coverage. All of the different surveys were tied together with a common array of benchmarks and vertical adjustments to a common vertical datum (NAVD 88). After accounting for data quality, acceptable points were visualized in ArcGIS software (ESRI, Redlands, CA) and further edited on a spatial basis to remove obvious errors. In narrow backwater channels and along banks that contained obvious interpolation errors, hydro-enforced breaklines and regular breaklines were created to better represent landform features. Additionally, some bathymetric areas that contained very few points because of obstructions and other problematic features were artificially augmented so that channel characteristics were maintained. A TIN-based DEM was produced as the native terrain model from which derivative rasters and contours were produced as needed. The
supplementary materials provide the details on topographic and bathymetric resolution and accuracy.

A vegetation canopy height surface model was developed by Watershed Sciences (Portland, OR) and delivered in the form of a 0.9144-m (3-ft) resolution ESRI grid file as documented in Watershed Sciences (2010). Noise points and secondary returns from the vegetation class were excluded by a two-step automated process classifying all first returns ≥ 0.305 m (1 ft, which is two standard deviations of the expected laser noise range) above a localized corrected ground surface as vegetation points. An elevation raster representing the highest LiDAR return classified as vegetation in each cell was created and then filled with values from the bare Earth TIN in cells with no LiDAR returns. Finally, ground elevations were subtracted from vegetation elevations to obtain canopy heights, with height < 0.61 m excluded. A 0.9144-m raster of vegetation presence/absence was produced from the canopy height raster.

4.3. River hydraulics

Given that the purpose of this study was not to develop novel multidimensional hydrodynamic algorithms or prove their veracity but to extend their utility for analyses that improve scientific understanding, the underpinnings of the hydraulic modeling used in this study and its validation are explained in the supplementary materials. This study built on a previously peer-reviewed and published, meter-scale two-dimensional hydrodynamic model that predicted depth-averaged velocities for ~ 35 river km for discharges ranging from 0.2 to 20 times bankfull (28.3 to 2840 m³s⁻¹; Barker, 2011; Abu-
Aly et al., 2014). Given the floods modeled, we chose to use spatially distributed and stage-dependent vegetated boundary roughness (Katul et al., 2002; Casas et al., 2010).

Despite the increasing use of 2D models in river science, some uncertainties, errors and limitations exist in this method (Hunter et al., 2008; Legleiter et al., 2011; Jowett and Duncan, 2012) but the same is true for empirical data, simple analytical equations, 1D hydrodynamic models, 3D hydrodynamic models, and multidimensional morphodynamic models. The choice of 2D hydrodynamic modeling was sensible for this study as it captures the effects of topographic steering and convective acceleration at the meter to decimeter scale on floodplain inundation, which was the only model output used herein. The supplementary materials provide modeling details, including performance metrics, which were well within scientific journal norms.

5. Study methods

5.1. Floodplain inundation

A first step in data analysis was to develop a relationship between discharge and the extent of floodplain inundation for the full range of flows present in the historical and unimpaired flow records. We developed such a relationship for each of the study reaches based on the results of the 2D hydraulic model simulations (section 4). Eight simulations that exceeded bankfull discharge ($141.6 \text{ m}^3\text{s}^{-1}$) were used, specifically $212.4, 283.2, 424.8, 597.5, 849.5, 1195, 2390, \text{ and } 3126 \text{ m}^3\text{s}^{-1}$. Inundated floodplain area for a given flow was defined as the difference between the total inundated area in
the model output and the wetted area for the bankfull flow simulation. Piecewise linear interpolation between the resultant values for each study reach was then used to estimate floodplain inundation extent as a function of discharge (Fig. 2). Piecewise linear interpolation was chosen because it proved to be superior over function fitting (e.g., logarithmic or a polynomial) in terms of representing the details of the relationships between discharge and inundated areas. Inaccuracies of the tested continuous functions were particularly important at the lower end of the range, where errors in fit resulted in different rank orders of study reaches in terms of inundation extent. Because a few historical flows exceeded the highest modeled flood discharge, the values of inundated floodplain area for these extreme events were extrapolated linearly based on the slope fitted to the two largest flows for which simulations were available.

