Title
ASPECTS OF B PHYSICS

Permalink
https://escholarship.org/uc/item/85d8k8x1

Author
Gaillard, M.K.

Publication Date
1987-10-01
Aspects of B Physics

M.K. Gaillard

October 1987
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
October 14, 1987

Aspects of B Physics

Mary K. Gaillard

Lawrence Berkeley Laboratory
and
Department of Physics
University of California
Berkeley, California 94720

Talk presented at the B-Meson Factory Workshop,
Stanford Linear Accelerator Center, Sept. 8–9, 1987.

1. Probing the standard model.

As is well known, the study of B-decays plays an essential role in the determination of the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix of charged-current weak couplings, including the CP violating phase δ. In addition it can shed new light on nonleptonic decay dynamics; here the buzz words are factorization, annihilation and penguins. I will comment in more detail below on various aspects of weak decays.

Perturbative QCD can be further probed by, for example, measurements of inclusive bb production in hadron colliders. These measurements are of considerable intrinsic interest, particularly the effects of mass dependence on the approach to scaling. They are also important for extrapolating the bb content of structure functions to very high energy machines like the SSC or the LHC. They are in any case an essential prerequisite for meaningful decay studies, in particular for CP violating searches, at hadron colliders.

Somewhere on the borderline between perturbative and nonperturbative QCD, there is the possibility for studying the spectroscopy and static properties of a heavy/light bound state system. Interpolation from the presumably relativistic $b\bar{b}, bd$ and $b\bar{s}$ systems to the approximately nonrelativistic $b\bar{s}$ system could provide new insight on quark bound states in QCD.

In the realm of nonperturbative QCD, lattice calculations are a growing industry with an ever widening range of applications. Measurements of f_B, the leptonic B decay constant, and the infamous “bag factor” B_B, to be defined below, can be confronted with the results of lattice calculations, as well as of other calculational techniques such as QCD sum rules and the $1/N$ expansion. These parameters play an important role in the analysis of CP violation and the CKM matrix, so reliable information is needed.

Lattice calculations are now also being applied to the determination of structure functions. One could imagine that experimental measurements of the heavy quark content of structure functions or heavy quark fragmentation functions would eventually be able to further test these calculational techniques.

2. Probing beyond the standard model.

One tool for probing new physics is the CKM analysis itself. An inconsistency among data could be interpreted as a signal for a nonstandard effect. An obvious possibility is the existence of one or more additional generations of quarks and leptons. Couplings of known quarks to those of heavier generations destroy the unitarity of the 3×3 CKM submatrix for couplings of the first three generations. Thus at some level a discrepancy should show up.
In addition new particles could mediate additional contributions to decay matrix elements, either at tree level or at the one loop level that determines $B - \bar{B}$ mixing. Candidate particles include additional Higgs bosons, which are expected, in particular, in supersymmetric extensions of the standard models that also predict superpartners for all known particles. Superstring inspired models suggest even more exotic new scalars as well as fermions. New gauge bosons can be present in left-right symmetric extensions of the standard electroweak gauge theory and in some superstring inspired versions.

Another probe of new physics is the study of rare decays. These might involve emission of a new pseudoscalar particle

$$B \rightarrow a + X \text{ or } f + X$$

where a is an axion first suggested in the context of a Peccei-Quinn $U(1)$ symmetry invoked to suppress strong CP violation. Axions tend to turn up naturally in supersymmetric models, especially superstring-inspired ones.

In a different vein, some theorists attempt to understand the observed patterns of fermion masses and mixing in terms of a "horizontal symmetry", i.e. a symmetry that interchanges particles of different generations with the same $SU(3)_c \times SU(2)_L \times U(1)$ quantum numbers. This symmetry is obviously broken since these states are not degenerate. If it is a spontaneously broken global symmetry there are necessarily associated goldstone bosons that can be emitted in flavor changing neutral transitions; these are the "familons" f of Eq. (1).

If the horizontal symmetry is gauged, there are neutral gauge bosons that directly mediate lepton and quark flavor-changing interactions, so one expects B decays like

$$B \rightarrow \left\{ \begin{array}{l} \tau \mu \\ \mu e \end{array} \right\} + X.$$

Such decays are also predicted in extended technicolor models that have been constructed in attempts to solve the gauge hierarchy problem. They can also be induced by some of the exotic particles of superstring inspired models.

