Lawrence Berkeley National Laboratory
Recent Work

Title
MEASUREMENT OF THE n+p AND n-p POLARIZATION PARAMETERS AT 100 GeV/c

Permalink
https://escholarship.org/uc/item/83w0x506

Author
Auer, I.P.

Publication Date
1977-08-01
MEASUREMENT OF THE π^+p AND π^-p POLARIZATION PARAMETERS AT 100 GeV/c

August 1977

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
MEASUREMENT OF THE π^+p AND π^-p POLARIZATION PARAMETERS
AT 100 GeV/c

I. P. Auer, D. Hill, B. Sandler, and A. Yokosawa
Argonne National Laboratory, Argonne, Illinois 60439

and

W. Bruckner, O. Chamberlain, H. Steiner, and G. Shapiro
Lawrence Berkeley Laboratory, Berkeley, California 94720

and

A. Jonckheere and P. F. M. Koehler
Fermi National Accelerator Laboratory, Batavia, Illinois 60510

and

R. V. Kline, M. E. Law, and F. M. Pipkin
Harvard University, Cambridge, Massachusetts 02138

and

W. Johnson
Suffolk University, Boston, Massachusetts 02114

and

J. Snyder, and M. E. Zeller
Yale University, New Haven, Connecticut 06520

ABSTRACT

We report measurements of the polarization parameters in π^+p and π^-p elastic scattering at an incident momentum of 100 GeV/c. The results cover the range $0.18 \leq -t \leq 1.4$ GeV2 and are in agreement with current Regge model predictions.
In the first experiment of its kind at Fermilab we have measured the polarization parameter \(P(t) \) in the elastic scattering of mesons and protons from polarized protons. We present here the results for \(\pi^+ p \) and \(\pi^- p \) scattering which were obtained at a beam momentum of 100 GeV/c over the range of four-momentum transfer squared \(0.18 \leq -t \leq 1.4 \text{ GeV}^2 \).

While recent measurements of elastic differential cross-sections in this kinematic region\(^1\,^2\) have confirmed phenomenological predictions of the \(s \) and \(t \) dependence of the dominant Pomeron amplitude\(^3\,^4\), polarization measurements provide more stringent tests of present models because they are sensitive to interference between amplitudes. For example, a model in which Pomeron and \(\rho \) exchange contributions dominate predicts that \(P(t) \) in \(\pi p \) scattering should be proportional to
\[
\sqrt{s} \left[\alpha_p(t) - \alpha_{\rho}(t) \right],
\]
where \(s \) is the square of the total energy of the system, and \(\alpha_p(t) \) and \(\alpha_{\rho}(t) \) are the effective trajectories for the \(\rho \) and Pomeron exchange contributions, respectively. This \(s \)-dependence is approximately \(s^{-1/2} \) at small \(|t| \). This model also predicts that the mirror symmetry \(P_{\pi^+ p} = -P_{\pi^- p} \) persists at high energies.\(^3\) In the region \(0.6 \leq -t \leq 1.5 \text{ GeV}^2 \) the dominant amplitudes are strongly affected by shrinkage and absorption, resulting in small polarization values at high energies.\(^5\)

The experiment was performed in the 3.5-mrad beam (Ml) in the Meson Laboratory which had a size of 2 x 2 cm\(^2\) and a divergence of \(\pm 0.2 \text{ mrad} \) at the target while transporting a momentum bite of \(\pm t \). The small divergence was necessary for kinematic separation of elastic from quasi-elastic events. In order to
determine polarizations of < 0.05 with high precision, we placed no components in the beam, enabling the apparatus to handle incident fluxes as large as 10^8/sec.

The layout of the apparatus is shown schematically in Fig. 1. It consisted of a double-arm spectrometer capable of detecting both final state particles with uniform acceptance over the range $0.25 \leq -t \leq 1.5 \text{ GeV}^2$. The final-state trajectories were measured with 8 planes of multiwire proportional chambers (PWC's) in each arm. In the recoil arm two pairs of x-y planes (WR-1, WR-2) were placed in front of a wide-gap analysis magnet (MR), and two pairs of x-v planes (WR-3, WR-4) behind it. The resulting measurement of the recoil momentum was accurate to $\pm 1.7\%$ at 500 MeV/c ($t = -0.2 \text{ GeV}^2$). In the forward arm two pairs of x-y planes (WS-1, WS-2) were located in front of an analysis magnet (MS), and a pair of x-u and x-v planes (WS-3, WS-4) behind it. The momentum of the forward particle was determined to an accuracy of $\pm 1\%$. Two Cerenkov counters (CS1, CS2), with thresholds just below kaon and proton response, respectively, were used to identify the scattered particle. The purity of the pion sample thus identified was better than 99%.