To account for different reach lengths, we normalized the inundated area by the thalweg length, thus expressing the results as the average width of the inundated floodplain (note that this value includes floodplain areas on both sides of the channel). A comparison of the discharge-floodplain inundation relationships as well as statistical descriptors of the floodplain inundation regime in the three study reaches provided an opportunity to assess the importance of valley floor topography (i.e., geomorphic control).
5.2. Water year classification (hydroclimatic conditions)

This study used 33 years of hydrological data observed on the LYR from 1 October
1975 to 30 September 2008 (i.e., water years 1976-2008). Hydrological studies often
use all years in one bulk analysis, which assumes that the days in all years belong to
the same probability distribution. However, depending on interannual to decadal quasi-
periodicities in the coupled ocean-atmosphere system driving climate (e.g., El Niño
Southern Oscillation and Pacific Decadal Oscillation), years and days in years may not
be identically distributed, hence requiring stratification of the data into similar climatic
sets. In the case of the Yuba River, the hot summer Mediterranean climate is
categorized by significant interannual variability in precipitation and streamflow, with
much of it explained by quasi-periodic climatic trends. A common approach used to
account for this in California is to classify hydrological data into water year types on the
basis of seasonal and/or annual flow metrics. For example, the Yuba River Index is
computed as 20% of the previous year’s unimpaired total annual flow plus 30% of the
current year’s unimpaired flow October through March plus 50% of the current year’s
unimpaired flow April through September (YCWA, 2012). Thus, it gives the highest
weight to spring snowmelt runoff and also considers antecedent conditions. In this
study, the goal was to have an index that focused on the current year exclusively and
with no preference for snowmelt over rainfall as the water source, so the combined total
annual unimpaired flow (in units of millions of cubic meters, MCM) from the Yuba record
at Smartsville was used to segregate water years into three distinct classes: dry (0-1900

5.3. Inundation time series

For each study reach the relationship between discharge and inundated floodplain width was applied to each daily flow value to yield an annual time series of inundated floodplain width. The annual time series for all years on record were then stratified according to water year class. The time series for years within each water year class were then ordered chronologically and concatenated. A comparison of statistics representing floodplain inundation regimes that correspond to the three water year classes enabled an assessment of the importance of hydroclimatic controls.
5.4. Uniform continuous above-threshold (UCAT) analysis

In statistical analysis of floodplain inundation regimes we aimed to capture various aspects of inundation patterns: magnitude/extent, duration, and cumulative duration (which, when expressed as a proportion of total record, is closely related to event frequency). The Uniform Continuous Above Threshold (UCAT) method is a form of time series analysis and, as the name implies, focuses specifically on continuous events above certain thresholds. We chose this method in addition to simple descriptive statistics because, from the point of view of floodplain ecosystems, the continuous nature of inundation is critically important. The method was described in detail by Capra et al. (1995), Parasiewicz (2008), and Castelli et al. (2011). Therefore, below we provide only a general account. The UCAT analysis was conducted for each of the three study reaches and applied to the subsets of data corresponding to different hydroclimatic conditions (section 5.2). It was also carried out separately for the regulated (i.e., observed) flow and the reconstructed unimpaired flow (section 4.1).

The UCAT procedure followed in this paper involved three steps, which were applied to each of the study reaches and water year classes. In the first step, a series of representative thresholds of floodplain inundation width was chosen to represent different event magnitudes. We chose to focus on inundation widths of 10, 20, 50, 100, and 200 m as values representative of a range of overbank floods on this river. The largest value exceeds the floodway width for Timbuctoo Bend reach, is virtually that for Parks Bar reach, and is 64% of that for Daguerre Point Dam reach. When inundation...
exceeds floodway width in this valley, then alluvial terraces and/or valley hillsides are inundated. In the second step, we split the data according to water year class and determined duration of all events in all the annual time series of floodplain inundation for a given water year class (hydroclimatic conditions) that exceeded each of these thresholds. The events for the same inundation width threshold were then grouped in subsets according to their duration, which ranged from 1 day to the maximum value identified in the data set. The third UCAT step involved calculations of the cumulative duration of all events (expressed as the proportion of the total time) for a given continuous duration and inundation threshold. This was done separately for each of the water year classes. In UCAT plots, the continuous durations were then plotted against the corresponding cumulative durations, and each inundation width threshold had its own curve.

The shapes of the UCAT curves can be used to interpret the duration-magnitude-frequency relationship (for a certain duration, the cumulative duration is related to event frequency). For example, steep curve slope may be indicative of rare events, with continuous duration much longer than shorter events of the same magnitude. Such a pattern is more common in the left side of the plot space, where low frequency (low cumulative duration) events are plotted. The opposite is true for curves with gentle slopes. The UCAT curves may also display clear breaks in slope, which authors in the past used to describe subsets of events as typical, persistent, or catastrophic, presumably in terms of known geomorphic or ecological problems associated with those
conditions (e.g., Parasiewicz, 2008). However, in the absence of any such previously reported geomorphic or ecological thresholds for floodplain ecosystems in general or for the Yuba in particular associated with UCAT slope breaks, this additional step was not performed in this study.

Although this study encompassed a full range of continuous durations of floodplain inundation identified in the data, we focused particularly on four selected values deemed to be representative: 1-, 7-, 14-, and 21-day floods. For example, 1-day floods (herein short duration) are important for biogeochemical reactions such as nitrogen or carbon fluxes and processing in soils (e.g., Wilson et al., 2011; Ostojić et al., 2013).