3. Why B's? (Theory)

Theorists view B-mesons as heavier replicas of K-mesons. The point is that D-decay, as will be T-decay, is dominated by fast CKM allowed transitions: $c \rightarrow s$ and $t \rightarrow b$. On the other hand K and B decays can proceed only through first forbidden transitions: $s \rightarrow u$ and $b \rightarrow c$. This means that rare processes have enhanced branching ratios. B decay of course provides an additional probe of the CKM matrix through its second forbidden $b \rightarrow u$ transition.

CKM suppression of decay rates also enhances flavor changing $|\Delta F| = 2$ transitions that induce meson-anti-meson mixing and superweak CP violation, since these necessarily entail at least first CKM forbidden couplings. The loop diagrams of Fig. 1 induce mass mixing via a mass difference Δm between eigenstates. The GIM mechanism, i.e. unitarity of the CKM matrix, assures that these diagrams cancel exactly in the limit that the internal quark masses are degenerate. The relatively long B lifetime tells us that the first two generations couple rather weakly to the third. This means that Δm_{BK} nearly vanishes for $m_s = m_d$, obviously a bad approximation relative to the scale m_K, but $\Delta m_D \simeq 0$ for $m_s = m_d$, which is an excellent approximation relative to the scale m_D. For Δm_{B_s}, t-exchange is comparable to c, u exchange so the GIM cancellation is again badly broken, but it will be quasi-exact for Δm_T.

The width difference $\Delta \Gamma$ can be schematically represented by the cut diagrams of Fig. 2, i.e. the absorptive parts of Fig. 1. For K and B the GIM cancellation is a fortiori broken by the fact that the decay energy is below the threshold for charm and top emission, respectively. However, there is here an essential difference between neutral kaons and B-mesons. K-decays has very limited phase space. As a consequence, approximate CP invariance implies that K_2 decays almost exclusively into two pions while K_L has only phase space suppressed 3-body final states: $\Gamma_L < \Gamma_2$. In this case "width mixing" is maximal: $\Delta \Gamma_L/\Gamma_K < 1$. In contrast, B decays have a large energy release, so that many channels are open for both CP modes and one expects $\Gamma_L \simeq \Gamma_2$ for the decay eigenstates. Another difference is that nonleptonic decays of K^0 and \bar{K}^0 are into the same (first forbidden) $(n \pi)\bar{n} \pi$ channels. Decay channels can be common to B^0 and \bar{B}^0 only through an additional Cabibbo suppression factor except for $B^0 \leftrightarrow c \bar{c} + X \leftrightarrow B_3^0$ which is phase-space inhibited. The net result of these effects is that one expects $\Delta \Gamma_L/\Gamma_B << 1$.

The situation is somewhat different when one considers mass mixing and superweak CP violation. In the standard model, observable CP violation can occur only to the extent that a process probes the existence of all three quark generations. To the extent that the third generation decouples from the first two, the loop diagrams, Fig. 1, that determine $K^0 - \bar{K}^0$ mass mixing are dominated by c and u exchange, so one gets

$$\Delta m_{K^0/\bar{K}^0} \sim f(m_c^2)/G_F B_c^2$$

(3)

where the function $f(m_c^2) \simeq m_c^2$ for $m_c^2 << m_B^2$, so

$$\Delta m_K/\Gamma_K \sim m_c^2/m_B^2 \sim 1$$

(4)

On the other hand CP violation, which determines the imaginary part of Δm_K, requires t-exchange. The smallness of the observed CP-violation in the kaon system can be understood
in terms of the small $s - t$, and very small $d - t$, couplings.

