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deductive studies of the same ecosystem. Here we exam-
ined the seasonal climate determinants of NEP and ET by 
analyzing a 15-year EC time-series from a subalpine forest 
using an ensemble of Artificial Neural Networks (ANNs) 
at the half-day (daytime/nighttime) time-step. We extracted 
relative rankings of climate drivers and driver–response 
relationships directly from the dataset with minimal a pri-
ori assumptions. The ANN analysis revealed temperature 
variables as primary climate drivers of NEP and daytime 
ET, when all seasons are considered, consistent with the 
assembly of past studies. New relations uncovered by the 
ANN approach include the role of soil moisture in driv-
ing daytime NEP during the snowmelt period, the nonlin-
ear response of NEP to temperature across seasons, and 
the low relevance of summer rainfall for NEP or ET at the 
same daytime/nighttime time step. These new results offer 
a more complete perspective of climate–ecosystem interac-
tions at this site than traditional deductive analyses alone.

Keywords Coniferous · Model-data assimilation · 
Photosynthesis · Fluxnet · Eddy covariance

Introduction

Over the past two decades, studies on ecosystem-to-global 
scale dynamics in the terrestrial carbon cycle have benefited 
from combined tower-based observations of CO2, H2O and 
energy fluxes, along with weather/climate variables (Wofsy 
et al. 1993; Flanagan et al. 2002; Monson et al. 2002; Bal-
docchi 2003). Early studies focused on the dynamics of spe-
cific sites, but as the number of sites grew, broader spati-
otemporal analyses were conducted on climate determinants 
of regional-to-global scale patterns in the carbon cycle (Gil-
manov et al. 2010; Beer et al. 2010; Xiao et al. 2011; Jung 

Abstract Eddy covariance (EC) datasets have provided 
insight into climate determinants of net ecosystem produc-
tivity (NEP) and evapotranspiration (ET) in natural eco-
systems for decades, but most EC studies were published 
in serial fashion such that one study’s result became the 
following study’s hypothesis. This approach reflects the 
hypothetico-deductive process by focusing on previously 
derived hypotheses. A synthesis of this type of sequen-
tial inference reiterates subjective biases and may amplify 
past assumptions about the role, and relative importance, 
of controls over ecosystem metabolism. Long-term EC 
datasets facilitate an alternative approach to synthesis: the 
use of inductive data-based analyses to re-examine past 
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et al. 2011; Hilton et al. 2014). There remains a role and 
opportunity for single-site studies to uncover the mecha-
nisms and processes that link climate to ecosystem metabo-
lism, especially within the context of holding site constant 
while studying vegetation dynamics and climate variables 
across overlapping time spans, ranging from seasonal 
through interannual to decadal (Callahan 1984; Richardson 
et al. 2007; Scheffer et al. 2009; Dragoni et al. 2011; Pile-
gaard et al. 2011; Craine et al. 2012; Keenan et al. 2012).

Syntheses of multiple studies conducted at a single 
site tend to be conducted with serial hindsight. That is, 
researchers subjectively evaluate the conclusions of a past 
study by posing them as the hypotheses for a future study. 
This deductive approach carries forward the focus on states 
and processes that compose past hypotheses, and thus tends 
to canalize perspectives on the most important drivers of 
observed responses. This process of synthesis is often done 
in an informal manner, through statements of interpreta-
tion in the discussion sections of manuscripts, and with 
researchers providing subjective interpretations of current 
results within the context of past results. One approach 
that has been used to achieve a more formal synthesis is 
to use data to constrain process-based models through data 
assimilation (Luo et al. 2011; Keenan et al. 2011). This is a 
hypothetico-deductive approach, in which past knowledge 
and observational data are used to structure and parameter-
ize models. The equations comprising such models repre-
sent hypotheses about how driving variables and observed 
effects interact with one another (Young et al. 1996; Bras-
well et al. 2005; Young 2006; Moffat et al. 2010; Zobitz 
et al. 2011; Keenan et al. 2011). The models are used to 
make predictions of outcomes (e.g. net ecosystem produc-
tivity, NEP) given a prescribed set of driving variables, and 
those model-simulated outcomes are compared to observa-
tions. To test the model (and the hypotheses implemented 
as equations), a statistical error can be estimated for the 
model-data match. If a model’s predictions align with 
the observed data, the model’s underlying hypotheses are 
deemed valid (Young 2006; Moffat et al. 2010).

An alternative to deductive approaches is to extract insight 
directly from the data using statistical models. This inductive 
approach can be designed to minimize the a priori hypotheses 
common in deductive analyses (Moffat et al. 2010). Although 
an inductive approach does not directly test mechanistic 
hypotheses for the processes of interest, it can reveal which 
drivers of the observed effects are the most important among 
a given set of drivers, whether information might be missing 
from deduced mechanistic models, and ultimately, the shape 
of the ecosystem response to drivers (Moffat et al. 2010). 
Artificial Neural Networks (ANNs) provide an advantageous 
tool for extracting patterns directly from large, highly variable 
datasets with few a priori assumptions (Moffat et al. 2010). 
ANNs are purely empirical models inspired by the biological 

neural networks of the nervous system (Olden et al. 2008). 
Because ANNs are non-parametric, and excellent at approxi-
mating nonlinear relationships in complex systems, ANNs 
are becoming more widely used in ecology. For a detailed 
description of ANNs and their applications, see Bishop 
(1995), Lek and Guégan (1999), Papale and Valentini (2003), 
Olden et al. (2008), and Moffat et al. (2010). In ecosystem 
ecology, ANNs have been used for multiple purposes, such as 
providing a benchmark for process-based model performance 
(Moffat et al. 2010; Keenan et al. 2012), correcting systematic 
error in the flux outputs of land–surface models (Abramowitz 
et al. 2007), and estimating carbon or water fluxes without 
relying on models of how plant physiology responds to envi-
ronmental variables (Van Wijk and Bouten 1999; Moffat et al. 
2010; Keenan et al. 2012).

