Title
Source Provenience of Folsom Point Fragments and Debitage from the Boca Negra Wash Site (LA 124474), West Mesa, Albuquerque, New Mexico

Permalink
https://escholarship.org/uc/item/82r1n03c

Author
Shackley, M. Steven

Publication Date
2010-01-08

Supplemental Material
https://escholarship.org/uc/item/82r1n03c#supplemental

License
CC BY-NC 4.0
SOURCE PROVENANCE OF FOLSOM POINT FRAGMENTS AND DEBITAGE FROM THE BOCA NEGRA WASH SITE (LA 124474), WEST MESA, ALBUQUERQUE, NEW MEXICO

by

M. Steven Shackley
Professor and Director
Geoarchaeological XRF Laboratory
University of California, Berkeley

Report Prepared for

Dr. Bruce Huckell
Maxwell Museum of Anthropology
University of New Mexico, Albuquerque

8 January 2010
INTRODUCTION

The analysis here of two Folsom point fragments and two debitage pieces indicates that all the artifacts were produced from raw material procured from Cerro del Medio, part of Valles Rhyolite (Tewa Member) of the Valles Caldera, Jemez Mountain, northern New Mexico. While a very small amount of Valles Rhyolite obsidian is present in the Rio Grande Quaternary alluvium as far south as Tijeras Wash, the largest size recovered is only 16 mm in maximum dimension (Shackley, in preparation). The projectile points here were most likely produced from obsidian originally procured at the primary source in the caldera (see Shackley 2005a). Valles Rhyolite obsidian is dominant at Boca Negra Wash, possibly suggesting frequent visits to the caldera and the Jemez Mountains by this particular Folsom group (Shackley 2005b).

ANALYSIS AND INSTRUMENTATION

All archaeological samples are analyzed whole. The results presented here are quantitative in that they are derived from "filtered" intensity values ratioed to the appropriate x-ray continuum regions through a least squares fitting formula rather than plotting the proportions of the net intensities in a ternary system (McCarthy and Schamber 1981; Schamber 1977). Or more essentially, these data through the analysis of international rock standards, allow for inter-instrument comparison with a predictable degree of certainty (Hampel 1984).

The trace element analyses were performed in the NSF Geoarchaeological XRF Laboratory, Department of Anthropology, University of California, Berkeley, using a Thermo Scientific Quanti’X energy dispersive x-ray fluorescence spectrometer. The spectrometer is equipped with a ultra-high flux peltier air cooled Rh x-ray target with a 125 micron beryllium (Be) window, an x-ray generator that operates from 4-50 kV/0.02-1.0 mA at 0.02 increments, using an IBM PC based microprocessor and WinTrace™ 4.1 reduction software. The x-ray beam is conducted through an 8.8 mm tube collimator for samples larger than 10 mm in
minimum diameter. For samples below that threshold, the beam is conducted through a 3.5 mm tube collimator. The spectrometer is equipped with a 2001 min$^{-1}$ Edwards vacuum pump for the analysis of elements below titanium (Ti). Data is acquired through a pulse processor and analog to digital converter. This is a significant improvement in analytical speed and efficiency beyond the former Spectrace 5000 and QuanX analog systems (see Davis et al. 1998; Shackley 2005a).

For Ti-Nb, Pb, Th elements the mid-Zb condition is used operating the x-ray tube at 30 kV, using a 0.05 mm (medium) Pd primary beam filter in an air path at 200 seconds livetime to generate x-ray intensity $K\alpha_1$-line data for elements titanium (Ti), manganese (Mn), iron (as Fe^τ), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), lead (Pb), and thorium (Th). Not all these elements are reported since their values in many volcanic rocks is very low. Trace element intensities were converted to concentration estimates by employing a least-squares calibration line ratioed to the Compton scatter established for each element from the analysis of international rock standards certified by the National Institute of Standards and Technology (NIST), the US. Geological Survey (USGS), Canadian Centre for Mineral and Energy Technology, and the Centre de Recherches Pétrographiques et Géochimiques in France (Govindaraju 1994). Line fitting is linear (XML) for all elements but Fe where a derivative fitting is used to improve the fit for iron and thus for all the other elements. When barium (Ba) is acquired, the Rh tube is operated at 50 kV and 0.5 mA in an air path at 200 seconds livetime to generate x-ray intensity $K\alpha_1$-line data, through a 0.630 mm Cu (thick) filter ratioed to the bremsstrahlung region (see Davis et al. 1998). Further details concerning the petrological choice of these elements in North American obsidians is available in Shackley (1988, 1990, 1995, 2005; also Mahood and Stimac 1991; and Hughes and Smith 1993). A suite of 17 specific standards used for the best fit regression calibration for elements Ti- Nb, Pb, and Th, include G-2 (basalt), AGV-2 (andesite), GSP-2 (granodiorite), SY-
2 (syenite), BHVO-2 (hawaiite), STM-1 (syenite), QLO-1 (quartz latite), RGM-1 (obsidian), W-2 (diabase), BIR-1 (basalt), SDC-1 (mica schist), BCR-2 (basalt), TLM-1 (tonalite), SCO-1 (shale), all US Geological Survey standards, NBS-278 (obsidian) from the National Institute of Standards and Technology, BR-1 (basalt) from the Centre de Recherches Pétrographiques et Géochimiques in France, and JR-1 and JR-2 (obsidian) from the Geological Survey of Japan (Govindaraju 1994).