For $B_d - \bar{B}_d$ mixing the presence of the first and third generations in the (bd) and (bd) external states means that the existence of three generations is implicit in the process. More precisely if I denote by θ the degree of forbiddenness of a transition, and by θ_{ij} the CKM matrix element for $i \leftrightarrow j$, the observed CKM pattern

$$\begin{align*}
\theta_{ud} &\sim \theta_{cd} \sim \theta_{td} \sim \theta \\
\theta_{ud} &\sim \theta_{td} \sim \theta^2
\end{align*}$$

implies that u, c, and t exchange are of roughly comparable importance for $B_d - \bar{B}_d$. One finds in fact that the imaginary part of Δm_{B_d} is simply determined by the CP violating phase parameter in the CKM matrix:18

$$\arg(\Delta m_{B_d}) \simeq \tan \delta. \tag{6}$$

On the other hand $B_d - \bar{B}_d$ mixing itself is doubly CKM forbidden

$$\Delta m_{B_d}/\Gamma_{B_d} \propto \theta^3 f(m^2) \tag{7}$$

and therefore small19 unless the top quark mass m_t is large.

In contrast Δm_{B_s} is dominated by c and t exchange and suffers no CKM suppression relative to the decay width

$$\Delta m_{B_s}/\Gamma_{B_s} \propto f(m^2), \tag{8}$$

but since the first generation is now relatively unimportant, CP violation is expected to be small.

Note that for large m_s, $B - \bar{B}$ mass mixing grows roughly linearly with m^2, whereas $\Delta \Gamma_B$ remains fixed (except for the mild, logarithmic dependence of Penguin diagrams -- see below -- on m_s). Observable "superweak" CP violation arises through a clash of CP violating phases20 of the contributions of Figs. 1 and 2 and is measurable only if they give comparable contributions to meson-anti-meson mixing. For example in the standard model the charge asymmetry in same sign dilepton events, $B \to t^+ t^- + X$:

$$A \equiv \frac{t^+ t^- - t^- t^+}{t^+ t^- + t^- t^+} \tag{9}$$

is, for small $|\Delta \Gamma/\Delta m|$ given by20

$$A \simeq \sin \delta |\Delta \Gamma/\Delta m|. \tag{10}$$

This is expected to be negligibly small for values of m_s as large as those suggested by the data to be analyzed in the next section. This means that one will have to look for CP violating signals by studying particular decay channels, each of which will have a small branching ratio.

B-decay should also provide an interesting new probe of weak decay dynamics.5 The collective wisdom is that since B-mesons involve a heavier quark, with a higher energy release in their decays, QCD corrections to weak amplitudes should be smaller and better understood than for the lighter K- and D-mesons.

This wisdom is almost certainly well founded for some applications, notably for penguin diagrams,21 depicted in Fig. 3. For B-decay, the loop momentum is effectively cut off at the scale $\mu \simeq m_s$. At this scale the effective QCD fine structure constant a_s is small, so the penguin contribution should be well approximated by the leading single gluon exchange diagram which gives an amplitude

$$A_{\text{penguin}} \propto \theta \alpha_s(m^2)/4\pi \ln(m^2_1/m^2_2). \tag{11}$$

In contrast, for K-decay the loop momentum is cut off at the much lower scale $\mu \simeq m_c$.

Penguin diagrams in B-decay are particularly interesting because they yield a distinctive final state: $B \to K + \cdots$ at the first CKM forbidden level. Therefore, selecting final states with strange particles that are not charm decay products should enhance the penguin contribution. The competing decay mechanism is a third CKM forbidden transition:

$$b \to u + W^- \to s \bar{u}. \tag{12}$$

Since the matrix elements for (11) and (12) have different phases in the standard model,22 these final states may also be a good laboratory for studying CP violation. Bjorken23 has estimated that the two contributions should be of comparable magnitude with the $\alpha_s(m^2)$ suppression of the penguin diagrams approximately compensating the extra θ^2 suppression of the decay (12).

QCD corrections also govern the value of the "bag parameter", so named because it was first estimated24 in the context of the MIT bag model. Specifically, for a neutral pseudoscalar $P, P \to P$ mass mixing is determined at the quark level by the diagrams of Fig. 1. After loop integration the resulting effective quark-field operator is a $V - A$ current-current operator, shown schematically in Fig. 4a. The matrix element of this effective operator between P and \bar{P} states, which determines Δm_P, is parameterized as