Research in other rivers of the semiarid climatic zone indicated that they also play a role in recharging soil moisture, although longer duration events have more effect in this respect (Doble et al., 2012). Recently, researchers working in the Sacramento River watershed in California proposed that 7-day floods (moderate duration) are critical for function of the entire floodplain ecosystems and were termed floodplain activation floods (Williams et al., 2009; Opperman et al., 2010). In addition to the above roles, 14-day events (long duration) are important for recharge of groundwater and may regulate riparian vegetation dynamics. For example, prior research indicated that seedling survival of common riparian tree species such as cottonwood (Populus fremontii) is strongly and negatively affected by inundation lasting more than 2 weeks (Auchincloss et al., 2012). Finally, 21-day floods (very long duration) were used as representative of
long inundations, known to benefit juvenile Chinook salmon that rear and feed on the floodplain (Sommer et al., 2001, 2005; Jeffres et al., 2008).

6. Results

6.1. Valley form controls

Relationships between discharge and inundated floodplain width revealed commonalities and differences between the reaches with distinct floodplain topography. The common feature of all relationships was that they were approximately logarithmic (logarithmic function: r^2 of 0.95 for Daguerre Point Dam reach and over 0.99 for the other two reaches). Power function also yielded a good fit for higher discharges, in excess of $\sim 400 \text{ m}^3\text{s}^{-1}$, but not for the entire range of flows. However, even though log functions captured the general trends, for the purposes of quantifying inundation width, piecewise linear interpolation provided a more accurate representation of incremental inundation. The geomorphically controlled differences in floodplain hydroperiod were evident because, on average, for a given discharge inundated floodplain width in Parks Bar reach was roughly double and in Daguerre Point Dam reach triple that in Timbuctoo Bend reach (Fig. 2A). However, the between-reach differences in inundated floodplain width varied with discharge. The difference between Timbuctoo Bend and Parks Bar reaches increased relatively steadily as a logarithmic function of discharge. A more complex trend in Daguerre Point Dam reach may be associated with a substantial portion of flow outside of the main channel being confined to the flood runner instead of
spreading over a larger area of shallow floodplain flow (Fig. 3). This effect is controlled
by large sedimentary training berms. Meanwhile, Parks Bar reach has some high
artificial terraces that once inundated no longer impede the increase in inundation width,
providing more room for flow to expand above that stage.

Because of variable length of the study reaches, a slightly different picture emerged
when the discharge-inundated area relationship was assessed (Fig. 2B). Inundated
floodplain areas in Daguerre Point Dam and Parks Bar reaches were approximately
double of that in Timbuctoo Bend reach at flows just above bankfull and as much as
triple at the peak modeled flow of 3126 m3s$^{-1}$. On the other hand, Daguerre Point Dam
and Parks Bar reaches had, on average, similar values of inundated area (slightly larger
in the former reach up to $Q = 1195$ m3s$^{-1}$ and in the latter reach above that threshold).

A general trend of progressive increase in inundation from Timbuctoo to Parks Bar
to Daguerre Point Dam reach, expressed as percentiles of daily inundation values, is
illustrated in Fig. 4. For example, under normal hydroclimatic conditions, the median of
inundated width in Timbuctoo Bend reach was equivalent to 0.58 of that in Parks Bar
reach, which in turn was 0.71 of that in Daguerre Point Dam reach. When the inundated
floodplain area is considered, median values in Parks Bar Reach and Daguerre Point
Dam reach are almost identical and more than double those in Timbuctoo Bend reach
(Fig. 4 C-D).

A plot of overbank events’ peak magnitude against continuous duration (Fig. 5)
provides a more nuanced insight into between-reach differences, revealing trends
toward progressively larger peak magnitudes and more frequent high-magnitude
inundation events in Daguerre Point Dam relative to Parks Bar and in Parks Bar relative
to Timbuctoo Bend reach.

Lastly, UCAT analysis enables a comparison of reaches that considers magnitude
and duration of inundation events jointly (Figs. 6 and 7). The UCAT curves for all study
reaches had similar shapes because of the common flow input but indicated that
floodplains in reaches with a less confined valley floor were inundated for a larger
proportion of time for events of a given continuous duration and exceeding a given
magnitude threshold (Fig. 6). The influence of valley topography generally increased
with the magnitude thresholds. For example, under wet climatic conditions the
cumulative duration of 1-day events in Parks Bar reach was ~ 0.81 of that in Daguerre
Point for inundation in excess of 25 m (8.5% vs. 10.5% of time), 0.67 for inundation in
excess of 50 m (4.35% vs. 6.5% of time), and 0.5 for inundation above 100 m (2% vs.
4% of time; Fig. 7). In addition, the relative difference between the reaches also
increased with continuous duration of the inundation. For example, comparing reaches
under wet climatic conditions, the cumulative duration of 7-day events in Parks Bar
reach was ~ 0.72 of that in Daguerre Point for inundation in excess of 25 m (6.2% vs.
8.7% of time), 0.52 for inundation in excess of 50 m (2.3% vs. 4.4% of time), and 0.24
for inundation above 100 m (0.5% vs. 2% of time) (Fig. 7). In other words, relative
differences between inundations in reaches with different valley topography were larger
for long duration-large magnitude events.
6.2. Hydroclimate effects