The data from the WinTrace software were translated directly into Excel for Windows and into SPSS for statistical manipulation (Table 1). In order to evaluate these quantitative determinations, machine data were compared to measurements of known standards during each run (Table 1). Source assignments made by reference to source data at Berkeley (see Shackley 2005a). For the small sample (FS 2000) measuring about 9.3 X 5.0 mm, the 3.5 mm tube collimator was used yielding data well within the Valles Rhyolite source standard data (Table 1). The RGM-1 standard data was acquired using the 3.5 mm collimator as well.

REFERENCES CITED

Hildreth, W.

Hughes, Richard E., and Robert L. Smith
1993 Archaeology, Geology, and Geochemistry in Obsidian Provenance Studies.
Geological Society of America Special Paper 283.

Mahood, Gail A., and James A. Stimac
1990 Trace-Element Partitioning in Pantellerites and Trachytes.
Geochemica et Cosmochimica Acta 54:2257-2276.

McCarthy, J.J., and F.H. Schamber

Schamber, F.H.
1977 A Modification of the Linear Least-Squares Fitting Method which Provides Continuum Suppression.
In *X-ray Fluorescence Analysis of Environmental Samples*, edited by T.G. Dzubay, pp. 241-257.
Ann Arbor Science Publishers.

Shackley, M. Steven
1988 Sources of Archaeological Obsidian in the Southwest: An Archaeological, Petrological, and Geochemical Study.

Ph.D. dissertation, Arizona State University, Tempe.

1995 Sources of Archaeological Obsidian in the Greater American Southwest: An Update and Quantitative Analysis.
American Antiquity 60(3):531-551.

2005a Obsidian: Geology and Archaeology in the North American Southwest.
University of Arizona Press, Tucson.

2005b Paleoindian Basalt and Obsidian Sources in the North American Southwest: A Preliminary Model of Late Paleoindian Territoriality.
Paper presented in the Symposium on Archaeological Geology, Geological Society of America, Annual Meeting, Salt Lake City, Utah.
Table 1. Elemental concentrations for the archaeological specimens and the USGS RGM-1 standard. All measurements in parts per million (ppm).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ti</th>
<th>Mn</th>
<th>Fe</th>
<th>Rb</th>
<th>Sr</th>
<th>Y</th>
<th>Zr</th>
<th>Nb</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS1753</td>
<td>984</td>
<td>416</td>
<td>10811</td>
<td>164</td>
<td>8</td>
<td>45</td>
<td>155</td>
<td>53</td>
<td>Valles Rhyolite</td>
</tr>
<tr>
<td>FS2000(^1)</td>
<td>1185</td>
<td>451</td>
<td>12054</td>
<td>176</td>
<td>7</td>
<td>43</td>
<td>164</td>
<td>52</td>
<td>Valles Rhyolite</td>
</tr>
<tr>
<td>FS2021</td>
<td>735</td>
<td>423</td>
<td>10023</td>
<td>173</td>
<td>7</td>
<td>46</td>
<td>162</td>
<td>56</td>
<td>Valles Rhyolite</td>
</tr>
<tr>
<td>FS2059</td>
<td>1114</td>
<td>436</td>
<td>10548</td>
<td>166</td>
<td>6</td>
<td>41</td>
<td>154</td>
<td>56</td>
<td>Valles Rhyolite</td>
</tr>
<tr>
<td>RGM1-S4</td>
<td>1509</td>
<td>280</td>
<td>12577</td>
<td>150</td>
<td>108</td>
<td>28</td>
<td>218</td>
<td>9</td>
<td>Rhyolite standard</td>
</tr>
</tbody>
</table>

\(^1\) These data acquired using the 3.5 mm tube collimator (see text above.)