$$\Delta m_P \propto m^2_1 f^2 P.$$

18
For $B_p = 1$ this is just determined13 by the squared P-to-vacuum matrix element

$$ (P|J_\mu|0) = p_\nu f_p $$

(14)
evaluated on the P mass shell: $p^2 = m_P^2$. In the context of QCD, after corrections for hard gluon exchange,24,28 the parameter $B_p \neq 1$ takes into account soft gluon exchange between the two $V - A$ quark currents, Fig. 4b. Conventional wisdom (which seems to be supported by lattice gauge calculations47) holds that QCD corrections should be small, so that $B_p \simeq 1$, for heavy quark bound states. The physical grounds for this assumption are questionable because a heavy/light bound state is not really a short-distance system. To tighten the analysis of mass mixing and CP violation, as well as to measure (via Δm) the bag parameter B_p, it is important to have independent measurements of f_p for each pseudoscalar. These measurements also provide tests of nonperturbative QCD calculational techniques.4-6 Thus one would like to know the partial widths for

$$ D \
F \
B \rightarrow \tau \nu_\tau. $$

(15)

In the important B-decay case, this means measuring very small branching ratios. Bjorken has estimated28 the branching ratio for $B_s(b \bar{c}) \rightarrow \tau \nu_\tau$ at about 1.5%; the decay $B_s(b \bar{t})$ is further suppressed by a double CKM factor θ^2.

Another issue in nonleptonic decay dynamics is the importance of "annihilation" diagrams,18 Fig. 5, relative to the presumably dominant "spectator" diagram,27-29 Fig. 6.

For free quarks the annihilation processes of Fig. 5 are helicity suppressed for a $J = 0$ final state with quasi–massless quarks. The argument is identical to that which explains the suppression of $K \rightarrow e\nu$, relative to $K \rightarrow \mu\nu$. Specifically, the B-decay amplitudes arising from the diagrams of Fig. 5 are determined18 as

$$ A_0 \propto G_F f_B m_q $$

(16)

where in Eq. (16) m_q is the mass of the heaviest final state quark. In QCD, gluon emission, Fig. 7, can modify this result, since the final state $q\bar{q}$ pair no longer has to be in a $J = 0$ configuration.20 The fact that the $D^+(c\bar{s})$ decays more slowly than the $D^0(c\bar{u})$ or the $F^+(c\bar{s})$ is generally attributed to the presence of the annihilation mechanism. The diagrams of Fig. 7b and Fig. 7a contribute respectively to CKM allowed transitions for D^0 and F^+. No CKM allowed annihilation process can contribute to D^\pm decay. In contrast, the spectator decay of Fig. 6 is independent of the flavor of the quark bound to the decaying charmed quark. If only this process is important one expects27-29 equal life–times for D^0, D^+ and F^+, up to interference effects31 that may occur in D^\pm decays, due to the fact that the spectator quark is the same as one of the decay products in the CKM allowed transition. In fact, the difference in lifetimes is much less dramatic than indicated by early experiments and could possibly be attributed22 solely to destructive interference of spectator diagrams in D^\pm decay.

In any case, the common wisdom33 is that the annihilation process of Fig. 7 should be less important in B–decay because of the higher mass scalar and thus the smaller effective QCD coupling constant. However, as I noted above, a heavy (Q)–light (q) bound quark system is not really a short–distance system. Its inverse size is determined by the reduced mass, which is simply m_1 if $m_q << m_Q$. Put another way, the distance over which the annihilation processes of Fig. 7 take place is the requisite "off–mass–shellness" of the virtual quark which, for emission of a massless gluon, is of the order of the mass of the quark from which the gluon is emitted. This suggests that the relevant QCD fine structure constant is $\alpha_S(m_1)$ rather than (the much smaller) $\alpha_S(m_Q)$. Within this perspective the $B_s(b \bar{s})$ system is really "small", in that the relevant distance scale is m_1^{-1}. It would therefore be extremely interesting to study the annihilation process in B–decay as a function of the mass of the lighter bound quark. For the $B_s(b \bar{s})$ system CKM allowed annihilation (Fig. 6a or 7b) is signed by a $c\bar{s}$ final state, e.g.:27,29

$$ B_s \rightarrow \{ D\bar{D} + \pi's \} $$

(17)

Since these final states are also CP eigenstates they may prove useful in the search for CP violating signals.24 However, each exclusive decay mode of this type is expected27,29 to have a branching ratio of less than a per cent.