In this study, we applied a data-based modeling strategy 
using ensembles of ANNs to a 15-year eddy flux dataset 
derived from the Niwot Ridge AmeriFlux site (US-NR1), 
located in a high-elevation, subalpine forest in west-
ern North America (Monson et al. 2002, 2010). Previous 
model-data fusion studies have been conducted at this site 
using Bayesian-type approaches (Sacks et al. 2006, 2007; 
Moore et al. 2008; Hu et al. 2010), and a set of over 50 past 
studies including observations and models have been pub-
lished. It would be possible to conduct a traditional sub-
jective, and deductive, synthesis of knowledge from these 
studies. However, our goal here is to conduct a new synthe-
sis of available data and apply an inductive approach using 
ANNs to characterize seasonal drivers of NEP and ET. In 
conducting this synthesis we avoided a priori assumptions 
about controls and relationships. We then compared the 
more objective synthesis using the ANN with the lessons 
learned through the past hypothetico-deductive studies.

Methods

Site

Niwot Ridge is part of the Long-Term Ecological Research 
network, and the Niwot Ridge EC dataset is among the 
longest for forest sites (Monson et al. 2002; Williams et al. 
2016). The Niwot Ridge AmeriFlux site is in a subalpine 
forest at high elevation (3050 m) in the Rocky Mountains, 
USA (40°1′58″N, 105°32′47″W). Mean annual temperature 
is 1.5 °C. Annual precipitation averages 800 mm, with 65% 
falling as snow (Scott-Denton et al. 2013). The secondary 
forest surrounding the site is approximately 120 years old 
and is dominated by Engelmann spruce (Pinceae engelma-
nii), subalpine fir (Abies lasiocarpa), and lodgepole pine 
(Pinus contorta). For a full site description see Greenland 
(1989), Monson et al. (2002, 2005) and Turnipseed et al. 
(2002, 2003).



27Oecologia (2017) 184:25–41 

1 3

Meteorological and eddy covariance measurements

The US-NR1 eddy-covariance flux tower was installed in 
November 1998. Net ecosystem CO2 exchange (NEE) and 
latent and sensible heat fluxes were measured at a height 
of 21.5 m. We used 30-min averaged flux and climate data 
from January 1, 1999 to December 31, 2013 (AmeriFlux 
version 2015.11.10). Note that although NEE was used as 
an input to the ANN, we use the term net ecosystem pro-
ductivity (NEP) throughout the text and figures to empha-
size carbon uptake or loss with respect to the ecosystem, 
rather than to the atmosphere (NEP = −NEE). Evapotran-
spiration (ET) was calculated from latent heat flux. For 
further discussion of the eddy flux measurements at Niwot 
Ridge, see Monson et al. (2002), Turnipseed et al. (2002, 
2003), Yi et al. (2008), and Burns et al. (2014, 2015, 2016). 
The data and further details on processing are available 
from the Niwot Ridge AmeriFlux web site (http://urquell.
colorado.edu/data_ameriflux/). Historical daily snow water 
equivalent (SWE) was obtained from the Natural Resources 
Conservation Service (NRCS) SNOTEL site 663 (NIWOT) 
which is within 500 m of the flux tower.

Data treatment and grouping

Daytime and nighttime means were determined from 
30-min averaged data for all meteorological and flux vari-
ables except snow water equivalent and precipitation. Snow 
water equivalent (SWE), a measure of snowpack water 
content, was available at a daily temporal resolution, and so 
the daytimes and nighttimes for each day of the year were 
assigned the same measurement. Precipitation was summed 
for each daytime and nighttime time step. Throughout this 
text, the terms ‘daytime’ and ‘nighttime’ refer to the day-
time or nighttime means or sums of meteorological and 
flux observations. Daytime and nighttime bins for averag-
ing or summation of 30-min data were determined based 
on sunrise and sunset times for each day of the year for the 
latitude and longitude of the Niwot Ridge site; if a given 
30-min averaged period theoretically included any moment 
of photosynthetically active radiation (PAR) above zero, 
then that 30 min period was considered daytime.

For our target variables (NEP and ET), data was pro-
cessed as follows: only non-gap-filled data (AmeriFlux 
flag 1, ‘okay’ for NEP data and AmeriFlux flag 1 and 5 for 
ET data) were used; we excluded 30-min periods from the 
daytime and nighttime NEP data that failed both the inte-
gral statistics and stationarity tests; we excluded NEP and 
ET data from 30-min periods during the nighttime with 
canopy-surface friction velocity (u*) less than 0.2, which 
has been determined as the best threshold to distinguish 
atmospheric stability influences on fluxes (see Monson 
et al. 2002). These exclusions meant that some ‘daytime’ 

or ‘nighttime’ bins were incomplete, so we excluded ‘day-
time’ and ‘nighttime’ data points if more than 50% of their 
constituent 30-min periods were missing. For non-bounded 
climate variables (air temperature, soil temperature, and net 
radiation) outliers more than three standard deviations from 
the mean were excluded. The number of available day-
times/nighttimes in each data grouping after quality control 
is shown in Online Resource material (Tables S1–S8).

We grouped the daytime and nighttime data based on 
annual or seasonal periods of interest (Table 1). To exam-
ine how the seasonal drivers of NEP and ET vary among 
years, we grouped climate and flux data for each year 
(1999–2013). To examine how the drivers of NEP vary 
across seasons, we grouped data into phenologically rele-
vant ‘seasonal periods’ for training the ANN (Fig. 2b). The 
‘snowmelt’ period included data from the first day of peak 
SWE to the first day with zero SWE. The ‘pre-monsoon’ 
period included data from zero SWE to the first day of the 
monsoon (defined as the first day after June 15 with 24-h 
summed precipitation greater than or equal to 10 mm). The 
‘monsoon’ period included data from the first day of the 
monsoon to September 20 (arbitrarily chosen). The ‘post-
monsoon’ period included data from September 21 to the 
date when SWE was greater than, or equal to, 25 mm for 
more than a week after September 20 (or after September 
21st for ‘leap years’). The winter period was defined as 
the end of the post-monsoon period to the beginning of the 
‘snowmelt’ period of the following calendar year.

