Title
SYSTEMATIC STUDY OF COULOMB ABSORPTION IN HEAVY ION SCATTERING

Permalink
https://escholarship.org/uc/item/83g096ts

Author
Doll, P.

Publication Date
1978-03-01
Submitted to Physics Letters B

SYSTEMATIC STUDY OF COULOMB ABSORPTION IN
HEAVY ION SCATTERING

P. Doll, M. Bini, D. L. Hendrie,
S. K. Kauffmann, J. Mahoney, A. Menchaca-Rocha,
D. K. Scott, T. J. M. Symons, K. Van Bibber,
Y. P. Viyogi, H. Wieman, and A. J. Baltz

March 1978

Prepared for the U. S. Department of Energy
under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5716
SYSTEMATIC STUDY OF COULOMB ABSORPTION IN HEAVY ION SCATTERING

P. Doll, M. Bini, D. L. Hendrie,
S. K. Kauffmann, J. Mahoney, A. Menchaca-Rocha,
D. K. Scott, T. J. M. Symons, K. Van Bibber,
Y. P. Viyogi, H. Wieman, and A. J. Baltz

March 1978

Prepared for the U. S. Department of Energy
under Contract W-7405-ENG-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SYSTEMATIC STUDY OF COULOMB ABSORPTION IN HEAVY ION SCATTERING

P. Doll†, M. Bini‡, D. L. Hendrie, S. K. Kauffmann,
J. Mahoney, A. Menchaca-Rocha, D. K. Scott, T. J. M. Symons
K. Van Bibber, Y. P. Viyogi†, H. Wieman

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

and

A. J. Baltz

Brookhaven National Laboratory
Upton, N. Y. 11973

March 1978

ABSTRACT

Sub-Coulomb heavy ion scattering of 20Ne on 148,150,152Sm at 70 MeV has revealed a strong depletion of the elastic scattering flux at backward angles, systematically increasing with the collectivity of low-lying target states. A comparison with a semiclassical Coulomb absorption model and coupled channel calculations is given.

Recent investigations of elastic scattering of heavy ions, with sufficient resolution to separate the ground state from low-lying target and projectile states, reported a strong damping of the elastic scattering cross-section below the Rutherford value even at angles smaller than the grazing angle [1,2]. The effect can be reproduced by coupled channel calculations, which include Coulomb and nuclear coupling to low-lying target and projectile states excited during the scattering process.

*This work was supported by the Nuclear Physics Division of the Department of Energy.
†Nato Fellow, on leave from MPI, Heidelberg, Germany.
‡Permanent address: University of Florence, Italy.
§Permanent address: Instituto de Fisica, UNAM, Mexico, partially supported by CONACYT (PNCB-0022).
#IAEA Fellow on deputation from Bhabha Atomic Research Centre, Calcutta, India.
However, less time consuming calculations have become possible with the development of an effective potential simulating this effect [3,4]. Baltz and co-workers [4] derived a long range, imaginary potential arising from quadrupole Coulomb excitation. Inserting this potential into a semi-classical weak absorption model, the resulting analytical closed form obtained for the elastic scattering amplitude greatly simplifies below the Coulomb barrier. We present a systematic investigation of 20Ne scattering on 148, 150, 152Sm at 70 MeV (20 MeV below the Coulomb barrier) to test this model by studying deviations from pure Rutherford scattering as a function of the deformation of the target nucleus.

The measurements were performed with a 70 MeV 20Ne$^{4+}$ beam from the 88-inch cyclotron; scattered 20Ne particles were detected in the focal plane of the QSD magnet spectrometer by Borkowski-Kopp type position detectors and an ionization chamber measuring the residual energy loss [5]. The beam position on the target was monitored by two additional proportional counters placed above and below the internal Faraday cup. Targets were 32 μg/cm2 of 148Sm, 7 μg/cm2 of 150Sm and approximately 5 μg/cm2 of 152Sm enriched to > 95%, all evaporated onto 5-10 μg/cm2 carbon backing foils. The spectrometer was operated with a solid angle of 1 msr typically. Under these conditions the energy resolution was sufficient to resolve the 551 keV, 2^+ state in 148Sm, the 334 keV, 2^+ level in 150Sm, and at a few angles the 122 keV, 2^+ level in 152Sm (see fig. 1). A peak fitting procedure was applied to all spectra and errors in the cross-sections represent uncertainties in this procedure. Systematic effects due to
energy dependent charge state distributions were measured up to 80° in the laboratory system and extrapolated[6] to be 5% for backward angles.

