Title
ORIGIN and CONTROL OF THE DOMINANT IMPURITIES IN HIGH-PURITY GERMANIUM

Permalink
https://escholarship.org/uc/item/84b1t51v

Author
Haller, E.E.

Publication Date
1975-11-01
ORIGIN AND CONTROL OF THE DOMINANT IMPURITIES IN HIGH-PURITY GERMANIUM

E. E. Haller, W. L. Hansen, G. S. Hubbard, and F. S. Goulding

November 1975

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference

Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ORIGIN AND CONTROL OF THE DOMINANT IMPURITIES IN HIGH-PURITY GERMANIUM*

E. E. Haller, W. L. Hansen, G. S. Hubbard and F. S. Goulding
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

INTRODUCTION

High-purity germanium single crystals suitable for large-volume thick radiation detectors have been grown in two laboratories over the last few years. Experience in our laboratory is that purification and to some degree crystal growth, have not hitherto been well controlled processes. Spontaneous appearance of contaminant, lack of purity of the starting material and deviation from 'normal' segregation of some impurities are serious problems. While we have reduced spontaneous contamination by maintaining a clean small working area and by working quickly with standardized procedures, the removal of impurities contained in the starting material has presented difficulties. Unfortunately, the quality of raw germanium as purchased from supplies is not under our control, and maximum impurity levels are not specified even in high-grade material. It has therefore been necessary for us to adopt extra purification steps to reduce all impurities to the necessary low levels.

The well-established multi-pass zone purification method is therefore used on germanium prior to our growing single crystals by the Czochralski technique. However, we have found that zone-purification using standard techniques rarely achieves the desired purity levels in the refined material that is to be used for crystal pulling. This failure of zone refining has led to our detailed studies of the segregation behavior of impurities in Czochralski single crystal growth in a very clean crystal pulling. These studies have elucidated the mechanisms responsible for the poor results in zone-refining and have suggested better techniques which we are able to apply successfully.

SUMMARY

Techniques have been developed to consistently purify germanium to the 10^{12} atoms/cm3 range.

The major impurities are the acceptors boron and aluminum and the donor phosphorous. Formation of non-segregating compounds of boron and aluminum make these elements difficult to remove by conventional zone refining whereas phosphorous and all other electri­cally-active impurities segregate normally and are therefore removed in the zone refining process. The only significant impurity introduced in our Czochralski crystal puller is phosphorous whose source has been traced to the quartz crucible.

To reliably reduce impurity concentrations to acceptable levels it has been necessary to develop techniques for determining the types and concentrations of impurities in both the final single crystals and in the polycrystalline zone-refined ingots and to relate these results to the use of various boat and crucible materials. Photothermal Ionization Spectroscopy and electrical measurements have been used to identify and measure the impurities.

* This work was performed under the auspices of the United States Energy Research and Development Administration.
One of the mechanisms suggested by Hal1 6 is based on the assumption that most of the Al in the Ge-melt is absorbed in a thin surface layer of the crucible which then acts as a constant source of Al. If this hypothesis were correct, regrowing a crystal in the same crucible, but with its surface etched off after the first growth, should reduce the Al concentration considerably. Figure 2 shows that this is not the case. Crystal #599 was grown using crystal #398 as starting material. The net-concentration in both crystals is almost the same and the small difference can easily be explained by a slightly higher phosphorous concentration in crystal #599. The possibility that the crucible or the crystal puller is the source of the Al is excluded by the fact that much purer crystals were grown under the same conditions. We conclude that the Al was introduced in the original starting material and was carried from one crystal to the next in an inactive form.