Our results showed that different hydroclimatic conditions, as expressed through three water year classes, exerted a tremendous influence on flow regime and, consequently, floodplain hydroperiod. While annual hydrographs generally displayed broadly similar patterns (see examples in Fig. 8), the mean daily flow under normal conditions was approximately half of that during wet years; and the mean daily flow under dry conditions was half of the value in normal years (Fig. 9A, inset). The differences in hydrological regimes were reflected in longer duration of flow exceeding any given discharge under progressively wetter hydroclimate (Fig. 9A) as well as a larger mean overbank discharge (Fig. 9A, inset). For example, in dry years, bankfull discharge was exceeded < 0.1% of time, in normal years 5.8% of time, and in wet years 23.9% of time. The increase in mean overbank flow magnitude in normal years relative to dry years was only 3.8%, while that increase was 46.5% in wet years when compared to normal years.

The extent of inundated floodplain also displayed substantial differences between water year classes (Fig. 4). For example, ratios of median inundation widths in wet years to normal years was 0.39 in Timbuctoo Bend reach and Parks Bar reach and 0.4 in Daguerre Point Dam reach. Floodplain inundation events in progressively wetter conditions had higher peak magnitude and longer continuous duration (Fig. 5). The scatter in Fig. 5 is noteworthy, indicating a poor relationship between event magnitude...
and duration. This is a consequence of the dynamic hydrological regime in the Sierra
Mountains, which is influenced by significantly different seasonal antecedent moisture
conditions (yielding different rainfall-to-runoff ratios) and diverse storm event types that
vary within and between seasons (Fig. 8), which may result in various flood-generating
mechanisms (Senter et al., in press). For example, early wet season, intense rains
driven by remnant monsoons from the western Pacific Ocean might fall on extremely
dry soils and produce little runoff that is entirely captured by unfilled reservoirs.
However, the same intensity of rain during the spring snowmelt runoff season would
yield much runoff, exacerbate snowmelt, and might overflow full reservoirs. Thus, runoff
magnitude, duration, and frequency may display relatively weak relationships with one
another.

The UCAT curves also indicated that discharge fluctuations associated with varying
hydroclimatic conditions constitute a strong control on floodplain hydroperiod (Fig. 6). In
dry years, hardly any overbank flows took place. Any inundation event under such
conditions lasted only 1 day, covered a floodplain width of < 30 m, and their cumulative
duration constituted < 1% of total time. In contrast, under normal conditions, the largest
events in Daguerre Point Dam reach exceeded 200 m of floodplain inundation for 1-day
events and small events (width in excess of 10 m) lasted for up to 13 days. The shapes
of UCAT curves were broadly similar between normal and wet conditions and, just like
in the case of between-reach differences, differed mostly in terms of scale. These scale
differences increased with event magnitude. For example, the proportion of time that at
least 25 m of floodplain width in Daguerre Point Dam reach was inundated for 1 day during normal years was equivalent to < 0.12 of the corresponding value under wet conditions (1.3% vs. 10.7%; Fig. 7). Corresponding values for floodplain width thresholds of 50 and 100 m were, respectively, 0.08 and 0.07 (0.6% vs. 6.5% and 0.3% vs. 4.1%). Once again, in analogy to between-reach patterns, differences between water year classes seemed to increase with event duration. For example, under normal hydroclimatic conditions, the cumulative duration of 7-day inundation events in Daguerre Point Dam reach that exceeded 25 m of floodplain width constituted only 0.05 of the cumulative duration of equivalent events under wet conditions (0.5% vs. 8.7%). Overall, the effect of hydroclimate exceeded that associated with geomorphic controls.