The polarized proton target (PPT) consisted of ethylene glycol maintained in a uniform magnetic field of 2.5 T at a temperature of 0.42°K. The target was $2.0 \times 1.9 \text{ cm}^2$ in cross section and 8.2 cm long. The free proton density was 0.072 gm/cm3, comparable to liquid hydrogen. The target polarization was measured by standard NMR techniques every 10th spill and recorded on the data tapes. The average polarization of the free protons was 75%.
The number of incident particles was monitored indirectly by a three-counter telescope (MT) which looked back at the target from an angle of 100 mrad below the beam line, in the plane formed by the beam momentum and the target polarization. It was thus insensitive to the spin orientation of the target protons. The absolute normalization of MT was obtained at reduced beam intensities where the number of beam particles could be measured directly with a pair of additional counters just upstream of the target. The size and position of the final beam spot were monitored in several ways: By scaling the signals from the pole-tip veto counters (PT) above and below the target; by a profile monitor and a hole veto counter (H) in the beam just upstream of the target; and by a pair of counters at WS-2 which were spaced to monitor the tails on both sides of the unscattered beam.

The event trigger required at least one particle in each arm and no signal in any of the veto counters H or PT. In addition, kinematic constraints could be imposed on the final state particles by combining the information from the PWC's with the help of matrix coincidences. The data presented here were taken with a fairly loose trigger which only required signals in WS-1x and the x-planes of the four recoil arm PWC's.

The data were analyzed by reconstructing the polar and azimuthal scattering angles for each arm (θ_s, ϕ_s, θ_r, ϕ_r), and the magnitude of the recoil particle momentum (p_r). Independent values of t were calculated from each of the measured quantities θ_s, θ_r, and p_r, and compared by forming a weighted average \bar{t} and the corresponding χ^2. Using ϕ_s, ϕ_r, and their combined
measurement uncertainty \(\delta \phi \) the quantity \(\Delta \phi / \delta \phi = (\phi_s - \phi_r) / \delta \phi \) was calculated to judge the extent to which the two final state particles and the incident particle were coplanar. By plotting events according to \(\chi^2 \) and \(\Delta \phi / \delta \phi \) "signal", "intermediate", and "background" regions were selected. The subtraction of the quasi-elastic background under the elastic peak was performed by normalizing the coplanarity distribution for events with large \(\chi^2 \) so that the tails matched those of the coplanarity distribution for events with small \(\chi^2 \). The signal-to-background ratio varied from 15:1 at small \(|t| \) to 7:1 at \(t = -1.0 \) GeV\(^2\), consistent with the results of a Monte Carlo simulation of elastic events from the free protons and quasi-elastic events from the bound protons in the target material.

The lack of \(t \)-dependent bias was checked by fitting the \(t \)-distribution of the resulting elastic events, summed over PPT enhancement, to the form \(\exp(bt) \); the values obtained for \(b \) are consistent with published results.\(^2\) The \(t \)-distributions for the \(\pi^+p \) and \(\pi^-p \) events in the range \(0.25 < -t < 0.70 \) GeV\(^2\) differ from published differential cross sections only by a common normalization factor.

A detailed examination of the performance of the various monitors throughout the run showed that \(MT \cdot H \) and PT were equivalent monitors of the number of beam particles incident on the PPT. Normalization with either of them resulted in asymmetries of events in the background region which were zero within statistical errors. As an additional check, runs of the same target enhancement were used to calculate asymmetries by pretending
that half of them had been taken with the opposite target enhancement; the results were again consistent with zero. The results presented here were normalized by a weighted average of $MT\cdot H$ and PT which reduced small systematic errors associated with either monitor.

Our results for the polarization parameters in π^+p and π^-p scattering are listed in Table I and shown in Fig. 2. A t-independent systematic error of 0.005 should be added to the statistical uncertainties shown to account for monitor fluctuations.