Edwards7 showed in 1963 that, under suitable conditions, Al can form an electrically inactive complex with oxygen. In his work, carbon crucibles were employed and the oxygen was introduced in the ambient gas. In our case, we believe that the quartz crucible releases oxygen at the melt-crucible interface. An oxygen concentration of \(5 \times 10^{10} \text{ cm}^{-3}\) as determined by Li-precipitation experiments8 is typical in crystals grown from quartz crucibles. We will call such Ge 'oxygen-rich'. The mechanism proposed by us to explain our results involves the formation of the Al-O complex in the melt in the 'oxygen-rich' situation. We postulate that this Al-O complex does not segregate between the liquid and solid Ge, so its concentration is the same in the solid and liquid. In the final crystal a small fraction of the Al-O complex is assumed to dissociate to provide the elemental Al observed by electrical or PTIS measurements.

Since no obvious method gives a direct measurement of the Al-O complex we have devised and carried out experiments in which the oxygen level is substantially reduced or in which an oxygen scavenger is added to the Ge-melt. Since the main oxygen source in our system is the quartz crucible, avoiding the use of quartz crucibles is an obvious step. Unfortunately, growing crystals directly from high-purity graphite susceptors leads to high boron and phosphorous concentrations. However, coating the quartz crucible with a pyrolytic-carbon layer (Appendix I) has proved to be a possible way to avoid contact between the Ge-melt and the quartz crucible, thereby excluding most of the oxygen from the Ge-melt. Figure 3 shows profiles of crystals grown from such a crucible. A segregation coefficient of 0.20 to 0.25 fits the profiles very well. This is consistent with the expected values of K for Al under our crystal growth conditions (pulling speed = 2 mm/min, rotation = 15 rpm). Li-precipitation measurements show that the oxygen content of these crystals is much lower than that of crystals grown in quartz crucibles.

If normal segregation can be achieved in this manner, it should be possible to purify Ge by growing successive generations where each crystal is grown from the purer fraction of earlier crystals. Such a result is also shown in Fig. 3. Crystal #438 was grown from the upper halves of crystals #434 and #435. Since we know from PTIS measurements that the donor concentration is much smaller than the acceptor concentration we can conclude that improvement in purity is only due to segregation. The reduction factor of about 4.0 agrees with the segregation coefficient. In addition this experiment shows that the pyrolytic-carbon layer does not introduce significant amounts of impurities.

Quite a different way to suppress the influence of the oxygen is to add a strong scavenger of oxygen to the Ge-melt. Doping the 810 g Ge-melt in a quartz crucible with 25 mg of pure Si (20 KΩ cm) led to crystal #436 with a profile shown in Fig. 4. PTIS indicates the presence of some boron near the head end while aluminum is the main impurity over the whole length of the crystal. The Al-segregation coefficient is again in the range that indicates 'normal' segregation. Li-precipitation tests on a sample from this crystal indicate no low oxygen situation. That the silicon is actually incorporated in the Ge has been shown by Spark Source Mass Spectrography measurements executed by Tavendale, et al.9 Their result shows a Si-concentration of \(3.7 \times 10^{17} \text{ cm}^{-3}\) at 18% solidified fraction of the melt and \(1.4 \times 10^{17} \text{ cm}^{-3}\) at 90% which indicates the correct segregation direction for silicon (K = 1.5).

To obtain a more quantitative picture of the Al-O interaction, a series of crystals were grown from well characterized polycrystalline germanium. The starting material was evaluated by selecting small single crystals with the method recently developed by Hubbard, et al.10 and by using PTIS and Hall-effect measurements to determine the species and concentration of the dominant impurities. Small crystals were taken from a number of points along the length of the polycrystalline bar and were evaluated. Usually sets of two or three crystals were grown from each zone-refined Ge bar. Each set contains at least one crystal grown in a quartz crucible (oxygen rich) and one grown in a pyrolytic carbon-coated quartz crucible (oxygen poor). Figure 5 shows two crystals grown from portions of the same bar of oxygen rich starting material (in this case a quartz boat was used in the refiner). The measured net-acceptor concentration in Ge starting material used for both charges was \(~5 \times 10^{16} \text{ cm}^{-3}\).