6.3. Flow regulation effects

Comparison of the observed flow record with the estimated unimpaired streamflow record suggested that regulated discharge is, on average, equivalent to 0.77 (dry and wet climate) and 0.67 (normal climate) of the natural streamflow (Fig. 9B, inset). However, the mean of the overbank discharge was either similar (dry years) or only slightly lower (unimpaired/impaired ratio ~ 0.92 in wet and 0.88 in normal years). Our results indicated that, as a consequence of these differences between the regulated and unregulated flow regimes, median regulated inundation floodplain width was about 75% of that for unimpaired flow in wet conditions, 50% for normal conditions, and 40% for dry conditions. Furthermore, in absence of flow regulation, floodplains
would be inundated for a substantially larger proportion of time, and this difference was higher with progressively drier conditions. For example, total duration of overbank flows was 1.6 higher in wet years (38.7% vs. 22.9% of time), ~5 times higher in normal years (27.6% vs. 5.2%), and as much as 60 times higher in dry years (5.6% of time vs. <0.1%). Larger peak magnitude of floodplain inundation width and longer cumulative duration of overbank events in progressively wetter conditions are clearly illustrated in Fig. 10. Overall, these findings suggest that the drier hydroclimatic conditions, the larger relative impact of flow regulation on floodplain inundation.

The UCAT analysis also suggested that the cumulative duration of events differed substantially under regulated and unregulated streamflow regimes and that relative differences were most pronounced for dry hydroclimatic conditions and smallest in wet water class years (Fig. 11). For example, the percent of time a given extent of floodplain was inundated in wet years and under impaired flow was 50% smaller than that under unimpaired flow regime. For normal water class years, cumulative duration of inundation under regulated flow was approximately one-eighth of the value under unregulated flow, and for dry water class the inundation was one-fifteenth or less of the extent under unregulated regime. The differences appeared to be similar in all study reaches and for different continuous durations, although only 1-day and 7-day events could be compared directly (as 14-day and 21-day events were almost absent under regulated streamflow; Fig. 12).
7. Discussion

This study provides a unique opportunity to quantitatively characterize the relative influence that valley floor morphology, hydroclimatic conditions, and flow regulation have on floodplain inundation regime of three reaches of the lower Yuba River. All key aspects of floodplain hydroperiod — inundation extent, continuous event duration, and frequency — varied substantially under different examined scenarios.

Our findings regarding the geomorphic controls on inundation regime (Fig. 13) reveal two general points. First, broadly similar form of the nonlinear relationships between discharge and inundation width in our study reaches suggest that they may be, to some extent, generalizable to similar, partially confined valleys. Importantly, confined and partially confined channels have been shown to constitute most of the drainage network length, especially in the headwater and piedmont portions of mountainous river basins (O’Brien and Wheaton, 2014; Kasprak et al., 2016; Portugal et al., 2016). Despite that, to date, research on floodplain inundation was primarily conducted in large, lowland rivers with extensive floodplains. Reasonable fit of power law for large inundation events may also indicate some commonalities with the relationships identified in braided rivers (e.g., Smith et al., 1996; Smith and Pavelsky, 2008). However, we wish to caution and highlight that variation in the coefficients of functions fitted in our study reaches is large, indicating that the exact form of the discharge-inundation relationship is site specific. Moreover, considering various possible geometries of the valley cross sections, it is unlikely that logarithmic, power law, or any other relationship will hold universally (e.g.,
In addition, the importance of the sedimentary berm and secondary channel in the Daguerre Point Dam reach in terms of flow routing shows that local morphological features of the valley floor (natural or man-made) can alter the effect of gross valley shape.

The second ramification of between-reach differences in the discharge-inundation relationship is that the reaches with high rates of increase in inundation per unit flow will also display high sensitivity to fluctuations and alterations of hydrological regime caused by climatic factors or flow regulation. In other words, the reaches with more extensive floodplains covering relatively flat terrain will be more sensitive to a certain reduction in streamflow in the sense that they will experience higher reduction in the inundated floodplain width.

Our analysis shows that hydroclimatic factors exerted primary influence on the current floodplain inundation regime in LYR. Importantly, the functional relation between flow and inundation extent involved non-linear amplification, so the impact of climate on measures of inundation was disproportionate compared to its impact on the central tendency of streamflow. This work may be relevant to other rivers in a Mediterranean and semiarid climate that also have rapid increases in width as flow increases (e.g., Lespinas et al., 2009; Morán-Tejeda et al., 2010).

As noted in section 1, climate variability and change have been a major concern for California’s water resources, with the most important effects attributed to temperature and resulting snowmelt processes (Cayan et al., 2001, 2008). However, it is important
to emphasize that the magnitude of differences between the flow regimes under the
three hydroclimate scenarios analyzed in this study cannot be taken as representative
of potential effects of climate change. Climate warming scenarios based on historical
data from Sierra Nevada watersheds are still rudimentary but suggest a reduction in
snowmelt that ranges between <10% and 70% (depending on elevation) for a simplistic
2°C temperature increase and between about 20% and >90% for a simplistic 6°C
temperature increase (Young et al., 2009). As a result, mean annual flow in these
watersheds is preliminarily projected to decrease 3-9% for the same range of
temperature increases (Null et al., 2010). Similar results were obtained by Brekke et al.
(2004), whose findings suggested that inflows in San Joaquin reservoirs will be reduced
5% by 2025 and 14% by 2065. In light of these preliminary projections, our hydroclimate
scenarios represent a substantially exaggerated magnitude of potential differences in
streamflow and floodplain inundation associated with shifting climate norms. On the
other hand, scenarios developed based on our data reflect the historical range of
variability; therefore, we believe they are representative of the magnitude of fluctuations
that can be expected to occur in other Med-rivers similar to LYR at annual-to-decadal
time scales (e.g., associated with El Niño Southern Oscillation: Cayan et al., 1999; or
Pacific Decadal Oscillation: Benson et al., 2003).