To test the dependence of annihilation diagrams on the mass of the lighter bound quark, the importance of the final states (17) in B_s decay should be compared with the partial lifetimes for B_c decays to final states accessible via CKM allowed annihilation, namely (Fig. 6b, 7a):

$$ B_c \rightarrow \{ \text{pions} \} $$

(18)

4. Why B's? (Experiment)

The most recent datum supporting the assertion that B–decays are important is that a single experimental measurement, namely of $B_d - \bar{B}_d$ mixing, instantaneously generated a large number of (for the most part good) theoretical papers.

In fact there have been three recent experimental measurements of prime importance for probing the standard model, namely:
1. The observation\(^{38}\) of \(B\)–decay into a noncharmed final state (\(p\bar{p} + X\)). This (almost
certainly) demonstrates the existence of a direct \(b\to W^+\bar{d}\) coupling, without which CP
violation would be inexplicable in the framework of the standard model.

2. The observation\(^{39}\) that \(\epsilon'/\epsilon \neq 0\). This is the first positive indication for CP violation
other than in \(K^0\)–\(\bar{K}^0\) (superweak) mass mixing, and is an equally important result
for substantiating the standard model.

3. A substantial \(B_d\)–\(\bar{B}_d\) mixing.\(^{37}\) This result was at first sight surprising because \(B_d\)–\(\bar{B}_d\)
mixing was predicted\(^{40}\) to be rather smaller than observed, under the assumption of
a relatively light (\(m_\pi < 40\) GeV) top quark. However, as I shall outline below, the
observed values of \(\epsilon'/\epsilon\) and \(B_d\)–\(\bar{B}_d\) mixing are quite consistent with the standard
model, provided that the top quark mass is rather large.\(^{38-40}\)

The logic of the analysis of these recent results is as follows. The relative yield of same-
sign dileptons in \(B_d\)–\(\bar{B}_d\) events:

\[
r_d = \frac{t't' + t't}{t't'}
\]

(19)
determines (neglecting, as argued above, “width mixing”, \(\Delta \Gamma \approx 0\)) the \(B\) mass-mixing
parameter which is governed by the diagrams of Fig. 1. For a large top quark mass the
dominant contribution is double \(t\)-exchange, giving a contribution:

\[
\Delta m_{B_d} \propto \theta_{ud}^2 (m_t^2).
\]

(20)

Using the standard parametrization\(^{13}\) of the \(K\bar{m}\) matrix in terms of three angles \(\theta_1 \approx \theta_2, \theta_3\)
and \(\theta_2\) and a phase \(\delta\), the \(t \leftrightarrow d\) matrix element

\[
\theta_{ud} \approx s_1 s_2
\]

(21)

(here \(s_1 \equiv \sin \theta_1\)) is related by unitarity\(^{3,14}\) of the CKM matrix to other measured CKM
matrix elements. The \(B\)–decay life-time, dominated by the \(b \to c\) transition, determines\(^{18,41}\)
the element

\[
|\theta_{uc}| = |s_2 + s_2 e^{i \delta}|.
\]

(22)

The CKM suppressed \(b \to u\) transition is experimentally bounded. The experimental limit\(^{42}\)
on the branching ratio

\[
R = \frac{B(b \to u)}{B(b \to c)}
\]

(23)
can be, together with \(B\)-lifetime measurements,\(^4\) interpreted as a limit on the \(b \to u\)
transition matrix element:

\[
|\theta_{us}| = |s_1 s_2|.
\]

(24)

The Cabibbo angle, or \(s_{13}\), is a well measured quantity. The experimental bounds\(^{43}\) on
the ratio \(R\), Eq. (23), imply a small value for \(s_{13}\). This in turn, together with a rather long\(^4\)
\(B\)-lifetime that bounds \(\theta_{cb}\), Eq. (22), implies that \(s_{12}\) and hence \(\theta_{ud}\), Eq. (21), cannot be
very large. As a result, the substantial value observed\(^{37}\) for \(B_d\)–\(\bar{B}_d\) mixing implies that the function\(^{16}\) \(f(m_1^2)\), which, for \(m_1^2 < m_\mu^2\), grows with \(m_1^2\), must be large. Numerical analyses
have been performed by several groups\(^{30-40}\) who for the most part conclude\(^{38-40}\) that
existing data imply at least \(m_1 \gtrsim 50\) GeV and, more probably, \(m_1 \gtrsim 100\) GeV. A dissenting
view has been registered by one group\(^{44}\) that claims that present data allow \(m_1\) as low
as the roughly 20 GeV limit imposed by the nonobservation of \(B\) production at PEP
and PETRA. However, the latter authors allow values for the unknown parameters in the analysis,
namely \(f_0, f_2\) and the ratio \(R\) of Eq. (23), that most theorists would probably consider as
unreasonable. I emphasize once again the importance of independent measurements of these
parameters.