Artificial neural network model framework

We used a modeling framework of multi-layered feed-for-
ward artificial neural networks trained by backpropagation. 
The ANNs of this study consisted of two layers: the input 
(see ‘candidate seasonal drivers’ section below) fed into a 
hidden layer, and the outputs of the hidden layer fed into an 
output layer (Fig. 1). Only one hidden layer was used; feed-
forward ANNs with a single hidden layer can approximate 
any continuous function with an arbitrary accuracy pro-
vided that no constraints are placed on the number of nodes 
or the magnitude of the nodal weights (Cybenko 1989). All 
ANNs were created and trained using Matlab’s neural net-
work toolbox (Matlab version R 2014b; Beale et al. 2014).

For each ANN, workflow consisted of the following 
steps: data pre-processing, network creation, network con-
figuration, initialization of weights and biases, network 
training, and network validation (Beale et al. 2014). For 
data pre-processing, all inputs (candidate seasonal driv-
ers) and the target (−NEP and ET) were scaled so that all 
values were within the interval [−1 1] to correspond to the 
nearly linear range of the hyperbolic tangent sigmoid trans-
fer function and to expedite training (Moffat 2012; Beale 
et al. 2014). Networks (Fig. 1) were created for daytime 

http://urquell.colorado.edu/data_ameriflux/
http://urquell.colorado.edu/data_ameriflux/
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and nighttime data of each seasonal period described above. 
Networks were configured with the input size equal to the 
number of candidate seasonal drivers (inputs) for each sce-
nario and eight hidden layer nodes. Eight nodes were used 
for the hidden layer based on preliminary tests of the effect 
of node size on ANN performance (Online Resource Figs 
S3, S4). Before training, inputs and associated targets were 
randomly divided into three separate subsets for training 
(60% of data), validation (20% of data), and testing (20% 
of data). The ‘training’ and ‘validation’ subsets were both 
used during training. The ‘training’ subset was used for 
computing the performance gradient and updating weights 
(Beale et al. 2014). To avoid overfitting the data, network 
weights and biases were saved when the error of the ‘vali-
dation’ subset reached a minimum during the training pro-
cess (Beale et al. 2014). Networks were trained in batch 
(epoch) mode using the Levenberg–Marquardt algorithm 
with mean-square error as the performance (merit) func-
tion. Each ANN scenario was repeated ten times, and the 
ANN with the lowest mean squared error from the ‘testing’ 
subset was selected for analysis of seasonal driver rank-
ings. Stated uncertainty represents population standard 
deviations for ten ANNs trained with the same seasonal 
data grouping.

Candidate seasonal driver selection and relevance

To minimize a priori assumptions about which seasonal 
climate drivers are important, the starting set of candidates 
included all drivers that could potentially affect NEP and 

ET. We selected the following initial set of candidate driv-
ers: air temperature (°C) measured at 21.5 m, wind speed 
(m s−1) measured at 21.5 m, wind direction (degrees from 
true north) measured at 21.5 m, u* (m s−1), precipitation 
(mm) measured at 10.5 m, vapor pressure deficit (kPa) 
measured at 21.5 m, soil temperature (°C), incoming pho-
tosynthetically active photon flux density (PAR) (µmol m−2 
s−1) measured at 25.5 m, net radiation (W m−2) measured 
at 25.5 m, relative humidity (percent) measured at 8 m, 
volumetric soil moisture (m3 m−3) measured at 0–15 cm 
depth, and snow water equivalent (mm). Because envi-
ronmental variables may be cross-correlated with each 
other, a driver might appear to be more important than the 
actual driving variable (Moffat et al. 2010). Examination 
of the relationships between the driving variables shows 
the cross-dependencies and highlights the variables where 
those dependencies should be taken into account during 
interpretation of the results (Online Resource Fig.S1, S2).

To estimate the total explainable variability in the data-
set, all candidate drivers were used as inputs for ANN 
training (Moffat et al. 2010). The r2 between the target 
(observed NEP or ET) and ANN output served as a ‘bench-
mark’ of maximum mapping between the target and the 
candidate seasonal drivers (Moffat et al. 2010). This r2 also 
showed how much variability remained unexplained due to 
measurement noise or unmeasured/omitted drivers of flux 
(Moffat et al. 2010). Because volumetric soil moisture was 
only available after the start of 2002, ANN benchmarks 
were calculated with and without volumetric soil moisture 
data. The results were similar (difference between includ-
ing or excluding soil water content in benchmark r2 values 
was usually less than 0.08, and only higher than 0.1 for 
year 2003 and 2004), and here we only report benchmarks 
without soil water content included for consistency across 
the 15-year dataset.

After an ANN performance benchmark was created, 
we performed a ranking of ‘primary’ drivers based on rel-
evance, and then an identification of relevant ‘secondary’ 
drivers for each data grouping. To examine the relevance of 
each input as ‘primary’ seasonal drivers of flux, ANNs were 
trained with each candidate driver individually and ranked 
based on r2. Next, the relevance of each input as a ‘second-
ary’ seasonal driver was examined by training ANNs with 
two inputs: the most relevant ‘primary’ seasonal driver plus 
each other input variable. For all ANNs (primary, second-
ary and benchmark) the coefficient of determination pro-
vided a measure of relevant information provided by the 
input(s) as described in Moffat et al. (2010; see also Van 
De Laar et al. 1999). We applied this approach to each 
‘seasonal period’ independently. Because primary and sec-
ondary drivers could have similar relevance (r2), the cor-
relation coefficients (r) were compared after a Fisher r-to-z 
transformation (Fisher 1921). Each driver was compared 

Fig. 1  Architecture of ANN models used in this study. For daytime 
data, benchmark ANNs had n = 12 or 11 inputs for periods with and 
without snowpack, respectively (see Table 1). For nighttime data, 
benchmark ANNs had n = 10 or 9 inputs for periods with and with-
out snowpack. Primary driver ANNs had n = 1 input, and secondary 
driver ANNs had n = 2 inputs. All ANNs had m = 8 nodes in the 
hidden layer. Black arrows represent weights; gray arrows represent 
biases. Dotted lines represent inputs and hidden nodes not depicted 
(e.g. hidden nodes 3 through m). In a feedforward ANN, information 
flows in one direction: from the inputs, through the hidden layer to 
the output layer
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to the next rank down for up to four drivers for each data 
grouping. The z-score from comparing the correlation coef-
ficients indicates whether multiple drivers were ‘tied’ for 
‘significantly most relevant.’ If more than three drivers for a 
given grouping were tied (p > 0.05 for two-tailed test), then 
no driver(s) were described as ‘significantly most relevant.’