This research complements past work on the effect of dams on flow regimes in the
Sierra Nevada, including the Yuba River (e.g., Kondolf and Batalla, 2005) and extends it
to floodplain inundation. Our assessment of inundation regime under the modeled
unregulated discharge suggests a profound impact of dam operations on floodplain hydroperiod in the LYR. We believe that the differences between impaired and unimpaired flow may be relatively modest in comparison to other regulated Med-rivers. Compared to other major rivers draining to the San Joaquin and Sacramento rivers in the Central Valley, the Yuba is different because the large water supply reservoir is not on the mainstem and thus only captures the flow from a single tributary. As a result, there is a much more dynamic flood regime on the lower Yuba River than on its regional counterparts (Escobar-Arias and Pasternack, 2011). Thus, while the purpose of flow regulation on the LYR is to capture high flows for storage and redistribution to dry periods, similar to dams in other parts of the United States (e.g., Magilligan and Nislow, 2005; Graf, 2006), the LYR is a rather unique case of regulated rivers in that it has regular overbank floods. Consequently, we hypothesize that the influence of flow regulation on floodplain inundation in other regulated rivers may be even larger than that observed in this study.

8. Floodplain ecosystem implications

Findings of this study demonstrate that spatial and temporal variations in a hydroperiod driven by different valley floor topography and flow regimes are likely to result in distinct floodplain habitat conditions. The differences between scenarios considered in our analysis are largest for high magnitude-long duration events, such as those reported as critical for riparian plants and salmonid juveniles (represented in our
analysis by 2- and 3-week durations). Although in section 3 we defined relevance only by duration, implicitly, sufficiently large spatial extent of inundation is necessary for the ecological benefits to accumulate to a meaningful level (Opperman et al., 2010).

One implication of these findings is that, through reduced hydrological connectivity, climatic factors and dam operations may act to inhibit riparian plants’ establishment and growth and that these negative effects are likely to be nonuniform in space. Specifically, the areas that are inundated only during large overbank events are likely to be affected to a larger degree. Currently, riparian vegetation on the LYR floodplain frequently occurs in downstream-elongated bands, which run in close proximity to the main channel as well as chute and secondary channels. This may imply that hydrological factors (inundation duration and frequency but presumably also distance to water table) dominate over geomorphic disturbance, which is expected to be most severe near the channel because of high hydraulic forces (Friedman and Auble, 1999). Research on other Mediterranean rivers has demonstrated that declines in riparian species such as poplar (Populus nigra) were correlated with changing climate (Stella et al., 2013a, 2013b), presumably as a result of physiological stress associated with changes in inundation regime (Singer et al., 2013). Therefore, some modifications of current dam operations would be essential for mitigating the effects of climate change and variability on the floodplain hydroperiod and for restoration of riparian vegetation in the LYR.

We wish to highlight, however, that in this study we focus exclusively on surface water connectivity and ignore other relevant factors that codefine the dynamics of
riparian vegetation. Such factors include, for example, substratum characteristics (e.g., Harris, 1987, 1988) as well as groundwater dynamics that interact with overbank surface flow (Sophocleous, 2002) and subsurface hillslope flow (Jung et al., 2004).

Nevertheless, recent work in a reach of the Merced River relatively similar to the LYR suggests that restored hydrological connectivity and substrate can greatly enhance riparian vegetation development (Sellheim et al., 2016).

Substantial reduction in large extent-long duration inundation events may also hinder growth of juvenile salmonids, especially if compounded with impaired productivity of riparian vegetation. In warmer climatic conditions (associated with climate variability or change), this effect would be further exacerbated by increased metabolic rates.