Once the observed \(B_d\)–\(\bar{B}_d\) mixing has been assimilated within the standard model, the
resulting restrictions on allowed values for the parameters of this model have implications
for other measurable quantities. Consider first CP violation in the \(K^0\)–\(\bar{K}^0\) system. Superweak
CP violation (i.e. CP violation in mass mixing) is determined\(^17\) by the imaginary parts of the
diagrams of Fig. 1. The CP violating part of these diagrams involves \(t\)-quark exchange;
this contribution grows as \(m_t^2\) for \(m_t < m_\mu\). Thus the parameter \(\epsilon\), which measures the CP
violating component of \(\Delta m_K\), grows roughly as \(m_t^2\). On the other hand, direct CP violation
in decays other than the 2\(r\) isospin zero mode used to define the superweak CP violating
phase, and in particular the parameter \(\epsilon'\) which measures the CP violating phase in the 2\(r\)
\(I = 2\) mode relative to the \(I = 0\) phase, is governed\(^48\) by Penguin diagrams, as in Fig. 3,
that grow only logarithmically with \(m_t\). Thus the ratio \(\epsilon'/\epsilon\) decreases\(^49\) with increasing \(m_t\)
for \(m_t < m_\mu\). As a consequence, the large value for \(m_t\) inferred from the \(B_d\)–\(\bar{B}_d\) mixing
measurement\(^{37}\) is consistent\(^{38}\) with the small observed\(^{36}\) value for \(\epsilon'/\epsilon\) in the context of the
standard model.

This picture implies predictions for as yet unmeasured quantities. For example it is
inferred\(^{38,39}\) that \(B_d\)–\(\bar{B}_d\) mixing should be nearly maximal. In addition the \(K^+\to \pi^+\nu\bar{\nu}\)
branching ratio prediction is sharpened. This occurs\(^{15,47}\) in the standard model through the
loop diagram of Fig. 8, and, since it is GIM suppressed, grows in importance for large \(m_t\).
One finds\(^{48}\)

\[
B(K^+ \to \pi^+\nu\bar{\nu}) \propto (1 - \delta)^{10^{-10}}
\]

(25)

for \(m_t = (50 - 200)\) GeV. (The experimental bound on the parameter \(\rho - 1\) where \(\rho =
\frac{m_\omega}{m_\pi} \cos \theta_{13}\) implies\(^{46}\) an upper limit of about 200 GeV on \(m_t\).) It has also been pointed
out⁴⁹ that a top quark mass as large as 200 GeV could give a possibly observable branching ratio for the rare neutral current flavor changing B-decay:

$$B(B^+ \to K^+ + \ell^+\nu_\ell) \sim 10^{-8}. \tag{26}$$

More generally, the measured $B_d - \bar{B}_d$ mixing⁴⁷ tightens the values of the CKM matrix elements and hence the quark mass matrices, which, when diagonalized, determine the CKM matrix. A recent analysis⁵⁰ has all but ruled out specific conjectures for the form of the quark mass matrices, partially based on GUTs models.

The implications of this measurement⁴⁷ for physics beyond the standard model has also been analysed.⁴⁹ Contributions from supersymmetric partners of ordinary particles and/or additional Higgs scalars are found to enhance $B - \bar{B}$ mixing. Thus a smaller value of m_t than that inferred in the standard model would be compatible with the data if either of these effects are present.⁵⁰ On the other hand $B \bar{B}$ mixing is found to be relatively suppressed in left–right-symmetric extensions of the electroweak gauge theory; an even higher top quark mass limit is inferred in the context of these theories.⁵⁰

