Title
Young children infer causal strength from probabilities and interventions

Permalink
https://escholarship.org/uc/item/82x145js

Journal
Psychological Science, 16(9)

ISSN
0956-7976

Authors
Kushnir, Tamar
Gopnik, A

Publication Date
2005-09-01

Peer reviewed
Research Report

Young Children Infer Causal Strength From Probabilities and Interventions

Tamar Kushnir and Alison Gopnik

University of California at Berkeley

ABSTRACT—We examine the interaction of two cues that children use to make judgments about cause-effect relations: probabilities and interventions. Children were shown a “detector” that lit up and played music when a block was placed on its surface. We varied the probabilistic effectiveness of the block, as well as whether the experimenter or the child was performing the interventions. In Experiment 1, we found that children can use probabilistic evidence to make inferences about causal strength. However, when the results of their own interventions are in conflict with the overall frequencies, preschoolers favor the results of their own interventions. In Experiment 2, children used probabilistic evidence to infer a hidden causal mechanism. Though they again gave preference to their own interventions, they did not do so when their interventions were explicitly confounded by an alternative cause.

By age 5, children have learned a great deal about the causal structure of the world (Bullock, Gelman, & Baillargeon, 1982; Gopnik & Wellman, 1994; Shultz, 1982). How is this learning possible? We explore the interaction of two cues that children might use to infer causal strength: the probabilistic relationships among events and the consequences of interventions.

Adults can use probability information to assess the strength of causal relations—they conclude that if X follows Y more often than X follows Z, then, other things being equal, Y is a stronger cause of X than Z (Cheng, 1997; Shanks & Dickinson, 1987; Spellman, 1996; Waldmann & Hagmayer, 2001). However, adults have extensive experience and often explicit tuition in causal inference. If children have similar causal learning abilities naturally, they might play a role in the acquisition of causal knowledge.

However, studies of children’s causal reasoning have focused on deterministic rather than probabilistic causal relations (e.g., Bullock et al., 1982; Gopnik & Sobel, 2000; Gopnik, Sobel, Schulz, & Glymour, 2001; Shultz, 1982; Shultz & Mendelson, 1975). These studies have found that young children are capable of making quite sophisticated inferences from deterministic evidence. In a few studies (Gopnik et al., 2004; Siegler, 1976), children also inferred causal relations even when effects did not always follow causes. However, all these studies asked about causal structure (Did X cause Y?) rather than causal strength (How strongly did X cause Y?).

Interventions also play an important role in causal reasoning. They help solve one of the main problems of causal inference—the problem of confounding. When people intervene on a cause to bring about an effect, they can usually assume that the subsequent events are the result of their action, and not of other causes. When they observe the interventions of other people, this assumption is less justified. It is even less justified when they simply observe that events covary. This commonly known fact of scientific reasoning has been formalized as part of causal Bayes-net theory (Gopnik et al., 2004; Pearl, 2000; Spirtes, Glymour, & Scheines, 2001; Woodward, 2004). Adults’ performance on causal inference tasks improves when they are allowed to intervene on causes (Lagnado & Sloman, 2004; Sobel & Kushnir, in press; Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003).

Studies have shown that preschool children can also use intervention information to make complex inferences about causal structure (Gopnik et al., 2004; Schulz, 2001). However, these studies involved deterministic relations and did not ask about causal strength, and children observed the interventions of other people rather than performing their own interventions.

The study we report here addresses the following questions: Do children equate frequency of co-occurrence with causal
strength? What is the role of children’s own interventions in their judgments of causal strength? How do frequency information and intervention information interact? Might children implicitly recognize that their own interventions help resolve problems of confounding?

EXPERIMENT 1

We presented children with a novel causal relation between objects and a “detector”—a toy that lit up and played music when objects were placed on it. Objects activated the toy one, two, or three out of three times. We also varied intervention information: Sometimes the children observed the experimenter’s action, and sometimes the children intervened themselves.

Method

Participants

Participants in the study were nineteen 4-year-olds (M = 4 years 2 months, range = 3 years 10 months to 4 years 9 months) recruited from the University of California, Berkeley, preschools.

Materials

The detector was a 5- × 7- × 3-in. box made of wood with a Lucite top. A hidden switch, controlled by the experimenter, could make the box’s top light up and play music. The experimenter activated the switch only when an object was placed on the detector, creating the illusion that the object caused the lights and music. The objects were 22 blocks, each a different color and shape.