Research on the Cosumnes and Sacramento rivers showed that Chinook salmon use lowland floodplains for rearing as soon as it became connected to the channel (Moyle et al., 2007) and grow significantly faster when the connectivity with floodplain habitat is maintained for a long enough period (Sommer et al., 2001; Jeffres et al., 2008). The benefits of floodplain rearing are thought to be related to lower flow velocities, high productivity of such an ecosystem — with high levels of primary production (Ahearn et al., 2006) and secondary production of invertebrates (Grosholz and Gallo, 2006) — as well as food web structure that facilitates energy flow to salmonids (Bellmore et al., 2013). Inundation not only provides access to these resources but also drives a boost in productivity (Jenkins and Boulton, 2003).
However, the landscape setting in the LYR is very different from the study sites on the Cosumnes and Sacramento rivers, and this must be accounted for. The floodplain on the Yuba is more limited with a broad parafluvial zone dominated by coarse sediment and has relatively little vegetation cover in the study reaches. Therefore, structure and function of food web may be quite different. Nevertheless, increased overbank inundation on the Lower American River, where floodplain has a more similar character and extent to the LYR, was correlated with increased abundance of juvenile salmonids (Sellheim et al., 2015). Preferential use of floodplain by juvenile salmonids was also observed in the mountainous Elwha River (Pess et al., 2008). Therefore, we believe that a major restoration of vegetated floodplain habitat and possible adjustments to the negotiated flow regime could significantly contribute to recovery of Chinook populations in the LYR, pending careful scientific study. Such restoration efforts may be critical given that research elsewhere associated declines in salmonid stocks with reduced streamflow (Crozier and Zabel, 2006). Salmonids inhabiting snowmelt-dominated streams appear to be particularly vulnerable to the effects of climate change (e.g., Mantua et al., 2010).

9. Conclusions

In this paper we combined extensive remote sensing data on topography and vegetation (aerial LiDAR), almost four decades of hydrological records, and the outputs of a hydrological and 2D hydraulic model to examine how floodplain inundation regimes
in the lower Yuba River are controlled by reach-scale valley morphology, hydroclimatic conditions, and flow regulation. Estimated relative differences in the extent, duration, and frequency (cumulative duration) of inundation events were often as large as an order of magnitude and generally greatest for large and long duration events. The relative impact of flow regulation was greatest under dry hydroclimatic conditions. While the effects of hydroclimate and flow impairment are larger than that of valley floor topography, the latter control dictates sensitivity of the floodplain hydroperiod to climatic variability and change as well as dam-related flow alteration. Cumulative effects of flow regulation and climate seem to have particularly far-reaching consequences for channel-floodplain connectivity of the Yuba River.

These findings provide insight into hydrological and geomorphic controls on floodplain processes that may operate in confined or partially confined (Wheaton et al., 2015; Fryirs et al., 2016), Mediterranean climate rivers. We also consider implications of our results in light of relevant literature and suggest that the reduced hydrological connectivity of the floodplain caused by climate- and dam-related changes in streamflow is likely to strongly limit the potential for supporting riparian vegetation and production of salmonids.

In summary, this work highlights that conservation and restoration of channels similar to the Yuba River requires careful water resource planning which considers both ecological and human requirements (Grantham et al., 2010; Viers and Rheinheimer, 2011) and accounts for variable and changing climate (Thompson et al., 2011; Beechie
et al., 2013; Rivaes et al., 2013). Our findings can also serve to inform the choice of target reaches for restoration of riparian vegetation and salmonid fish so as to maximize the gains in lateral connectivity between a river and its floodplain. Specifically, our work underscores that, given the impact of climate variability and change, restoration of such connectivity in the Yuba River would benefit greatly from flow augmentation particularly during dry water years.

Acknowledgements

No direct financial support was provided for this work. Precursor data were collected for different purposes with funding from the Yuba County Water Agency (Award #201016094) and as in-kind aid from the Yuba Accord River Management Team. This project was also supported by the USDA National Institute of Food and Agriculture, Hatch project number #CA-D-LAW-7034-H. The paper greatly benefitted from comments of Richard Marston and an anonymous reviewer.

References

Harris, R.R., 1988. Associations between stream valley geomorphology and riparian vegetation as a basis for landscape analysis in the eastern Sierra Nevada, California, USA. Environ. Manage. 12, 219–228. doi:10.1007/BF01873390

Morán-Tejeda, E., Ceballos-Barbancho, A., Llorente-Pinto, J.M., 2010. Hydrological response of Mediterranean headwaters to climate oscillations and land-cover

doi:10.1175/BAMS-86-1-39

doi:10.1175/BAMS-86-1-39

doi:10.1126/science.1107887

doi:10.1890/04-1677

doi:10.1016/j.geomorph.2009.11.018

Watershed Sciences, 2010. Riparian mapping and classification delivery 1: existing LiDAR reclassification- revision 1.0, Lower Yuba River, CA.

Figure captions:

Fig. 1. Location map of the lower Yuba River (LYR) showing the three study reaches, gaging stations, and other features of interest superimposed over the wetted area map for a flow of 1194.97 m3/s.

Fig. 2. Relationship between discharge and floodplain inundation width (A) and area (B). Note that the inundation width includes areas on both banks of the river.