5. A superstring-inspired example of exotic physics.

Models inspired by the $E_6 \times E_6$ heterotic⁴¹ superstring⁴² theory end up in four dimensions⁴³ with an (already broken) $E_8 \times E_8$ gauge theory. Here E_8 (or a subgroup thereof) describes a pure supersymmetric Yang Mills theory of a so-called “hidden sector” that interacts only gravitationally with observed matter, and E_6 is the GUT of the observed world. The unbroken subgroup of E_8 at scales just below the compactification scale must contain the observed gauge group $SU(3)_c \times SU(2)_L \times U(1)$. Each matter generation fills a 27–plet of E_6 which decomposes under $SU(5)$ as:

$$27 = (5+10) + (5+\bar{5}) + 1 + 1. \tag{27}$$

In (27) the $(5+10)$ supermultiplets contain quarks (q) and leptons (l) and their superpartners, squarks (\tilde{q}) and sleptons $(\tilde{\ell})$. Each $(5+\bar{5})$ supermultiplet contains a Higgs (H) and Higgsino (\tilde{H}) super-multiplet that is a weak isospin doublet, as well as a color triplet supermultiplet (D, \bar{D}) which has the same flavor quantum numbers under $SU(3)_c \times SU(2)_L \times U(1)$ as the right-handed d-quark. There are as many $(5+\bar{5})$ supermultiplets as matter generations. This means that there is a large number of physical Higgs particles as well as other exotic states. If there are no discreet symmetries to forbid them, there will be generation mixing couplings among the $(5+10)$ and $(5+\bar{5})$ multiplets, which, if the masses of the later are not very large, will induce⁴⁴ effective flavor changing neutral current (FCNC) transitions among light particles, via the diagrams of Figs. 9(a–c). In addition, the possibility of d-D mixing potentially spoils⁴⁴ the GIM mechanism that in the standard model forbids the tree level FCNC process of Fig. 9d, where Z' represents on additional neutral gauge boson that is present if the surviving gauge group in four dimensions is larger than the standard one. If present, all of the processes of Fig. 9 would contribute to Δm_B (and Δm_K), and therefore to the parameter r_d of Eq. (19). Neglecting $\Delta \Gamma_B$, the experimental result⁵⁷ implies a bound⁵⁴

$$r_d \approx \frac{1}{2} \frac{\Delta m_B}{\Gamma_B} \lesssim 0.3 \tag{28}$$

or

$$\Delta m_B \lesssim 4 \times 10^{-12} \text{GeV} \tag{29}$$

which is in the ballpark of

$$\Delta m_K = 3.5 \times 10^{-12} \text{GeV}. \tag{30}$$

This means that constraints on new phenomena from Δm_B are comparable to those from Δm_K. For example, assuming $m_{H,\tilde{H}} \approx 100 \text{ GeV}$, $m_{D,D} \approx 300 \text{ GeV} \approx m_{Z'}$, the bounds⁴⁴ on new couplings λ involving external b-quarks in the diagrams of Fig. 9:

$$\lambda < 10^{-4} - 0.1 \tag{31}$$

are comparable to those involving external s-quarks:

$$\lambda < 10^{-5} - 0.1. \tag{32}$$

Note moreover that (31) and (32) are independent, since couplings involving different matter generations are a priori independent.

The new couplings suggested by superstring-inspired theories should also induce FCNC semi-leptonic decays. For example the experimental branching ratio bound

$$B(B \to \ell^+\nu_\ell + X) < 6 \times 10^{-3} \tag{33}$$

implies⁴⁴ the limit

$$\lambda_4 \lambda_5 < (0.06)^2$$
on the couplings of b-quarks and leptons to additional Higgs bosons with $m_H \approx 100 \text{ GeV}$, Fig. 10, as suggested by some superstring–inspired models.