Crystal #488 was grown under oxygen poor conditions. The observed Al-concentration of \(~10^{12} \text{ cm}^{-3}\) at the seed end, assuming a segregation coefficient of 0.25, indicates that the concentration of free Al in the melt was \(~4 \times 10^{11} \text{ cm}^{-3}\). Since the measured free Al concentration in the starting material was \(~5 \times 10^{10} \text{ cm}^{-3}\) the ratio R of the Al-O complex concentration to that of free Al in the starting material must have been about 8 ± 2 (assuming that all the Al-O complexes dissociate in the melt in the absence of oxygen). Growing under oxygen rich conditions (as in #488), we obtain a crystal with a junction. The compensating, segregating donor phosphorous is believed to be introduced by the Suprasil-quartz crucible since no donors could be detected in the starting material. Extrapolating from the tail end of the crystal, the donor concentration near the seed end of the crystal is \(~2 \times 10^{10} \text{ cm}^{-3}\). Taking this into account we find for the Al concentration \(~5-6 \times 10^{10} \text{ cm}^{-3}\) near the seed end.—nearly the same number as was measured in the starting material! This means that R must be very similar in the starting material and in this single crystal. This result is standard for all the crystals grown or bars refined under oxygen rich conditions.

As suggested by the effect of silicon as an oxygen scavenger in crystal growing, a further possibility for accomplishing Al segregation is to add silicon to the starting material during zone-purification. Figure 6 shows profiles of crystals grown from Ge bars that contained \(10^{17} \text{ to } 10^{18} \text{ Si/cm}^3\). Whereas crystal #440 was grown in a pyrolytic carbon-coated quartz crucible (i.e. oxygen poor conditions), crystal #435 was grown in a bar of quartz crucible (i.e. oxygen rich conditions). The concentration profiles of the two crystals are practically equal. This nicely confirms our earlier result which showed that silicon
Segregation and Complex Formation of Boron in Germanium

The behavior of boron in Ge also depends very much on the presence of oxygen as was shown by the investigations of Edwards. We have not studied boron to the same extent as aluminium since it is not usually present at high concentrations in our starting material. In contrast to Al, we find a reduction of the boron concentration during multi-generation crystal growth in bare quartz crucibles that are etched in between successive use. Regrowing an oxygen rich boron-contaminated crystal under oxygen poor conditions does not significantly increase the boron concentration. This observation is in contrast to the results obtained by Edwards, who, after leaching oxygen from his system, found that the boron dopant again became an electrically active acceptor. The conflict can be resolved by assuming that the quartz crucibles in our experiments form stable boron-silicate glass layers at the melt-crucible interface. The etching of the crucible between successive crystal growing operations then removes the boron-contaminated layer and leads to a reduction in concentration. Edwards' experiments were carried out in graphite susceptors where no glass formation takes place.

Figure 7 shows the concentration profile of crystal #466 grown in a quartz crucible from a zone-refined polycrystalline Ge bar with an average boron concentration of \(2.3 \times 10^{12} \text{ cm}^{-3}\). Using an effective segregation coefficient of \(c = 6\) one would expect a boron concentration near the seed end of the crystal of approximately \(10^{12} \text{ cm}^{-3}\). PTIS measurements give a boron to aluminium ratio of 1:3 at 5% of solidified melt, so the boron concentration is \(\approx 10^{14} \text{ cm}^{-3}\) which is 100 times smaller than would be expected but for the capturing of boron by the quartz.