The response of a dependent variable to an individual 
driver can be captured by an ANN model with that indi-
vidual driver as the sole input (Moffat et al. 2010). Exam-
ining the shape and form of the ecosystem response may 
provide insight into the mechanisms of ecosystem metab-
olism (Moffat et al. 2010). Ecosystem responses derived 
from an ANN trained with a single input driver do not 
exclude the influence of other drivers (i.e. they are not 

partial responses), and so the shape of the response may 
be influenced by other factors that co-vary with the driver 
in question over some or all of the observed range of vari-
ability. Thus, the ecosystem response to a single input is 
most informative for input drivers of high relevance (that 
account for much of variation in the response variable). We 
examined the NEP and ET responses to their most relevant 
primary drivers as determined from the ANNs trained on all 
the daytime or nighttime data (Table 1). Then, to investigate 
how the sensitivity of NEP to climate varies due to phenol-
ogy or other seasonal changes in ecosystem dynamics, we 
plotted the single-driver ANNs for all daytime and night-
time data for each phenologically relevant seasonal period. 
Because ANN models vary due to the random assignment 

Fig. 2  Fifteen-year average 
seasonality of environment, net 
ecosystem productivity (NEP) 
and evapotranspiration (ET) 
at Niwot Ridge. a Mean daily 
(24 h) precipitation (purple 
line; multiplied by 10 for 
visualization) and snow water 
equivalent (SWE; brown line) 
with interquartile range (grey). 
b Boxplots showing median 
(dotted line), interquartile range 
(grey), and range (black whisk-
ers; from q3 + 1.5(q3 − q1) 
and q1 − 1.5(q3 − q1), where 
q1 = 25th and q3 = 75th per-
centile) of transitions between 
seasonal periods. Seasonality of 
NEP (green line) for c daytime 
and d nighttime, and ET (blue 
line) for e daytime and f night-
time with interquartile range 
(grey). Color version of this 
figure is available online
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of weights during training, and the random division of the 
data into training, validation, and test datasets, an ensemble 
of 100 ANN models were trained for each primary driver, 
and mean and standard deviation of these 100 models were 
plotted for visualization.

Results

Climate drivers of net ecosystem productivity

For NEP, the benchmark r2 values showed that the com-
bined candidate drivers explained approximately 89 and 
87% of the total variance in NEPdaytime and NEPnighttime 
datasets, respectively (Fig. 3, Online Resource Tables S9, 
S10). Temperature variables emerged as the significantly 
most relevant seasonal drivers of NEPdaytime and NEPnight-

time for all data across all seasons (1999–2013); for NEP-

daytime, the significantly most relevant drivers were air tem-
perature above the canopy and soil temperature, and for 
NEPnighttime, the most relevant driver was soil temperature 
(Fig. 3, Online Resource Tables S9 and S10). For individ-
ual years, the significantly most relevant primary drivers 
varied for NEPdaytime (air temperature, soil temperature, 
or SWE), but always included soil temperature for NEP-

nighttime (Online Resource Tables S17 and S18). Training 
ANNs with two inputs—the most relevant and one other 
driver—revealed that the secondary drivers that produced 
the greatest improvement in performance for all data were 
relative humidity and VPD for NEPdaytime, improving the 
coefficient of determination by 0.14 and 0.12, respectively, 
above the 0.67 value for air temperature alone (Online 
Resource Table S13). For NEPnighttime, air temperature and 
soil moisture produced the highest improvements when 
combined with soil temperature (Online Resource Table 
S14). Many candidate drivers were not relevant to dynam-
ics in NEP. For all NEPdaytime and NEPnighttime data, ANNs 
trained with wind speed, wind direction, u*, or precipita-
tion as the sole input yielded low performance (r2 < 0.2; 
Fig. 3, Online Resource Tables S9 and S10), and as the 
secondary input (to air temperature) yielded little perfor-
mance improvement (r2 < 0.1; Online Resource Tables 
S13, S14). 

Climate drivers of NEPdaytime and NEPnighttime 
for phenologically relevant seasonal periods

Based on benchmarks, seasonal drivers explained more 
variation in NEP during some periods than others. All 
drivers explained 76% of variation in NEPdaytime dur-
ing snowmelt (Fig. 3a, Online Resource Table S9), 
but explained less variation as the seasons progressed 

(monsoon period benchmark r2 = 0.58; Fig. 3a, Online 
Resource Table S9). By the post-monsoon period this 
trend reversed, and a high percentage of NEPdaytime was 
again explained by all drivers (benchmark r2 = 0.80; 
Fig. 3a, Online Resource Table S9). NEPnighttime followed 
a similar seasonal pattern of decreased total explainable 
variability during the monsoon (Fig. 3b, Online Resource 
Table S10).

ANNs trained on single climate variables for data 
grouped by seasonal period showed the best performance 
with temperature variables for most periods during both the 
daytime and nighttime. Yet there were two seasonal periods 
for which a temperature variable was not the significantly 
most relevant primary driver of NEP during the daytime: 
the snowmelt period and the monsoon period. During the 
snowmelt period, soil moisture was the significantly most 
relevant primary driver for NEPdaytime (Fig. 3, Online 
Resource Table S9). During the monsoon period for NEP-

daytime, no driver(s) emerged as significantly most relevant, 
but VPD explained more variation than air temperature 
(Fig. 3, Online Resource Table S9). The significantly most 
relevant secondary drivers of NEPdaytime that emerged were 
PAR and net radiation (for monsoon), and soil moisture (for 
winter; Online Resource Table S13). For NEPnighttime, soil 
temperature was the significantly most relevant driver for 
all periods except snowmelt, when air temperature was sig-
nificantly most relevant, and pre-monsoon, when tempera-
ture variables were both most relevant (Online Resource 
Table S10). The relevance of secondary drivers of NEPnight-

time was similar within most seasons, but during winter, air 
temperature, soil moisture, and SWE were most relevant 
(Online Resource Table S14). Also similar to the result for 
ANNs trained on all data, ANNs trained with wind speed, 
wind direction, u*, or precipitation as the sole input (pri-
mary driver) for NEPdaytime or NEPnighttime data grouped by 
seasonal period yielded low performance (r2 < 0.1; Online 
Resource Table S9-10). As a secondary input to the most 
relevant primary driver for each period, these same vari-
ables produced little performance improvement (difference 
in r2 < 0.1) for NEPnighttime and NEPdaytime of all seasonal 
periods (Online Resource Table S13, S14).