Position spectra from the focal-plane detector taken at 90° and 140° in the laboratory system are shown for the different target nuclei in fig. 1. A comparison with energy spectra taken at the most forward angles shows an increasing enhancement of the inelastic yields when approaching the backward angles, which become larger than the elastic yield for the 152Sm target.

In fig. 2 we compare the measured angular distributions for elastic scattering with the predictions of the analytical closed form for the cross-section ratio \(\sigma_{el}/\sigma_R = \exp (-a \cdot f(\theta)) \), based on a long range imaginary potential [4]. All reaction parameters are contained in the sum

\[
a = \frac{0.223}{\eta} \left[\frac{B_T(E2, 0^+ \rightarrow 2^+)}{Z^2_T e^2} q_T(\xi) + \frac{B_p(E2, 0^+ \rightarrow 2^+)}{Z^2_p e^2} q_p(\xi) \right]
\]

and \(f(\theta) \) is a function only of the scattering angle \(\theta \) in the center of mass system. The \(B_T(E2, 0 \rightarrow 2^+) \) and \(B_p(E2, 0^+ \rightarrow 2^+) \) values for the target and projectile respectively, were taken from the compilation of Christy and Häsuer [7]. The Sommerfeld parameter is \(\eta = 52 \) in the present experiment. The semi-classical model applies a correction factor \(g(\xi) \) to the potential in order to take some account of the energy loss during the \(2^+ \) excitation process.
The model (dashed curves in fig. 2) gives a satisfactory description of the measured angular distributions up to 100° in the c.m. system. Some discrepancies occur at more backward angles, especially for ^{148}Sm and ^{150}Sm. For comparison coupled channel calculations were performed using the code CHORK [8] with the same $B(E2, 0^+ \rightarrow 2^+)$ transition probabilities as in the semi-classical model, and with quadrupole moments derived in the rotational limit [7] from these values. Coupling to both low-lying 2^+ states in target and projectile and including reorientation effects in both channels result in distributions given by the solid curves in fig. 2.

The lower solid curve for ^{152}Sm shows the calculation, without reorientation coupling. For ^{148}Sm and ^{150}Sm, non-reorientation coupling calculations (not given in fig. 2) are only 6% and 16% lower at extreme backward angles, respectively, indicating the decreasing importance of this coupling mode for the lighter Sm nuclei. While direct coupling to additional target states at incident energies above the Coulomb barrier is known [9] to reduce further the elastic scattering flux, their influence is assumed to be small in the present experiment.

Figure 3 shows the angular distributions obtained for the 2^+ target states. They are well described by the coupled channel calculation including reorientation effects. No attempt has been made to improve the fit to the backward angle data.
We have demonstrated that the elastic scattering flux is depleted by 30 to 80% at backward angles in sub-Coulomb heavy ion scattering, systematically increasing with the collectivity of low-lying target states. From a comparison with the semi-classical Coulomb absorption model and coupled channel calculations it becomes clear that the present model does not account for (i) reorientation effects and (ii) trajectory dependent energy loss corrections, which seem to be required for 148Sm and 150Sm by the remaining difference between non-reorientation calculations and the model calculations at backward angles. Nevertheless the development of this analytical approach is useful for giving physical insight into the process, and for surveys of much heavier systems, such as 84Kr + 209Bi [3,10], for which the exact calculations are difficult to perform.

We would like to thank P. D. Bond for clarifying discussions.
REFERENCES

\[B(E2, 0^+ \rightarrow 2^+) \ [e^2 b^2] \text{ used: } 0.048, 0.73, 1.44, 3.40 \text{ for } ^{20}\text{Ne}, ^{148}\text{Sm}, ^{150}\text{Sm}, ^{152}\text{Sm}, \text{respectively and } Q_{\text{rot}}^{2^+} [eb] = -0.9059 \ yB(E2, 0^+ \rightarrow 2^+) \]

FIGURE CAPTIONS

Fig. 1. Energy spectra of $^{20}\text{Ne}^{9+}$ after scattering from $^{148, 150, 152}\text{Sm}$ at $\theta_{\text{lab}} = 90^\circ$ and $\theta_{\text{lab}} = 140^\circ$.

Fig. 2. Angular distributions from elastic scattering of ^{20}Ne on samarium nuclei. Dashed curves show calculations in a Coulomb absorption model, solid curves represent coupled channel calculations (see text).

Fig. 3. Angular distributions from inelastic scattering of ^{20}Ne on 2^+ target states. Solid curves represent coupled channel calculations.
Fig. 1
Fig. 2

$^{20}\text{Ne} + \text{Sm}$

$E_{\text{lab}} = 70 \text{ MeV}$
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.