Impurity Segregation During Zone Purification of Germanium

The experiments discussed in the previous section show that formation of an Al-O complex and the associated non-segregating behavior of Al can be circumvented by using oxygen poor conditions or by the addition of an appropriate oxygen getter (e.g. silicon). The next logical step in the development of a purification process is the application of these results to zone purification. The selection of a clean container for the germanium bar is more difficult than for the crystal puller since a material must be found to which Ge does not adhere. Tests with bare carbon boats and carbon boats coated with pyrolytic carbon showed that boron and phosphorus, in substantial quantities, were present in the refined bars. These impurities appear to be contributed by the carbon boats. Leaching impurities from the carbon by refining many bars in the same boat is not a feasible approach for small-scale operations. Therefore, a better choice for a boat material seems to be quartz with a carbon smoke layer providing a suitable sliding surface. Tests show that such boats are satisfactory only if the Al concentration in the initial material is very low. For typical initial material, which contains high levels of Al, an almost constant Al concentration is observed along the length of the refined polycrystalline bar. This is similar to the situation in single crystals grown from quartz crucibles. Li-precipitation measurements on material refined in such boats indicate oxygen concentrations of around \(10^{14} \text{ cm}^{-3}\), a level which is consistent with formation of the Al-O complex.

In an attempt to improve the barrier between the quartz boat and the molten zone, and thereby to reduce the oxygen concentration, we have coated quartz boats with a pyrolytic-carbon film on top of the smoke layer (see Appendix II). Bars refined in such boats exhibit some Al segregation but the effective segregation coefficient is still rather close to 1. We postulate that residual oxygen in the zone refiner atmosphere (forming gas) might be responsible for the poor segregation. Despite this poor segregation, refining in boats coated with pyrolytic carbon is effective in removing Al (see +'s in Fig. 8) but we observe that the pyrolytic carbon layer itself becomes Al rich. Very little boron is captured in the quartz boat and the molten zone, with the results shown in Fig. 8. The boron source is not depleted by the capturing of boron by the quartz.

The failure of pyrolytic-carbon coatings to provide the ideal oxygen poor conditions required in the zone refiner and their effect in introducing boron led to a search for alternatives. The best solution has proved to be a quartz smoke layer on the quartz boat produced by burning silane (SiH₄). The results obtained with this type of coating are striking, the impurity concentration being in the low \(10^{12} \text{ cm}^{-3}\) range over 90% of the polycrystalline bar. The dominant impurity is Al. Very little boron can be detected even when initial material containing boron is used. Phosphorus appears only in the very tail of the bar. The flat concentration profile suggests oxygen rich conditions and complex formation. This is confirmed by growing crystals from this starting material under oxygen rich and oxygen poor conditions.

When the Al concentration exceeds \(10^{13} \text{ cm}^{-3}\), the results obtained before the zone purification, we observe a slight Al concentration increase towards the 'dirty end' of the bar. The results obtained from refining in boats coated with quartz smoke can be explained in two ways:

1. Because the probability that the Si is not totally oxidized in the silane-burning process is high, it is possible that the molten Ge zone picks up elemental silicon or silicon monoxide. These then scavenge oxygen and suppress impurity complex formation so that normal segregation initially takes place.

2. A triaxial burner is used for the application of the quartz smoke coating. 5% SiH₄ in hydrogen is fed through the outermost pipe. Argon fed down the intermediate pipe protects the burner tip from the flame which occurs in oxygen fed through the outermost pipe.
After many zone passes the scavenging materials will be used up by combining with oxygen from the forming gas or the quartz boat. Complex formation then takes place leading to the final flat profile.

2. The large surface area of incompletely oxidized quartz smoke getters all complex-forming impurities by forming boro- and alumina-silicates.

Silicon concentrations between \(10^{16}\) and \(10^{17}\) cm\(^{-3}\) and low oxygen concentration values near the ‘clean end’ of the bar obtained from Li-precipitation support the first suggestion. On the other hand, the very low concentration of free boron in Ge bars refined in these boats tend to support the formation of borosilicate glass. We therefore assume that both mechanisms work simultaneously. A plot of the concentration versus bar length for a typical bar refined in this manner is shown in Fig. 9.

Single crystals grown from such polycrystalline germanium usually have net-impurity concentrations below \(2.5 \times 10^{14}\) cm\(^{-3}\) in more than 80% of their volume (see Fig. 10). An obvious concern is that the presence of silicon or Si\(_2\)O\(_y\) in the germanium might cause trapping in detectors. However, 1 cm thick detectors fabricated from these single crystals exhibit no visible trapping in \(^{60}\)Co spectra indicating that the effect of the silicon is negligible.