We focused on temperature variables (soil or air tem-
perature) for our examination of NEP responses because 
these were the most relevant drivers for all NEPdaytime and 
NEPnighttime data (Fig. 3), many seasonal periods (Fig. 3), 
and most individual years (Online Resource Tables S17, 
S18). The response of NEPdaytime to temperature resembled 
a physiological thermal performance curve, with a posi-
tive NEP response at low temperatures, and negative NEP 
response at higher temperatures (Figs. 5a, 6a). NEPnighttime 
responded negatively to air temperature and soil tempera-
ture (Figs. 5b, 6b).
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(a)

(b)

Fig. 3  Relevance of candidate drivers for seasonal data groupings 
(winter, snowmelt, pre-monsoon, monsoon, and post-monsoon) as 
well as all data for a daytime and b nighttime net ecosystem produc-
tivity (NEP). The bars indicate the performance (coefficient of deter-
mination) of an ANN with each candidate driver as a single input. 
For each data grouping, significantly highest relevance primary driv-
ers are denoted with asterisks, and vertical dotted line indicates the 

benchmark ANN performance. The soil moisture time series started 
in 2002, so benchmark performances do not include soil moisture 
as an input, and the soil moisture row does not include 1999–2001. 
Abbreviations are used for snow water equivalent (SWE), moisture 
(moist.), relative (rel.), radiation (rad.), direction (dir.), temperature 
(temp.), incoming photosynthetically active radiation (PAR), vapor 
pressure deficit (VPD), and precipitation (precip)
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Climate drivers of evapotranspiration

For ET, the benchmark r2 values showed that, when combined, 
all daytime candidate drivers and nighttime candidate drivers 
explained 78 and 43% of the total variance in ETdaytime and 
ETnighttime, respectively (Fig. 4, Online Resource Tables S11 
and S12). For ETdaytime, air temperature and soil temperature 
were significantly highest relevance drivers of all data (Fig. 4a, 
Online Resource Table S11), and air temperature, soil temper-
ature, or both emerged as significantly most relevant primary 
driver(s) of ETdaytime for many individual years, sometimes 
tied with SWE (Online Resource Table S19). For all ETnight-

time data, no primary drivers emerged as significantly most rel-
evant because performance was similar across more than four 
drivers, but u* and wind speed were notably relevant (Online 
Resource Table S12), and for data grouped by each individual 
year, u* and wind speed were the most relevant primary driv-
ers of 2004 (Online Resource Table S20). The secondary driv-
ers of ETdaytime produced little improvement in performance 
across years (Online Resource Table S23).

Climate drivers of daytime and nighttime 
evapotranspiration for phenologically relevant seasonal 
periods

Like the NEP result, benchmarks varied by seasonal peri-
ods for ET with the lowest amount of variance explained 
in the post-monsoon for ETdaytime and pre-monsoon for 
ETnighttime (Fig. 4, Online Resource Tables S11 and S12). 
For ETnighttime the candidate drivers explained a low 
amount of variation (pre-monsoon benchmark r2 = 0.36), 
a decrease in 0.19 from the snowmelt period when ANNs 
performed best (Online Resource Table S12).

For all periods, the most relevant primary driver dif-
fered between ETdaytime and ETnighttime. For ETdaytime, 
the ANNs with humidity and VPD (winter period), 
and net radiation and PAR (monsoon period) variables 
as inputs showed the best performance (Fig. 4, Online 
Resource material S11). By contrast, for ETnighttime, no 
significantly highest relevance drivers emerged, but 
wind speed and friction velocity (u*) showed relatively 
high relevance as primary drivers for all periods, and 
VPD and relative humidity were high relevance dur-
ing the monsoon (Fig. 4, Online Resource Table S12). 
Relatively high relevance ETdaytime secondary drivers 
varied through time, from radiation variables (winter 
and snowmelt), to wind direction (pre-monsoon), to soil 
moisture (monsoon), and VPD (post-monsoon) but none 
were significantly highest secondary drivers for any sea-
sonal period (Online Resource Table S15). For ETnight-

time significantly highest relevance secondary drivers 
were relative humidity during the winter, and wind 
speed during the monsoon (Online Resource Table S16).

Examining the responses of ETdaytime and ETnighttime to 
their most relevant primary drivers revealed differences 
between daytime and nighttime sensitivities across diur-
nal cycles and seasons. For all seasonal periods, ET in 
general showed little sensitivity to variation in air tem-
perature when temperatures were subzero (Fig. 7a, b). 
ETdaytime, but not ETnighttime was more responsive to tem-
perature during growing season (non-winter) seasonal 
periods (Fig. 7a, b).

Discussion and synthesis

Drivers of ecosystem metabolism considering all 
seasons together

Using an inductive approach focused on daily time-steps 
to evaluate seasonal patterns of ecosystem–climate rela-
tionships, we found that temperature was a predominant 
driver of NEP, inclusive of both daytime and nighttime 
periods of CO2 exchange. Air temperature and soil tem-
perature were the most relevant drivers of mean NEPday-

time, when data for all parts of the growing season were 
considered together (Fig. 3a, Online Resource Table S9), 
and soil temperature was the most relevant driver of mean 
NEPnighttime for all data (Fig. 3b, Online Resource Table 
S10). Mean NEPdaytime responded positively to warm-
ing temperatures until daytime-average temperature sur-
passed about 12.5 °C, reached a peak, and responded 
negatively as average daily temperature approaches 
20 °C (Fig. 5a). Extrapolations from nighttime respi-
ration to daytime respiration are imperfect (Goulden 
et al. 1996; Speckman et al. 2014), and may exclude the 
effect of light-inhibition on leaf respiration (Wehr et al. 
2016). That said, high respiration rates in warm tempera-
tures likely contributed to the reversal in the response of 
NEPdaytime to air temperature at high values (Fig. 5b), in 
addition to shifting photosynthetic temperature optima. 
NEPnighttime decreased with soil temperature (Fig. 6b), as 
expected given the exponentially positive responses of 
soil respiration, driven by high sensitivities of microbial 
respiration and microbial biomass to increasing temper-
ature in this forest ecosystem (Monson et al. 2006a, b; 
Schmidt et al. 2009).