At small $|t|$ the measured polarizations are small but non-zero, consistent with an $s^{-1/2}$ dependence. This is illustrated by the dashed curves in Fig. 2 which represent the π^+p and π^-p results of Borghini et al.6 scaled from 10 to 100 GeV/c by $s[\alpha_p(t)-\alpha_p(t)]$. Our results indicate that P_{π^+p} and P_{π^-p} are more closely mirror symmetric at 100 GeV/c than they were at 45 GeV/c.7 A zero occurs near $t = -0.6$ GeV2, as expected. At larger $|t|$ both the π^+p and the π^-p polarizations remain small, in agreement with Regge-exchange absorption models.5,8

We wish to thank R. Fuzesy for his invaluable contributions to the experiment. We also thank C. Brown, T. Droege, C. Kerns, and the staff of Fermilab for their continuing cooperation and help, S. Dhawan, S. Olsen, and M. Urban for substantial contributions to the PWC electronics, E. Sadowski for design and construction of the Cerenkov counters, and O. Fletcher for his help in maintaining the polarized target.
REFERENCES

*Work supported by the U.S. Energy Research and Development Administration.

+Present Address: University of Michigan, Ann Arbor, Michigan 48104

5G. L. Kane and A. Seidl, Rev. Mod. Phys. 48, 309 (1976).

TABLE I

Results for the polarization parameter $P(t)$ for $\pi^+ p$ and $\pi^- p$ elastic scattering at 100 GeV/c. The last column shows the sum of the polarization parameters for the two reactions as a test of mirror symmetry. Only statistical errors are shown.

<table>
<thead>
<tr>
<th>$-t^2$ (GeV2)</th>
<th>$P_{\pi^+ p}$</th>
<th>$P_{\pi^- p}$</th>
<th>$P_{\pi^+ p} + P_{\pi^- p}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.19±0.01</td>
<td>0.037±0.007</td>
<td>-0.023±0.008</td>
<td>0.014±0.012</td>
</tr>
<tr>
<td>0.25±0.05</td>
<td>0.025±0.004</td>
<td>-0.028±0.004</td>
<td>-0.003±0.008</td>
</tr>
<tr>
<td>0.35±0.05</td>
<td>0.009±0.005</td>
<td>-0.024±0.006</td>
<td>-0.015±0.010</td>
</tr>
<tr>
<td>0.45±0.05</td>
<td>0.003±0.007</td>
<td>-0.001±0.008</td>
<td>0.002±0.012</td>
</tr>
<tr>
<td>0.55±0.05</td>
<td>-0.009±0.010</td>
<td>-0.014±0.011</td>
<td>-0.023±0.016</td>
</tr>
<tr>
<td>0.65±0.05</td>
<td>0.005±0.014</td>
<td>-0.029±0.016</td>
<td>-0.024±0.022</td>
</tr>
<tr>
<td>0.75±0.05</td>
<td>-0.001±0.020</td>
<td>-0.018±0.023</td>
<td>-0.019±0.031</td>
</tr>
<tr>
<td>0.85±0.05</td>
<td>-0.004±0.027</td>
<td>0.001±0.032</td>
<td>-0.003±0.042</td>
</tr>
<tr>
<td>0.95±0.05</td>
<td>-0.016±0.036</td>
<td>-0.008±0.043</td>
<td>-0.024±0.056</td>
</tr>
<tr>
<td>1.05±0.05</td>
<td>-0.035±0.050</td>
<td>-0.025±0.061</td>
<td>-0.060±0.079</td>
</tr>
<tr>
<td>1.15±0.05</td>
<td>-0.077±0.070</td>
<td>0.018±0.084</td>
<td>-0.059±0.110</td>
</tr>
<tr>
<td>1.25±0.05</td>
<td>-0.097±0.085</td>
<td>-0.082±0.111</td>
<td>-0.179±0.140</td>
</tr>
<tr>
<td>1.35±0.05</td>
<td>0.012±0.112</td>
<td>-0.007±0.129</td>
<td>0.005±0.170</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Fig. 1: Plan view of the apparatus. The magnet PTSM compensated for the beam deflection introduced by the PPT magnet. The magnetic field line integrals of the analysis magnets MS and MR were 3.29 and 0.35 T·m, respectively.

Fig. 2: Polarization parameter P(t) for (a) π⁺p and (b) π⁻p elastic scattering. Only statistical errors are shown. The dashed curves represent the results of Ref. 6 scaled from 10 to 100 GeV/c as described in the text.
This report was done with support from the United States Energy Research and Development Administration. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the United States Energy Research and Development Administration.