CONCLUSIONS

These experiments with single crystal growth and zone purification show that it is possible to create conditions which substantially reduce the levels of electrically-active impurities in germanium. An oxygen poor environment or the addition of silicon as an oxygen getter prevents complex formation with the associated non-segregating behavior (particularly of Al).

We have shown that zone-refining carried out in quartz boats coated with quartz smoke produced adequate low impurity levels. If the raw germanium is very impure a two step process, first zone-refining in a quartz boat coated with pyrillitic carbon or in a raphite boat, and then refining in a quartz boat coated with quartz smoke, will reduce all impurity concentrations to low levels. Using this method it is possible to use any commercially available intrinsic (40 Ω cm) germanium for starting material which means a substantial reduction in initial material cost.

The lower limit of the impurity concentration in our high-purity single crystals is set by the phosphorous released from quartz crucibles. Suprasil crucibles contribute the lowest phosphorous contamination* (about \(2 \times 10^{14}\) cm\(^{-3}\) near the seed end of the crystal). Detector-grade single crystals can be grown in one pull from suitably zone-refined material and no compensating impurities need be added to the melt.

ACKNOWLEDGEMENTS

We would like to thank Professor P. L. Richards and his colleagues at U. C. Berkeley for the use of the Fourier Transform Spectrometer in our PTIS studies. R. C. Cordi and R. H. Pehl are responsible for data on detector performance. Special thanks also go to A. J. Tavendale of the Australian Atomic Energy Commission and his colleagues for the Spark Source Mass Spectroscopy results on a number of Ge samples.

REFERENCES

APPENDIX I

PREPARATION OF A PYRILLITIC CARBON COATING ON QUARTZ CRUCIBLES

The following preparation steps lead to a tenacious, impermeable pyrillitic carbon layer on quartz crucibles:

1. Etch the crucible in HF (48%) for 2-5 min, rinse with distilled and deionized water, blow dry with \(N_2\).

Figure 11 illustrates the following steps:

2. Preheat the crucible under flowing argon (600 cm\(^3\)/min).
3. Formation of the pyrillitic carbon layer by decomposition of 6% \(CH_4\) in argon (400 cm\(^3\)/min) for 30 minutes at 950°C.

* As compared to General Electric #204 or Spectrosil quartz.
4. Cool down to room temperature under pure argon (600 cm³/min).

With the gas flow geometry shown in Fig. 11 one obtains a shiny coating which covers the inside and some of the outside of the quartz crucible.

APPENDIX II

PREPARATION OF A PYROLITIC CARBON COATING ON QUARTZ BOATS USED FOR ZONE PURIFICATION OF Ge

The following steps are involved in the preparation of a tenacious, impermeable pyrolitic carbon layer on quartz boats:

1. Etch boat with HF (48%) for 1-2 minutes, washing with distilled and deionized water; blowing dry with a N₂ jet.
2. Deposition of a carbon smoke layer on the inside of the boat by burning C₃H₈.
3. Preheat in a 3 foot tube furnace inside a quartz tube under argon to 950°C.
4. Evacuate and fill with 1/2 atm of CH₃.
5. Decomposition of CH₃ (pressure rise!) for 30 minutes.
6. Repeat Steps 4. and 5. two times.
7. Cool down to room temperature.

The type of coating obtained with Steps 1. through 7. allows the Ge-bar to slide, a necessary requirement in zone-purification.
Fig. 1. A typical profile of the net-impurity concentration versus the solidified fraction of the melt showing the non-segregating acceptor aluminum. The segregating donor is phosphorous.

Fig. 2. Net-impurity profiles of a first ($\varnothing = #398$) and a second generation crystal ($\square = #399$). The small difference in net-acceptor concentration is most probably due to a slightly higher phosphorous concentration in crystal #399. The quartz crucible (Suprasil) clearly did not remove aluminum from the melt.