In a previous study of this same ecosystem, Huxman 
et al. (2003) used path analysis, a deductive statistical frame-
work, to construct a model of correlations between seasonal 
climate and NEP and, like our study, showed that tempera-
ture is a dominant driver of seasonal dynamics in NEP. The 
observed effect of temperature was particularly relevant 
to our study because it also revealed a switch in ecosystem 
sensitivity to temperature during the growing season—from 
a positive effect (higher temperature caused higher NEP) 
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(a)

(b)

Fig. 4  Relevance of candidate drivers for seasonal data groupings 
(winter, snowmelt, pre-monsoon, monsoon, and post-monsoon) as 
well as all data for a daytime and b nighttime evapotranspiration 
(ET). The bars indicate the performance (coefficient of determina-
tion) of an ANN with each candidate driver as a single input. Sig-
nificantly highest relevance primary drivers denoted with asterisks. 

The vertical dotted line indicates the benchmark performance from 
all drivers. Note that the soil moisture time series started in 2002, 
thus benchmark values shown here do not include soil moisture as 
an input, and the soil moisture row does not include 1999–2001. See 
Fig. 3 legend for abbreviations
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during spring to a negative effect (higher temperature caused 
lower NEP) during mid-summer. The cause of the seasonal 
switch in temperature sensitivity, as reported in Huxman 
et al. (2003), was that ecosystem respiration rates were low 
during the spring because the presence of the snow pack kept 
soil temperatures and associated soil respiration rates rela-
tively low, but increasing air temperatures stimulated gross 
ecosystem productivity, thus enhancing rates of NEP. During 
mid-summer, however, soil respiration rates for snow-free 
soil were assumed to increase due to direct thermal stimula-
tion of the heterotrophic component (see Scott-Denton et al. 
2003). These causes are also likely to be driving the seasonal 
switch in temperature sensitivity of NEP that we observed. It 
is informative that the simple path analysis deployed by Hux-
man et al. (2003) detected the seasonal reversal in ecosystem 

temperature response given that it was conditioned on only 
two years of data, compared to the fifteen years of data in 
this study. One conclusion that we have drawn from the 
comparison of these two studies is that it is possible to detect 
dominant seasonal drivers with a relatively short time-series 
span. The response of this subalpine system to temperature 
is sufficiently strong and consistent to emerge from only two 
years of study and within the scope of a deductive frame-
work conditioned on prior knowledge of processes.

Our analysis, however, carried the power to situate the 
role of temperature within a broader context of other cli-
mate drivers. Our results showed that snow-water equiva-
lent (SWE) as a primary driver yielded a coefficient of 
determination almost as high as that for temperature regard-
ing NEPdaytime and NEPnighttime (Fig. 3; Online Resource 
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Tables S9 and S10). SWE and soil temperature are closely 
related with snow melting around 0 °C (Online Resource 
Fig. S1 and S2). We thus infer that temperature controls 
NEP not only through its interaction with photosynthetic 
optima and respiration rates during the non-winter peri-
ods, but also as an annual control over the physical state of 
water. The temperature and water effects are intertwined in 
their seasonal influences on ecosystem carbon metabolism, 
and whereas they were revealed in our analysis, they were 
not revealed in the simpler path analysis by Huxman et al. 
(2003).

One of the major contributions of our study was the 
power we had to reveal the nuanced controls of ET, which 
have generally been considered in less detail, compared to 

NEP, in past analyses of tower flux data. The ANN analysis 
revealed evidence that Niwot Ridge experiences an annual 
cycle in the predominance of demand (governed by atmos-
pheric factors) versus supply (governed by water avail-
ability; Federer 1982) as limitations on daytime transpira-
tion. The most relevant ETdaytime driver, as identified in the 
ANN, shifted from soil moisture (suggesting supply limi-
tation) for the snowmelt period, towards net radiation and 
PAR for the pre-monsoon through post-monsoon periods 
(Fig. 4a, Online Resource Table S11). Net radiation should 
increase evaporative demand (via increased energy to drive 
latent heat flux), but the photosynthetically active portion 
of the light spectrum can also affect supply to the atmos-
phere (via stomatal responses). Given that pre-monsoon 
ETdaytime, and to some extent monsoon ETdaytime, remained 
high at high VPD and low relative humidity, and that ETday-

time was more sensitive to PAR during these same periods 
(Online Resource Figs. S10, S13 and S14), we hypothesize 
that during this part of the season, stomata act to maximize 
carbon gain, rather than minimize water loss. Thus, overall 
ET is likely limited by demand early in the growing season. 
During the post-monsoon period the ecosystem appeared to 
shift back to greater supply limitation, as ETdaytime showed 
frequent declines at high VPD and showed little sensitivity 
to PAR (Online Resource Figs. S13 and S14). This seasonal 
shift from demand-limited to supply-limited ET is consist-
ent with findings from a watershed model study for a north-
ern Rocky Mountain site that experiences similar annual 
rainfall as that for Niwot Ridge (Emanuel et al. 2010).

