Lawrence Berkeley National Laboratory
Recent Work

Title
Planar domain wall in antiferromagnetic/ferromagnetic systems: the Co/NiO case

Permalink
https://escholarship.org/uc/item/84x4t519

Authors
Liberati, Marco
Scholl, Andreas
Arenholz, Elke
[et al.]

Publication Date
2004-12-23
Planar domain wall in antiferromagnetic/ferromagnetic systems: the Co/NiO case

Marco Liberati1,2, Andreas Scholl2, Elke Arenholz2, Hendrik Ohldag3, Luc Thomas4, YunJun Tang5, Ami Berkowitz5, Joachim Stohr3

1Department of Physics, Montana State University, Bozeman, MT 59717, USA
2Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
3Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309, USA
4IBM Research Division, Almaden Research Center, San Jose, CA 95120, USA
5Center for Magnetic Recording Research, University of California, San Diego, CA 92093, USA

The exchange bias effect established at the interface between antiferromagnetic and ferromagnetic materials holds a key role in today's magneto electronic devices. Models describing this phenomenon rely on the creation of a planar domain wall at the FM/AF interface when the ferromagnet magnetization is rotated. However, measurements of interface and antiferromagnetic properties have been a big challenge up to now. In this contest we have been able to confirm for the first time experimentally the presence of a such domain wall at the interface of Co/NiO systems by means of X-ray magnetic linear dichroism. Different Co/NiO samples have been studied as a function of the NiO structure (single crystal, thick film and polycrystalline), temperature and magnetic treatments. The existence or not of a planar domain wall is discussed.

This work was supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 at Lawrence Berkeley National Laboratory.