Fig. 3. Net-impurity profiles of three crystals grown in pyrolytic carbon coated quartz crucibles. The 'clean' 50% of crystals #434 and #435 were used to grow crystal #438. The improvement in purity in #438 indicates normal Al segregation and negligible impurity contribution from the crucible. No donors could be detected using PTIS and intraband light.

Fig. 4. Crystal #436 was grown in a Suprasil quartz crucible and doped with $\sim 10^{17}$ Si cm$^{-3}$. The segregating acceptor is aluminum. Some boron can be detected near the seed end of the crystal.

Fig. 5. Crystals #487 and #488 were grown from 'oxygen-rich' polycrystalline germanium exhibiting a net-acceptor concentration of $\sim 5 \times 10^{18}$ cm$^{-3}$. In crystal #487, grown in a quartz crucible, the aluminum stays mostly oxidized and phosphorous from the quartz makes the material turn n-type at about 50% of the melt. Crystal #488 was grown in a quartz crucible coated with pyrolytic carbon. It exhibits normal Al segregation.

Fig. 6. The starting material used to grow crystals #440 and #441 was highly doped with Si. Under these conditions the same results occur whether the quartz crucible is bare (#441) or coated with pyrolytic carbon (#440) because the silicon in the melt scavenges oxygen. As expected crystal #441 exhibits a slightly higher donor concentration due to phosphorous dissolved from the quartz crucible.

Fig. 7. Crystal #466 was grown in a quartz crucible from highly boron-contaminated starting material ($\sim 10^{12}$ cm$^{-3}$). The boron concentration near the seed end of the crystal is surprisingly low ($\sim 10^{10}$ cm$^{-3}$), probably due to formation of a boro-silicate glass at the melt-crucible interface.

Fig. 8. Net-impurity concentration profile of polycrystalline germanium bar #121. The quartz boat was coated with pyrolytic carbon. The melted zone length was $~4\%$ of the bar length and it traversed the bar 37 times. The net profile is indicated by X, aluminum by \triangledown, boron by \dagger and gallium by \times. All impurities are segregating but the Al segregates only slowly. No donors could be detected with PTIS over 95% of the bar length.

Fig. 9. Net-impurity profile of polycrystalline Ge bar #127 refined in a quartz boat coated with quartz smoke. The molten zone (4% of the bar length) traversed the bar 28 times. The net impurity concentration is indicated by X, aluminum by \triangledown, boron by \dagger and gallium by \times. The Al exhibits a low level and a flat profile.

Fig. 10. A typical net-concentration profile of a crystal (#483) grown in a quartz crucible using quartz-smoke refined starting material. Over 80% of the volume is below 2.5×10^{10} cm$^{-3}$. Detectors prepared from this crystal have exhibited excellent performance.

Fig. 11. Furnace used for pyrolytic carbon coating of quartz crucibles. A = quartz crucible, B = ground quartz base plate, C = modified large quartz crucible with ground base, D = circle where modified quartz crucible and base plate form a seal, E = ground quartz joint, F = furnace kept at 950°C, G = weight which keeps ground joints tight.
Fig. 1

CRYSTAL # 384

NET IMPURITY CONC. (X/CC)

SOLIDIFIED FRACTION OF MELT
Fig. 2

NET IMPURITY CONC. (ppm)

SOLIDIFIED FRACTION OF MELT

CRYSTAL # 398 & 399

XBL 7511-9012
Fig. 5

NET IMPURITY CONC. (ppm)

SOLIDIFIED FRACTION OF MELT

CRYSTAL # 488

CRYSTAL # 487

P

N
Fig. 7
Fig. 9

Polycrystalline Zone-Refined Bar#127

Net Impurity Conc. (x/000) vs Fraction of Total Length

10^12
10^11
10^10
10^9

0.0
0.5
1.0

Fraction of Total Length
IN (Ar + 6% CH₄)

T = 950°C

Fig. 11
LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.