ETnighttime, which we expect to be driven by tempera-
ture, relative humidity, and wind speed (based on theory 
expressed in the Penman–Monteith and Clausius–Clay-
peron relations; Monson and Baldocchi 2014) was deter-
mined in large part by u* or wind speed (Fig. 4b, Online 
Resource Table S12). Given that u* is calculated from wind 
speed, and that these two variables are correlated (Online 
Resource Fig. S1 and S2), it is difficult to differentiate 
between them as independent candidate drivers. Nonethe-
less, this finding suggests several possibilities that warrant 
future investigation. Of the components of ET (evapora-
tion and transpiration), evaporation is generally expected to 
dominate ETnighttime, so our results suggest that wind speed 
or u* may drive evaporation. Yet wind speed also decreases 
leaf surface resistance, providing a possible mechanism 
for impacting ETnighttime in the presence of positive night-
time transpiration (Dawson et al. 2007), which has been 
reported as relatively frequent in Engelmann spruce and 
subalpine fir, two of the dominant trees in the Niwot Ridge 
forest (Turnipseed et al. 2009). Any seasonality of a possi-
ble interaction between wind speed and transpiration could 
be difficult to detect because ETnighttime is slightly higher in 
the winter (Fig. 2f) when trees are dormant and sublimation 
dominates (Burns et al. 2015). The significance of u* as a 
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control over ET, independent of windspeed, might occur if 
canopy roughness differs depending on wind direction, thus 
affecting wind shear differentially. We did not partition u* 
as a function of windspeed in the current analysis, and we 
have not pursued the potential for canopy roughness and 
shear interactions to control ET independent of windspeed. 
However, we note the potential for these interactions here 
as justification for not combining u* and windspeed as a 
single driving variable in the analysis.

Another unexpected result was that wet precipitation 
(rain) did not show high relevance as a driver of NEP-

daytime or NEPnighttime flux for the continuous dataset (all 
data) or any seasonal period (Online Resource Tables 
S9-S10), and for ET, precipitation never explained more 
than 19% of the total ET variability for any seasonal 
period, daytime or nighttime (Online Resource Tables 
S11–S12). If the effects of precipitation on NEP or ET 
lag after the precipitation events by more than ~12 h, 
then our analysis would not have been expected to detect 
the relationship. Burns et al. (2015) found enhanced 
mid-day ET on dry days following a wet day during the 
warm season (May/June through September), so it is 
possible that we indeed missed this relation with respect 
to ET in our study due to a lag effect. Despite its lack of 
significance as a direct driver of NEP, we hypothesize 
the existence of indirect effects through other climate 
variables that did emerge as relevant drivers such as rela-
tive humidity and VPD. Relative humidity and VPD were 
relevant secondary drivers of all NEPdaytime data when 
the primary driver was air temperature (Online Resource 
Table S13). Furthermore, soil moisture in the upper soil 
profile emerged as an important secondary driver of all 
NEPdaytime data when the primary driver was soil tem-
perature (Online Resource Table S13). These variables 
should be affected by rain or the increased cloud cover 
associated with rain events. It is also important to rec-
ognize that the low relevance of wet precipitation from 
this daytime/nighttime analysis does not signify that wet 
precipitation is unimportant at other time scales because 
the controls on NEP and ET vary with time (Barford 
et al. 2001; Siqueira et al. 2006; Richardson et al. 2007). 
Short-term (minutes to hours) responses to precipitation 
may not be captured in this analysis since eddy covari-
ance data during precipitation are gap-filled, and pre-
cipitation could have a lagged effect on NEP or ET over 
several days which also may not be captured in the half-
day-averaged time steps examined here. Since meteorol-
ogy data time-step duration varies across process-based 
ecosystem models (Siqueira et al. 2006), future ecohy-
drology studies should examine how temporal resolution 
(e.g. daytime/nighttime versus half-hour) affects simu-
lated interaction between precipitation, other climate 
variables, NEP, and ET.

Seasonal partitioning of drivers of ecosystem 
metabolism

NEP is much less sensitive to temperature during winter 
than during other periods; the ANN trained on winter day-
time data only, showed net carbon loss during this season 
until mean daytime temperature rose several degrees above 
0 °C. Similarly, winter ETdaytime rates were relatively con-
sistent at approximately 1 mmol m2 s−1, regardless of tem-
perature, but ETdaytime increased with temperature as winter 
ended and the snow cover began to melt (Fig. 7a). Unlike 
daytime, the NEPnighttime and ETnighttime responses to tem-
perature variables during winter were more aligned with 
those of other periods (Figs. 5b, 6b, 7b). The responses 
of NEPnighttime to soil temperature appeared similar across 
seasonal periods, and carbon release clearly increased with 
soil temperature during the winter (Fig. 6b). Together, the 
daytime and nighttime NEP and ET responses lead us to 
conclude that during the winter, trees cannot transpire and 
carry out leaf-level gas exchange, but soil respiration per-
sists. This result aligns with previous studies on winter 
dynamics at Niwot Ridge that showed an active beneath-
snow microbial community (Monson et al. 2006a, b; Lip-
son et al. 2009; Schmidt et al. 2009).

Previous climate–carbon relations studies at Niwot 
Ridge, all of which used a shorter span of data and tested 
explicit hypotheses in a deductive framework, focused on 
the role of the spring snowpack and the timing of its melt 
as the primary control over early season rates of CO2 
uptake (Monson et al. 2002, Huxman et al. 2003, Mon-
son et al. 2005, Hu et al. 2010). Evidence was presented to 
support deep, late-winter snowpacks as a crucial resource 
allowing the forest to sequester atmospheric CO2 at rela-
tively high rates early in the growing season. Monson et al. 
(2005) discovered that trees in this forest can respond to 
spring snowmelt through rapid upregulation of photosyn-
thetic capacity, and hypothesized that the primary advan-
tage of the evergreen growth habit is to respond quickly 
to the availability of snowmelt water before the onset of 
mid-summer drought. Even later in the growing season, the 
importance of snowmelt water was shown to be important, 
as hydrogen and oxygen stable isotopes in water extracted 
from tree stems showed that most NEP in the forest was 
driven by snowmelt water, not mid-summer rain water (Hu 
et al. 2010).