Fig. 3. Floodplain inundation maps for the three study reaches at (A) 141.58 m3/s, (B) 1194.97 m3/s, and (C) 3126.18 m3/s.

Fig. 4. Floodplain inundation extent: width (A and B) and area (C and D) under normal (A and C) and wet (B and D) hydroclimatic conditions. The box indicates median, 25th, and 75th percentiles of inundated width. Whiskers are set to show 5th and 95th percentiles. Note that only data representing overbank conditions were taken into account.

Fig. 5. Peak inundation width and continuous duration of overbank events: dry hydroclimate (A); normal hydroclimate (B); wet hydroclimate (C). Different symbols denote different reaches.
Fig. 6. The UCAT curves for different reaches (columns) and hydroclimatic conditions (rows). Each graph shows continuous duration of inundation events and their corresponding cumulative duration, expressed as the proportion of total time. Different threshold of the extent of inundation width are represented in different line patterns.

Fig. 7. Differences in continuous duration between the study reaches (A and B) and water years (C and D) for selected continuous durations, expressed in relative terms as ratios. Note the statistics in (A) and (B) refer to wet water year class and those in (C) and (D) to Daguerre Point Dam reach.

Fig. 8. Representative floodplain inundation time series for the three study reaches for each water year type.

Fig. 9. Discharge statistics in the lower Yuba River under regulated (A) and unregulated (B) flow regime. The main panels show cumulative distribution functions for the entire flow record and modeled for impaired flow (respectively). Solid and dashed lines denote distinct hydroclimatic conditions, while the dotted vertical line indicates bankfull discharge. The insets show the mean of all daily flow data and the mean of the daily overbank discharge (in B, impaired relative to unimpaired flow).
Fig. 10. Peak inundation width and continuous duration of overbank events under the estimated unregulated flow regime: dry hydroclimate (A); normal hydroclimate (B); wet hydroclimate (C). Different symbols denote different reaches.

Fig. 11. The UCAT curves for different reaches (columns) and hydroclimatic conditions (rows) under the estimated unregulated flow regime. Each graph shows continuous duration of inundation events and their corresponding cumulative duration, expressed as the proportion of total time. Different thresholds of the extent of inundation width are represented in different line patterns.

Fig. 12. Differences in continuous duration between the study reaches for selected continuous durations and under the estimated unregulated regime, expressed in relative terms as ratios. Note these statistics refer to wet water year class.

Fig. 13. River-corridor hypsographs for the three study reaches within the 1194.97 m³/s inundated area.
Table 1

Characteristics of the study reaches (see Wyrick and Pasternack (2012) for more metrics and classes).

<table>
<thead>
<tr>
<th></th>
<th>Timbuctoo Bend</th>
<th>Parks Bar</th>
<th>Daguerre Point Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean slope (%)</td>
<td>0.2</td>
<td>0.19</td>
<td>0.18</td>
</tr>
<tr>
<td>Mean bankfull width (m)</td>
<td>84</td>
<td>96</td>
<td>120</td>
</tr>
<tr>
<td>Floodway width(^a) (m)</td>
<td>134</td>
<td>207</td>
<td>313</td>
</tr>
<tr>
<td>Entrenchment ratio(^b) (m/m)</td>
<td>2.1</td>
<td>2.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Weighted mean substrate (mm)</td>
<td>164</td>
<td>117</td>
<td>87</td>
</tr>
<tr>
<td>Thalweg length (m)</td>
<td>6337</td>
<td>7919</td>
<td>5639</td>
</tr>
</tbody>
</table>

\(^a\) Calculated as the inundated width at 587.5 m\(^3\)s\(^{-1}\).

\(^b\) Calculated as the ratio between the width at which depth is twice the bankfull depth and the bankfull width (Rosgen, 1996). The higher the value the less confined the valley is.
Figures
The image contains multiple graphs, each labeled with location names: Timbuctoo Bend (dry), Parks Bar (dry), Daguerre Point (dry), Timbuctoo Bend (normal), Parks Bar (normal), Daguerre Point (normal), Timbuctoo Bend (wet), Parks Bar (wet), and Daguerre Point (wet). Each graph plots the cumulative proportion of time against continuous duration above certain threshold values.

The graphs are labeled with different symbols and line styles, indicating various threshold distances: 10 m, 25 m, 50 m, 100 m, and 200 m. The x-axis represents cumulative proportion of time, while the y-axis represents continuous duration above threshold (days).
(A) Dry

(B) Normal

(C) Wet

Event duration (days)

Peak inundation width (m)
(A) Timbuctoo Bend vs. Parks Bar

(B) Parks Bar vs. Daguerre Point

(C) Hydroclimate: Dry vs. Normal

(D) Hydroclimate: Normal vs. Wet