Procedure

The experimenter introduced the detector and told the child that “sometimes things make it go and sometimes things don’t make it go” and that they were going to “figure out what makes it go.” To familiarize the child with the procedure, the experimenter first presented a deterministic warm-up trial, which was followed by 10 test trials. The sequence of events in each of the test trials is shown in Figure 1. Each trial involved two novel blocks (A and B) that were placed on either side of the detector (counterbalanced order). Each trial began with the experimenter placing Block A on the detector twice and Block B on the detector twice. The detector activated sometimes, but not always. In the intervention trials, the child was then instructed to try each object once, and the detector activated on the first or second attempt or on both attempts. The matched observation trials were identical to the intervention trials, but the experimenter, not the child, placed each object on the detector once more. Order of trials was counterbalanced, with intervention and observation trials alternating.

There were two types of both intervention and observation trials: 3/3 trials and 2/3 trials. On 3/3 trials, one object (Block A) set off the detector one out of three times. There were four 3/3 trials: two intervention trials and two matched observation trials.

On the 2/3 trials, one object (Block A) set off the detector two out of three times, and one (Block B) set off the detector one out of three times. There were four 3/3 trials: two intervention trials and two matched observation trials.

Results and Discussion

Results are given in Figure 1. There were no differences in responding among the four 3/3 trials, Cochran’s Q(3) = 4.8, n.s. Across the four 3/3 trials, children chose Block A, the high-frequency block, significantly more often than chance, as indicated by a one-sample t test with 50% (two out of four) as the comparison value (M = 68%, SE = 6.9%), t(18) = 2.69, p < .05.

There were, however, differences among the six types of 2/3 trials, Cochran’s Q(5) = 32.6, p < .001; therefore, we analyzed the data for each type of trial separately. Children chose Block A significantly more often than chance in the observation trials matched to the nonconflicting intervention trial (84%) and the ambiguous intervention trial (95%), binomial tests, p < .01. They responded above chance in the observation trial matched to the conflicting intervention trial (63%), but not significantly so. The results of the 3/3 trials and the 2/3 observation trials suggest that children can use frequency as a measure of probabilistic causal strength.

Differences emerged when children were allowed to make their own interventions, particularly when the intervention information conflicted with the frequency information. In the nonconflicting intervention trial, children chose Block A significantly more often than chance (95%; binomial test, p < .01). There were no differences between this trial and the matched observation trial (McNemar’s test, n.s.). However, in the ambiguous intervention trial, children chose Block A slightly more often than chance, but not significantly so (63%; binomial test, n.s.). This choice was significantly different from their choice in the matched observation trial (McNemar’s test, p < .05). In the conflicting intervention trial, children picked Block A significantly less often than chance (21%; binomial test, p < .05). This result was also significantly different from their response to the matched observation trial (McNemar’s test, p < .001).
Children seemed to weigh the effects of their own intervention more heavily than the effects of another person’s intervention.

EXPERIMENT 2

Experiment 1 suggests that children are able to use probabilistic data to judge causal strength, but override these judgments when they conflict with the outcome of the children’s own interventions. There are three possible explanations for this finding. Children may weigh their own interventions more heavily because they think their own interventions are less likely to be confounded. In fact, when the experimenter failed to make the detector activate, the children often spontaneously suggested explanations such as “you’re not pushing hard enough” or “[it’s] on the wrong side of the toy.” When the children were allowed to intervene, they could push as hard as they wanted or put the object wherever they wanted. Thus, they could convince themselves that the intervention was free of confounding causes.

However, there are two less interesting explanations for the results on the conflicting intervention trial. First, the results could be an artifact of our test question, which required children to perform another intervention. They could simply have responded by repeating their previous successful intervention, ignoring other evidence. Second, children’s own actions may be more salient to them than the actions of other people.

In Experiment 2, we controlled for these possibilities in two ways. To rule out the first explanation, we changed the
Participants in the study were eighteen 4-year-olds (M = 4 years 6 months, range = 3 years 11 months to 5 years 3 months) and eighteen 6-year-olds (M = 6 years 2 months, range = 5 years 7 months to 6 years 10 months). Four-year-olds were recruited from a preschool in Portland, Oregon, and 6-year-olds from a kindergarten in Lafayette, California.