Our analysis confirmed that the snowmelt period is 
indeed an important period controlling rates of atmospheric 
CO2 uptake in this forest ecosystem. However, unlike pre-
vious studies, we identified soil moisture during the snow-
melt period as more important in explaining variance in 
NEP, than temperature (Fig. 3a), and relative humidity 
and VPD were identified as the most important second-
ary drivers (based on the ANNs trained on single climate 
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variables (Online Resource Table S13). From our analysis, 
we conclude that only after snow melt is completed does 
air temperature take on a direct role as the primary driver 
of seasonal dynamics in NEP. Thus, while temperature 
was identified as the primary determinant of NEP when 
assessed across all seasons together, it had a subordinate 
role to soil moisture during the earliest part of the season. 
There is a critical transition in controls, from soil moisture 
content to temperature, that occurs as the system emerges 
from snowmelt.

After the snowpack melt, NEP declines during the ‘pre-
monsoon’ period relative to the late ‘snowmelt’ period 
(Fig. 2c). This decline occurs despite evidence that tran-
spiration is less limited by water supply, and trees are 
actively taking up carbon. Previous studies have shown that 
increases in soil respiration are a major contributor to this 
NEP decrease, particularly rhizospheric respiration after 
trees prime soil with sugar exudates during the snowmelt 
(Scott-Denton et al. 2006; Weintraub et al. 2007). The ANN 
results suggest that after snowmelt, warming temperatures 
and snowpack-derived soil moisture provide favorable con-
ditions for high soil respiration rates. The ANNs trained 
on pre-monsoon NEPdaytime and NEPnighttime showed that 
temperature variables were the most relevant climatic vari-
ables for this period (Figs. 3, 4, Online Resource Tables S9, 
S10), and nighttimes during the pre-monsoon showed more 
carbon loss at above-zero soil temperatures than winter or 
snowmelt periods (Fig. 5b).

Although the monsoon rains in this region are relatively 
mild (Fig. 2a, b), monsoon rains are expected to play a role 
in supplying moisture to trees during the summer. How-
ever, as discussed above, in our analysis, rain remained of 
low relevance as a driver of NEP even during the monsoon 
period (Fig. 3). Also intriguing was our finding that much 
variation in NEP during the monsoon was unexplained by 
the climate drivers examined here (benchmark r2, Figs. 3, 
4). The most relevant drivers of NEPdaytime and NEPnighttime 
(VPD and soil temperature, respectively) during the mon-
soon were still not very relevant (Fig. 3, Online Resource 
Tables S9, S10). Overall, NEPdaytime and NEPnighttime 
became less explained by all of the climatic drivers as the 
growing season progressed from snowmelt to pre-monsoon 
to monsoon. These findings of (1) low precipitation rele-
vance and (2) low total explainable variability suggest that 
day-to-day variation in NEP during the monsoon period 
was driven by factors not included in our candidate driv-
ers, at least not at the time scale of this analysis. Deep soil 
moisture availability was not included as a candidate driver 
and is a promising explanation; water isotopic signatures 
suggest most xylem water derives from snowmelt late in 
the growing season for dominant tree species at this site 
(Hu et al. 2010). Thus, snowmelt water may buffer the for-
est from moisture variation during the monsoon.

The post-monsoon period, like that for snowmelt, was 
revealed as a transition period in which ecosystem metabo-
lism switches, in this case from the upregulated phase of 
the growing season to the downregulated phase of winter. 
During this period the forest at Niwot Ridge experiences 
sub-zero air temperatures. Soil temperature is the most 
important temperature variable for both daytime and night-
time mean NEP (Fig. 3a, b), and NEP appears more sensi-
tive to soil temperature above 0 °C during both the daytime 
and nighttime (Fig. 6a, b). ETdaytime showed decreasing 
sensitivity to all primary candidate drivers during the post-
monsoon (Fig. 4a, Online Resource Table S11). These 
results suggest that the freeze–thaw status of the soil con-
trols day-to-day variations in NEP during this period. This 
contrasts with the snowmelt period, where the high signifi-
cance of soil moisture during the daytime suggests photo-
synthesis is limited by water supply rather than controlled 
directly by soil temperature (Fig. 3a).

Conclusion

Studies that have examined long-term eddy-covariance 
datasets at individual sites have shown that doing so pro-
vides an independent means of corroborating, or chal-
lenging, our prior understanding of ecosystem processes. 
Insight into controls over ecosystem processes can be 
framed in general terms using the limited span of a flux 
time series coupled to a deductive analysis framework that 
tests hypotheses based on prior knowledge. However, an 
alternative inductive analytical framework of a longer time 
series offers confidence that such insight is unbiased by 
prior expectations or a priori assumptions. In this study, we 
showed that, overall, temperature plays an essential role in 
controlling NEPdaytime and NEPnighttime, as well as ETdaytime, 
which is consistent with a prior deductive analysis on a 
limited span of the same observational time series. With the 
longer time series of our study, and the inductive process 
we applied, however, we were able to discern much more 
detail about the interaction of drivers in determining sea-
sonal responses to the climate, and in some cases, reveal 
the nuances of indirect effects of drivers on ecosystem 
metabolism. Our analysis has implications for deductive, 
process-based terrestrial biosphere models that use day-
time and nighttime time-steps. Parsimonious process-based 
models should achieve reasonable model-data agreement 
when they include one of the most relevant ‘primary’ and 
according ‘secondary’ drivers of the complete daytime or 
nighttime time series because the ANNs with the two most 
relevant drivers performed almost as well as ANNs with all 
candidate drivers (reaching 69–97% of the benchmark per-
formance for all data analyses). However, it is important to 
recognize that the total explainable variability (benchmark), 
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the relative importance of climate drivers, and the NEP and 
ET responses to single drivers, all change seasonally, sug-
gesting that phenology and climate variable interactions 
shift such that NEP and ET sensitivities to climate are 
dynamic throughout the year. Sophisticated process-based 
models intended for more complete ecophysiological rep-
resentation should aim to reproduce these seasonal shifts. 
Discovering when process-based models fail to produce 
similar patterns to the ANN could diagnose model struc-
tures and parameterizations that need improvement for 
accurate representation of controls over ecosystem metabo-
lism. Our study demonstrates that there is still much to be 
learned by applying inductive approaches to long-term data 
series as a means of understanding interactive mechanisms 
and synergies that emerge among the many co-varying cli-
mate drivers over time, thereby confirming or challenging 
our understanding of the nature of ‘ecosystem metabolism’.
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