6. Conclusions

I hope that I have made it clear that any data on B-decays is at present extremely interesting, in that it provides powerful new constraints in analyses of the standard model and extensions thereof.
Thinking about future detectors and/or facilities for B-meson studies should have as
the primary objective the ability to study CP violation. This will be difficult. Bjorken\(^8\)
has estimated that at least 3 x 10\(^7\) $\bar{B}B$ production events are needed for meaningful CP
violation studies. This is actually his optimistic estimate, revised upward because of the
observed substantial $B_d - \bar{B}_d$ mixing that may facilitate observation of CP violating effects
in neutral B-decays. Bjorken's reasoning\(^8\) is as follows:

\begin{itemize}
 \item[a)] A specific state must be reconstructed. This involves either a CKM–forbidden non-
charmed final state, a somewhat phase-space suppressed $c\bar{c}$ final state, or a decay chain
$B \to D + f$, $D \to f'$ entailing the product of two small branching ratios for fixed f
and f'. Therefore, the overall branching ratio for any given final state will be no larger
than \(10^{-3} \times 10^{-4}\).
 \item[b)] The associated B or \bar{B} must be flavor–tagged by identifying the charge of a decay
lepton and/or the strangeness of the hadronic decay products. This will entail another
suppression factor of at least \(10^{-1}\).
 \item[c)] Sufficient statistics, at least \(10^5\) events, must be accumulated for a meaningful search
for CP violation in a particular channel.
\end{itemize}

A necessarily prerequisite for CP violation studies is a good knowledge of production
rates and distributions and decay branching ratios. Production and decay branching ratios
will provide important data for the standard model, as well as sharpen the choices for the
best line of attack on CP violation.

A secondary goal for new facilities or detectors is to push as far as possible limits on
rare decays. These can provide powerful constraints on proposed extensions of the standard
model – or perhaps one day provide a real signal for new physics.

References

1. For reviews see: L. -L. Chau, Phys. Rep. C95, 1 (1983);

2. N. Cabibbo, Phys. Rev. Lett. 10:531 (1963);

3. For reviews see: M. K. Gaillard, Proc. 1978 Summer Inst. on Particle Physics, SLAC

4. R. Rückl, Ph.D. Thesis (CERN preprint, 1985);
 A. J. Buras, Ref. 1.

 (1983);
 M. A. Shifman and M. B. Voloshin ITEP-54 (1986);
 A. Pich and E. de Rafael, Phys. Lett. 158B: 477 (1985);

7. See A. Soni, these preceedings.

12. See: Dynamical Gauge Symmetry Breaking, E. Farhi and R. Jackiw, Eds. (World
 Scientific, Singapore, 1982).

 A. I. Vainshtein and J. B. Khraplovich, JETP Lett. 18, 83 (1973).

 A. Ali and C. Jarlskog, *Phys. Lett.* 144B: 266 (1984);

 H. Fritzsch and P. Minkowski, *Phys. Lett.* 90B: 455 (1980);
 W. Berenreuther, O. Nachtmann and B. Stech, *Zeit. fur Physik C4*: 257 (1980);

32. See, for example, B. Steck, Non Leptonic Weak Decays, HD–THEP–87–18, San Miniato Topical Seminar on Heavy Flavors, 1987.

34. See I. I. Bigi, these proceedings.

40. L.-L. Chau and W.-Y. Keung, Davis preprint UCD–87–02(1987);
 I. I. Bigi and A. I. Sanda, SLAC-PUB–4299 (1987);
 D.-S. Du and Z.-Y. Zhao, IASSNS–HEP-87/23 (1987);

42. CUSB Collaboration, C. Klopfenstein et al., *Phys. Lett.* 130B: 444 (1983);
 CLEO Collaboration, A. Chen et al., *Phys. Rev. Lett.* 52: 1084 (1984);

Figure Captions

1. One loop quark diagrams that contribute to neutral meson-anti-meson mass mixing.

2. The absorptive parts of the diagrams of Fig. 1 that contribute to width differences in neutral (\(q\bar{q}\)) meson systems.

4. Schematic representations of a) the factorization approximation to the meson-anti-meson matrix element of the effective \(\Delta S = 2\) quark operator generated by the diagrams of Fig. 1, and b) QCD corrections to factorization that generate a "bag factor" \(B_F \neq 1\).

5. Annihilation diagrams for nonleptonic B-decays in the free quark approximation.

7. QCD corrections to the diagrams of Fig. 5.

8. One loop contribution to the \(s \to d\bar{v}\) transition in the standard model.

9. Diagrams that can generate \(B_d^0 - \bar{B}_d^0\) and \(K^0 - \bar{K}^0\) mixing in superstring-inspired models.

10. Diagram that can generate \(B \to X + \ell^+\ell^-\) or \(\mu^+\mu^-\) in superstring inspired models.