Materials
The detector and blocks were the same as in Experiment 1. There was also an additional switch that could be plugged into the detector.

Procedure
The experimenter introduced the detector much as in Experiment 1, adding: “Things that make it go have special stuff inside. The special stuff makes it go.” Before bringing out the blocks, the experimenter brought out the additional switch and plugged it into the detector. She told the child, “The switch makes the toy go when you flip it” and allowed the child to intervene on the switch and watch it activate the detector. She then unplugged the switch and set it aside.

Children were first given a warm-up with one deterministic trial and one 3/3 trial. They then saw a sequence of four 2/3 trials (counterbalanced): nonconfounded intervention, matched observation, conflicting intervention, and matched observation. The procedure is summarized in Figure 2. After each trial, the child was asked which object had “more special stuff inside.” The child’s choice was coded 1 (Block A) or 0 (Block B).

After the four 2/3 trials, the experimenter brought out the switch and plugged it in. She then placed two blocks on the table and proceeded with exactly the same sequence of events as in the conflicting intervention condition. The only difference was that, during the child’s intervention, the experimenter flipped the switch at the exact time the child placed Block B on the detector (see Fig. 2). The experimenter then asked the child the same test question and recorded his or her choice.

Results and Discussion
Experiment 2 replicated the strength judgments of Experiment 1 with a different and more explicit measure of causal strength. The results are given in Figure 2. There were no significant differences between the 4- and 6-year-olds on any measures, so the analysis was conducted on the combined data set. (A separate analysis of the 4-year-olds’ data showed the same pattern of results as in the first study, though performance on both observation trials was significantly above chance.) A Cochran’s Q test revealed significant differences among the trials, Q(4) = 58.93, p < .001. Children said that Block A had “more special stuff inside” significantly more often than chance in the observation trials (97% and 81%; binomial tests, p < .001). They also said this in the nonconflicting intervention trial (100%; binomial test, p < .001).

However, in the conflicting intervention trial, children chose Block A only 33% of the time, which was marginally below chance (binomial test, p = .067). This choice was also significantly different from their choice in the matched observation trial (McNemar’s test, p < .001). This result replicated the intervention effect in Experiment 1.

Crucially, the children did not show the intervention effect in the confounded intervention trial. They chose the high-frequency object 69% of the time, which was significantly above chance (binomial test, p < .05) and significantly more often than in the conflicting intervention trial (McNemar’s test, p < .01). The results of Experiment 2 parallel those of Experiment 1; in general, children said that the object that was effective more often had more special stuff inside, but they favored the results of their own intervention. However, when children had explicit knowledge that their intervention was confounded, they did not show this preference.

GENERAL DISCUSSION
The results of this study suggest that even young children make judgments of causal strength based on covariation. They use frequency of co-occurrence to decide on the best intervention and to infer the strength of a hidden causal mechanism.

Children’s own interventions also affect their judgments. When frequency information conflicted with evidence from their own interventions, children gave more weight to the intervention information. This does not seem to be simply an effect of action, because children used evidence from their own interventions to infer hidden mechanisms, and they did not give preference to their own interventions when those interventions were explicitly confounded.

These results suggest that children favor the results of their own interventions because they implicitly believe that their own
interventions are less likely to be confounded than the interventions of other people. In Experiment 2, when children's own intervention was in fact confounded by the experimenter's parallel intervention, they no longer favored their own action. More extensive studies would be needed to confirm this hypothesis, though.

The current results do, however, clearly demonstrate that young children can use probabilistic information to infer causal strength in much the way that adults do. Moreover, children seem to differentiate their own interventions from the interventions of other people and give special weight to their own interventions. They are also able to recognize when their own interventions are confounded and do not use information from confounded interventions to infer causal strength. These causal learning abilities may be responsible, at least in part, for young children's impressive causal knowledge.

Acknowledgments—This research was supported by National Institute of Mental Health Predoctoral Fellowship F31MH66538-01A1 to T.K. and by National Science Foundation Grant DLS0132487 to A.G. We thank Kallie Tsoukas for assistance with data collection and Laura Schulz, Lori Markson, Carla Hudson, and Eleanor Rosch for comments.

REFERENCES

(RECEIVED 9/17/04; REVISION ACCEPTED 1/12/05; FINAL MATERIALS RECEIVED 1/24/05)